CN1101253C - 多金属氧酸盐的单层和多层分子组装体系 - Google Patents

多金属氧酸盐的单层和多层分子组装体系 Download PDF

Info

Publication number
CN1101253C
CN1101253C CN98118150A CN98118150A CN1101253C CN 1101253 C CN1101253 C CN 1101253C CN 98118150 A CN98118150 A CN 98118150A CN 98118150 A CN98118150 A CN 98118150A CN 1101253 C CN1101253 C CN 1101253C
Authority
CN
China
Prior art keywords
poms
thiol
layer
solution
mercaptan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98118150A
Other languages
English (en)
Other versions
CN1245735A (zh
Inventor
程龙
董绍俊
牛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN98118150A priority Critical patent/CN1101253C/zh
Publication of CN1245735A publication Critical patent/CN1245735A/zh
Application granted granted Critical
Publication of CN1101253C publication Critical patent/CN1101253C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明提供一种普适的方法来修饰不同种类的多金属氧酸盐(POMs)到电极表面上去,形成POMs的单层和多层分子组装体系。即在末端基团可离子化为带正电荷或负电荷的烷基硫醇自组装单分子基膜上,把各种POMs与大阳离子物质交替沉积成单层和多层修饰膜。根据此法制得的POMs单层膜和多层膜电极的厚度可控,组成可调,层状结构均匀有序,重现性好,而且稳定性高。

Description

多金属氧酸盐的单层和多层分子组装体系
本发明属于多金属氧酸盐的单层和多层分子组装体系的制备方法。
多金属氧酸盐(Polyoxometallates,POMs)是一类范围很广、发展很快的化合物。POMs具有许多独特的分子性质,包括分子组成,大小,形状,电荷密度,redox电位,酸性和溶解性等,因而它在催化,医药和材料科学等领域有着重要的理论研究价值和广泛的应用前景(Chem.Rev.1998,18,1-387)。把各种POMs修饰到电极表面制成化学修饰电极(CME),不但简化了对它们理化性质的研究,而且促进了它们广泛的应用。而现有的一些修饰方法,主要包括电沉积法、吸附法和聚合物掺杂法(Shiu,K.-K.;Anson,F.C.J.Electroanal.Chem.1991,309,115),都具有一些缺陷,如使被修饰物变性、稳定性差、结构不明确和修饰量难以精确控制等。最近Faulkner和Anson等人利用POMs与水溶性大阳离子交替吸附的方法制备了多层分子组装体系(Ingersoll,D.;Kulesza,P.J.;Faulkner,L.R.J.Electrochem.Soc.1994,141,140.Kuhn,A.;Anson,F.C.Langmuir,1996,12,5481.)。其中POMs的第一吸附层对于后续的多层沉积是至关重要的基础,能直接吸附到电极基底上去的POMs仅限于数量较少的一些钼氧酸盐,而大多数POMs不能直接吸附,因而不能用此法来修饰。
本发明的目的是提供一种普适的方法来修饰不同种类的POMs到电极表面上去。
本发明的目的是这样实现的,首先硫醇(thiol)化学吸附在贵金属电极表面形成一层单分子自组装膜,然后在这层高度有序的单分子基膜上,根据POMs能与大阳离子物质(CS)形成不溶性离子对的性质,利用浸泡、循环伏安扫描或恒电位的成膜手段,把POMs与大阳离子物质交替沉积到电极表面上去,形成POMs的单层和多层修饰膜。
本发明的修饰方法采用以下三个步骤:
(1)硫醇单分子基膜的制备:在室温下把干净的金电极浸入到0.05~500mM硫醇的水或乙醇溶液中0.5~50小时,取出冲洗得到硫醇自组装单分子膜修饰的金电极Au/thiol,所用的硫醇是末端基团可离子化为带正电荷的HS-R-NH2、或负电荷的HS-R-COOH,其中R代表具有2~20个碳原子的烷基,或苯基及其衍生物;
(2)POMs单层膜的制备:对于末端基团可离子化为带正电荷的硫醇单分子基膜Au/thiol+,将其浸泡在0.01~1.0M POMs溶液中0.5~48小时,或循环伏安扫描0.1~3小时,或恒电位0.1~3小时,取出冲洗得到POMs单层膜Au/thiol+/POMs;对于末端基团可离子化为带负电荷的硫醇单分子基膜Au/thiol-,利用与上面同样的修饰方法,先在大阳离子物质CS的溶液中修饰一层CS膜,取出冲洗后再在POMs溶液中修饰得到POMs单层膜Au/thiol-/CS/POMs;所用的POMs有:(a)同多化合物(IPA):同多钼酸盐、同多钨酸盐、同多钒酸盐和混配金属同多阴离子,(b)杂多化合物(HPC):钼系列HPC、钨系列HPC和混配型HPC,其它POMs亦能通过此法来修饰;所用的CS是那些能与POMs形成沉淀的带正电荷的大分子化合物:(a)正一价的表面活性剂分子:含1~16个碳原子的烷基吡啶阳离子和R(R’)3NH4 +,其中R代表1~22个碳原子的烷基、R’代表1~5个碳原子的烷基;(b)高价金属配合物阳离子:Fe(phen)3 2+、Ru(bpy)3 2+、Os(bpy)3 2+和水溶性阳离子卟啉、酞箐化合物;(c)带正电荷的聚合物:季铵化聚四乙烯吡啶(QPVP),聚乙烯亚胺(PEI)和聚丙烯胺(PAH),聚吡咯(PPy),聚甲基吡咯(PMPy);
(3)POMs多层膜的制备:把根据步骤(2)制备的POMs单层膜电极交替地在CS和POMs溶液中进行静电沉积修饰,修饰过程同步骤(2),通过选择交替沉积的次数便可以控制多层膜的厚度,通过选择不同种类的POMs和CS及其沉积顺序,便可以得到不同组成和不同结构的POMs多层膜。
本发明所述的POMs单层、多层分子组装体系的制备方法与以往方法比较,具有以下特点:
(1)普适性。因为这个方法是基于阴、阳离子的静电相互作用,不受以前方法要求POMs必须先吸附到电极上的限制,所以它适用于不同种类的POMs的修饰,与POMs的结构、组成和性质无关。
(2)膜厚度可控。通过简单地选择沉积次数便可在分子水平上控制膜厚度;
(3)组成可调。利用此特点可开发出含不同种类POMs的多组分杂结构;
(4)层状结构均匀,有序度高,膜制备的重现性好;
(5)稳定性高。在空气或溶液中浸泡数月或连续工作数周后,修饰物质没有发生明显地流失。
本发明提出的POMs单层和多层分子组装体系可以应用于涉及POMs的催化、分析、医药和材料领域,这个组装体系尤其适用于制备超薄型的电色器件、光电器件和传感器。
本发明提供的实施例如下:
实施例1:同多钼酸(IPMA)单层膜CME。将经过抛光和电化学处理干净的金电极浸于10mM半胱胺(Cyst)水溶液中12小时,取出冲洗后放于0.1M同多钼酸溶液里浸泡48小时,取出冲洗后即得到同多钼酸的单层膜Au/Cyst/IPMA,它在0.1M硫酸中的redox电位分别为0.298,0.143和-0.027V(vs.Ag/AgCl,除非特别指出,下面的电位均是相对于Ag/AgCl)。
实施例2:钒取代的1∶11钼酸盐XMo11V(X=Si,P)单层膜CME。利用与实施例1同样的方法,在半胱胺基膜上制备出的单层膜Au/Cyst/XMo11V,含SiMo11V的CME在1.0M硫酸中的redox电位分别为0.53,0.33和0.023V,而含PMo11V的CME在1.0M硫酸中的redox电位分别为0.55,0.38V。
实施例3:1∶12钼酸XMo12(X=Si,P,As,Ge)单层膜CME。将干净的金电极浸于20mM 4-氨基硫酚(4-ATP)的乙醇溶液中0.5小时,取出冲洗后放于0.05M XMo12溶液里,在0.4~-0.4伏的电位窗内循环伏安扫描3小时,取出冲洗后即得到XMo12的单层膜Au/4-ATP/XMo12,含SiMo12的CME的redox电位分别为0.25,0.13和-0.06V;含PMo12的CME的redox电位分别为0.36,0.22V;含AsMo12的CME的redox电位分别为0.36,0.24和0.02V;含GeMo12的CME的redox电位分别为0.35,0.24和0.06V。
实施例4:1∶2型稀土硅钼钨酸杂多配合物Ln(SiMo7W4)2(Ln=La,Pr,Nd,Gd,Tb,Dy,Eu,Yb)单层膜CME。利用与实施例3同样的方法,在4-ATP基膜上制备出Ln(SiMo7W4)2的单层膜Au/4-ATP/Ln(SiMo7W4)2,它在pH3.5醋酸缓冲液中的redox电位分别为0.08,-0.11和-0.33V(vs.SCE)。
实施例5:2∶18杂多酸X2M18(X=P,As,M=Mo,W)多层膜CME。将干净的金电极浸于20mM的巯基丙酸(MPA)的乙醇溶液里50小时,取出冲洗后交替地放于季铵化聚四乙烯吡啶(QPVP)和X2M18的溶液里,在0.7~-0.3伏的电位窗内循环伏安扫描10分钟,沉积4层X2M18后停止,得到Au/MPA/4QPVP/4X2M18,含P2W18的CME在pH3醋酸缓冲溶液里表现出P2W18的redox电位分别为-0.020和-0.220V;含As2Mo18的CME的redox电位分别为0.48,0.36和0.2V;含P2Mo18的CME的redox电位分别为0.46,0.34和0.16V。
实施例6:1∶12钨酸XW12(X=Si,P)多层膜CME。将干净的金电极浸于10mM 4-氨基硫酚(4-ATP)的水溶液中28小时,取出冲洗后交替地放于XW12和十二烷基三甲基铵盐DTA+的溶液里,在0.3伏恒电位10分钟,沉积16层XW12后停止,得到Au/4-ATP/16XW12/15DTA+,含SiW12的CME在pH4.6醋酸缓冲溶液里的redox电位分别为-0.277和-0.579V;含PW12的CME在1M HClO4溶液里的redox电位分别为-0.02和-0.2V。
实施例7:过渡金属取代的1∶11锌钨酸盐ZnW11Z(Z=Cr,Mn,Fe,Co,Ni,Cu,Zn)多层膜CME。将干净的金电极浸于30mM胱胺(Cysta)的乙醇溶液中12小时,取出冲洗后交替地放于ZnW11Z和聚吡咯PPy的溶液里浸泡1小时,沉积5层ZnW11Z后停止,得到Au/Cysta/5ZnW11Z/4PPy,它在pH4.6醋酸缓冲溶液里的redox电位分别为-0.37和-0.55V。
实施例8:三种POMs杂结构的多层膜CME。在巯基肉桂酸(MCA)的基膜上,首先在Os(bpy)3 2+与同多钨酸(IPTA)的溶液里交替地沉积四层IPTA,然后在Os(bpy)3 2+与PW12的溶液里交替沉积二层PW12,最后在Os(bpy)3 2+与Ln(SiMo7W4)2的溶液里交替沉积四层Ln(SiMo7W4)2,沉积过程中的方法同实施例7,这样就制得了Au/MCA/10Os(bpy)3 2+/4IPTA/2PW12/4Pr(SiMo7W4)2的三组分杂结构,它在pH3醋酸缓冲液中表现出的redox电位分别为0.298,0.149,-0.004和-0.209V。

Claims (1)

1.一种多金属氧酸盐(POMs)的单层和多层分子组装体系的制备方法,其特征是采用以下三个步骤:
(1)硫醇(thiol)单分子基膜的制备:在室温下把干净的金电极浸入到0.05~500mM thiol的水或乙醇溶液中0.5~50小时,取出冲洗得到硫醇自组装单分子膜修饰的金电极Au/thiol,所用的硫醇是末端基团可离子化为带正电荷的HS-R-NH2、或负电荷的HS-R-COOH,其中R代表具有2~20个碳原子的烷基,或苯基及其衍生物;
(2)POMs单层膜的制备:对于末端基团可离子化为带正电荷的硫醇单分子基膜Au/thiol+,将其浸泡在0.01~1.0M POMs溶液中0.5~48小时,或循环伏安扫描0.1~3小时,或恒电位0.1~3小时,取出冲洗得到POMs单层膜Au/thiol+/POMs;对于末端基团可离子化为带负电荷的硫醇单分子基膜Au/thiol-,利用与上面同样的修饰方法,先在大阳离子物质(CS)的溶液中修饰一层CS膜,取出冲洗后再在POMs溶液中修饰得到POMs单层膜Au/thiol-/CS/POMs;所用的POMs有:(a)同多化合物(IPA):同多钼酸盐、同多钨酸盐、同多钒酸盐和混配金属同多阴离子,(b)杂多化合物(HPC):钼系列HPC、钨系列HPC和混配型HPC,其它POMs亦能通过此法来修饰;所用的CS是那些能与POMs形成沉淀的带正电荷的大分子化合物:(a)正一价的表面活性剂分子:含1~16个碳原子的烷基吡啶阳离子和R(R’)3NH4 +,其中R代表1~22个碳原子的烷基、R’代表1~5个碳原子的烷基;(b)高价金属配合物阳离子:Fe(phen)3 2+、Ru(bpy)3 2+、Os(bpy)3 2+和水溶性阳离子卟啉、酞箐化合物;(c)带正电荷的聚合物:季铵化聚四乙烯吡啶(QPVP),聚乙烯亚胺(PEI)和聚丙烯胺(PAH),聚吡咯(PPy),聚甲基吡咯(PMPy);
(3)POMs多层膜的制备:把根据步骤(2)制备的POMs单层膜电极交替地在CS和POMs溶液中进行静电沉积修饰,修饰过程同步骤(2),通过选择交替沉积的次数便可以控制多层膜的厚度,通过选择不同种类的POMs和CS及其沉积顺序,便可以得到不同组成和不同结构的POMs多层膜。
CN98118150A 1998-08-25 1998-08-25 多金属氧酸盐的单层和多层分子组装体系 Expired - Fee Related CN1101253C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98118150A CN1101253C (zh) 1998-08-25 1998-08-25 多金属氧酸盐的单层和多层分子组装体系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98118150A CN1101253C (zh) 1998-08-25 1998-08-25 多金属氧酸盐的单层和多层分子组装体系

Publications (2)

Publication Number Publication Date
CN1245735A CN1245735A (zh) 2000-03-01
CN1101253C true CN1101253C (zh) 2003-02-12

Family

ID=5225922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98118150A Expired - Fee Related CN1101253C (zh) 1998-08-25 1998-08-25 多金属氧酸盐的单层和多层分子组装体系

Country Status (1)

Country Link
CN (1) CN1101253C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337112C (zh) * 2005-04-06 2007-09-12 暨南大学 用于检测转铁蛋白的免疫电极的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100471929C (zh) * 2005-09-23 2009-03-25 中国科学院长春应用化学研究所 合成含有三联吡啶钌的微米及纳米粒子的方法
CN100412538C (zh) * 2005-11-10 2008-08-20 上海师范大学 一种同时检测药物中芦丁和维生素c的检测方法
US10551391B2 (en) * 2013-05-16 2020-02-04 University Of Pretoria Method of diagnosing tuberculosis
CN105525323B (zh) * 2015-09-08 2018-01-23 哈尔滨工业大学无锡新材料研究院 金属表面耐高温、耐氧化性自组装防护涂层及制备方法
US20200033332A1 (en) * 2016-12-13 2020-01-30 Eccrine Systems, Inc. Thiolated aromatic blocking structures for eab biosensors
CN114899347B (zh) * 2022-05-13 2023-11-10 吉林大学 表面活性剂包埋多金属氧簇复合物在锌电极保护中的应用、锌基复合极片及制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141915A (zh) * 1995-06-23 1997-02-05 罗纳-普朗克动物营养素公司 甲硫醇的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141915A (zh) * 1995-06-23 1997-02-05 罗纳-普朗克动物营养素公司 甲硫醇的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337112C (zh) * 2005-04-06 2007-09-12 暨南大学 用于检测转铁蛋白的免疫电极的制备方法

Also Published As

Publication number Publication date
CN1245735A (zh) 2000-03-01

Similar Documents

Publication Publication Date Title
US5338571A (en) Method of forming self-assembled, mono- and multi-layer fullerene film and coated substrates produced thereby
Hickman et al. Toward orthogonal self-assembly of redox active molecules on platinum and gold: selective reaction of disulfide with gold and isocyanide with platinum
Muskal et al. Self-assembled monolayers on mercury surfaces
US5108573A (en) Morphology in electrochemically grown conducting polymer films
CN1101253C (zh) 多金属氧酸盐的单层和多层分子组装体系
Mali et al. Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting
CN101532979B (zh) 一种普鲁士蓝修饰电极的制备方法
Şişman et al. Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition
Sheridan et al. Covalent attachment of porphyrins and ferrocenes to electrode surfaces through direct anodic oxidation of terminal ethynyl groups.
Roa Morales et al. Carbon paste electrodes electrochemically modified with cyclodextrins
Qingwen et al. Studies on Self‐Assembly Monolayers of Cysteine on Gold by XPS, QCM, and Electrochemical Techniques
McEvoy et al. Electrochemical quartz crystal microbalance study of the electrodeposition mechanism of molybdenum oxide thin films from peroxo-polymolybdate solution
Uosaki et al. Electron and ion transfer through multilayers of gold nanoclusters covered by self-assembled monolayers of alkylthiols with various functional groups
Xun et al. Effects of a surfactant on the electrocatalytic activity of cobalt hexacyanoferrate modified glassy carbon electrode towards the oxidation of dopamine
Stephens Mechanisms of formation of multilayers by the Langmuir-Blodgett technique
Casado-Montenegro et al. Electrochemical and chemical tuning of the surface wettability of tetrathiafulvalene self-assembled monolayers
Fawcett et al. Electrochemistry of cysteine on low-index single-crystal gold electrodes
CN108411344A (zh) 一种可电场调控选择性释放生物分子的复合双层薄膜及其制备方法
Gobi et al. Anion recognition and electrochemical characteristics of the self-assembled monolayer of nickel (II) azamacrocyclic complex
Ghaedi et al. Iodide–selective electrodes based on two new carriers: Influence of various nanoparticle materials on the response performance of proposed electrodes
Cheng et al. A novel potentiodynamic method of electrochemical growth for layer-by-layer film formation based on electrostatic interaction
Rusling et al. Electron transfer in surfactant films on electrodes; copper phthalocyaninetetrasulfonate-didodecyldimethylammonium bromide
Yoo et al. Electrodeposition of WO3 nanoparticles into surface mounted metal–organic framework HKUST-1 thin films
Blasini et al. Self-assembly of (3-mercaptopropyl) trimethoxysilane on iodine coated gold electrodes
Gothelf Self-assembled monolayers of long-chain xanthic acids on gold studied by voltammetry

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee