CN110117642A - 硼酸-纳米粒子体系对rna的特异性识别及检测方法 - Google Patents

硼酸-纳米粒子体系对rna的特异性识别及检测方法 Download PDF

Info

Publication number
CN110117642A
CN110117642A CN201810125096.2A CN201810125096A CN110117642A CN 110117642 A CN110117642 A CN 110117642A CN 201810125096 A CN201810125096 A CN 201810125096A CN 110117642 A CN110117642 A CN 110117642A
Authority
CN
China
Prior art keywords
rna
pba
boric acid
dna
nps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810125096.2A
Other languages
English (en)
Inventor
彭伟
钱思宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810125096.2A priority Critical patent/CN110117642A/zh
Publication of CN110117642A publication Critical patent/CN110117642A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了硼酸‑纳米粒子体系对RNA的特异性识别及检测方法,属于核酸检测技术领域。将含有巯基的苯硼酸分子通过硫醇自组装方式修饰在金纳米和银纳米粒子表面,形成PBA‑NPs体系。PBA‑NPs体系能够有效的与RNA进行结合,进行信号标记及放大。PBA‑NPs的最大优势在于能够选择性区分具有相同碱基序列的RNA和DNA,并用能够与多种核酸检测技术联用,实现对特定序列RNA的专一性检测。

Description

硼酸-纳米粒子体系对RNA的特异性识别及检测方法
技术领域
本发明属于核酸检测技术领域,利用硼酸分子修饰的纳米粒子(PBA-NPs)对RNA进行识别和信号放大,可以用于多个检测平台,如表面等离子体共振(Surface plasmonresonance,SPR)检测、荧光检测、色谱检测、表面增强拉曼检测(Surface-enhance RamanScattering,SERS)检测、电化学检测等。
背景技术
苯硼酸(Phenylboronic acid,PBA)能够与顺式二醇类物质进行可逆结合。通过改变PH,可以实现硼酸与二醇类物质的可逆性结合与分离。糖类及其衍生物(如糖蛋白、核糖核酸等)在人体的生理活动中起着重要的作用。糖类由于其多羟基特性,部分符合顺式邻位二醇类物质的糖类及其衍生物能够和硼酸进行特异性结合,单羟基结构的糖类与硼酸结合能力很弱。
RNA的基本结构单元为核糖核苷酸,主要由核糖、含氮碱基和磷酸基团组成。核糖含有双羟基结构,因此硼酸可以与RNA序列进行特异性结合。
而DNA结构单元为脱氧核糖核苷酸,主要由脱氧核糖、含氮碱基和磷酸基团组成。脱氧核糖只含有单羟基结构,因此硼酸结合DNA能力弱。
由于核酸浓度比较低、分子量小,并且本身不具有信号放大功能,通常不能被SPR传感技术、SERS增强技术、电化学传感、荧光等技术直接进行检测。
金纳米粒子和银纳米粒子等纳米粒子(Nanoparticles,NPs)具有化学性质稳定且生物相容性好等特点,被广泛应用于基因测试。通过表面自组装技术,可以实现核酸或其他分子在纳米粒子表面的修饰。
在检测特定序列RNA中,通常在纳米粒子表面修饰能够和待测RNA进行互补配对的碱基序列。然而这种方法过程繁琐,并且不能够对具有相同碱基序列的RNA和DNA进行区分。
PBA-NPs体系能够有效的与RNA进行结合,进行信号标记及放大。PBA-AuNPs的优势在于能够选择性区分具有相同碱基序列的RNA和DNA,测试不同碱基序列时无需改变PBA-NPs体系,并且在RNA识别和检测过程中具有很强的通用性。
发明内容
本发明提供了一种新型的RNA序列识别及增强检测技术。在特异性识别RNA序列的同时,能够对相同序列的RNA和DNA进行选择性区分。
本发明的技术方案:
硼酸-纳米粒子体系对RNA的特异性识别及检测方法,步骤如下:
将含有巯基的苯硼酸分子通过硫醇自组装方式修饰在金纳米或银纳米粒子表面,形成PBA-NPs体系。PBA-NPs能够快速、高效的对相同碱基序列的RNA和DNA进行特异性区分及信号放大,从而在一定程度上排除DNA对RNA检测的干扰。
首先,通过识别DNA去除掉不能够进行碱基互补配对的RNA或DNA序列。然而,当DNA具有与待测RNA相同的碱基序列时,待测RNA和DNA都能够与识别DNA进行碱基互补配对。进一步,通过PBA-NPs体系对具有相同碱基序列的RNA和DNA进行选择性区分。由于识别DNA能够对特定序列的RNA进行专一性结合。因此,PBA-NPs体系能够应用于识别不同序列的单链RNA,并且能够选择性区分相同碱基序列的单链RNA和单链DNA。
本发明的有益效果:
PBA-NPs体系能够应用于多种核酸检测平台,对具有相同碱基序列的单链RNA和DNA进行选择性区分。
在SPR检测平台中,PBA-NPs在传感表面与RNA的结合可以显著改变传感器折射率的变化,从而实现对RNA检测信号的放大;在SERS检测品台,在PBA-NPs基础上进一步修饰拉曼探针分子,可以实现RNA检测信号的放大;在电化学检测平台,PBA-NPs在传感电极表面的固定可以改变电极电阻,实现RNA检测。
在荧光检测领域,因为金纳米粒子和银纳米粒子能够有效的猝灭分子荧光。本发明可以结合其他与荧光相关的基因检测技术,通过PBA-NPs进一步对相同碱基序列的RNA和DNA进行选择性区分。
附图说明
图1是PBA对RNA和DNA进行选择性区分原理图。
图2是PBA-NPs体系在传感表面对RNA和DNA选择性区分原理图。
图3是PBA-NPs对具有相同碱基序列的RNA和DNA的信号响应(SPR测试)。图4是PBA-NPs体系对不同核酸序列的选择性测试(SPR测试)。
具体实施方式
以下结合附图,以SPR检测为例,进一步说明本发明的具体实施方式。
首先,将识别DNA固定在传感表面,识别DNA能与特性序列的待检测RNA进行碱基互补配对;然后,通过PBA-NPs对传感表面的RNA进行识别及信号放大。图1、2为传感器中PBA-NPs体系对RNA和DNA选择性区分原理图。
具体实施步骤:
首先,将含有巯基的苯硼酸分子通过硫醇自组装方式修饰在金纳米或银纳米粒子表面,形成PBA-NPs体系。
然后,将识别DNA固定在传感芯片表面。识别DNA能够与互补的单链RNA或者DNA进行碱基互补配对,并将其固定在传感表面。当待测核酸序列不能够与识别DNA进行碱基互补配对时,识别DNA不能够将待其固定在传感表面。
进一步,通入一定浓度的待测单链核酸序列溶液。识别DNA可以与互补的单链RNA或DNA结合,并将其固定在传感表面。
通入PBA-NPs溶液,PBA-NPs能够与固定在传感表面的RNA进行特异性结合,从而实现对RNA的特异性识别和信号放大。由于PBA-NPs与RNA结合能力强,与DNA结合能力弱,因此可以实现对相同序列的单链RNA和DNA的区别检测。
在测试实验中,所用的核酸均为单链核酸。目标检测RNA为Let-7a,属于microRNA(miRNA),在人体生理活动中起调控作用。HS-ssDNA为识别DNA,通过巯基进行表面自组装修饰在蒸镀有金膜的传感表面。DNA-1具有与Let-7a相同的碱基序列,RNA-2为单碱基错配RNA,RNA-3为随机RNA。从附图3、和附图4可以看出,PBA-NPs体系能够对特定碱基序列的待测Let-7a进行有效识别,并能够对相同碱基序列的Let-7a和DNA-1进行选择性区分。
表1测试PBA-NPs体系所用的RNA及DNA序列

Claims (3)

1.一种硼酸-纳米粒子体系对RNA的特异性识别及检测方法,其特征在于,步骤如下:
将含有巯基的硼酸分子通过自组装方式修饰在纳米粒子表面,形成PBA-NPs体系,用于PBA-NPs对具有相同碱基序列的RNA和DNA进行选择性区分。
2.根据权利要求1所述的硼酸-纳米粒子体系对RNA的特异性识别及检测方法,其特征在于,所述的纳米粒子为金纳米粒子或银纳米粒子。
3.根据权利要求1或2所述的硼酸-纳米粒子体系对RNA的特异性识别及检测方法,其特征在于,与其他核酸检测方法联用,实现对RNA的特异性检测。
CN201810125096.2A 2018-02-07 2018-02-07 硼酸-纳米粒子体系对rna的特异性识别及检测方法 Withdrawn CN110117642A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810125096.2A CN110117642A (zh) 2018-02-07 2018-02-07 硼酸-纳米粒子体系对rna的特异性识别及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810125096.2A CN110117642A (zh) 2018-02-07 2018-02-07 硼酸-纳米粒子体系对rna的特异性识别及检测方法

Publications (1)

Publication Number Publication Date
CN110117642A true CN110117642A (zh) 2019-08-13

Family

ID=67520157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810125096.2A Withdrawn CN110117642A (zh) 2018-02-07 2018-02-07 硼酸-纳米粒子体系对rna的特异性识别及检测方法

Country Status (1)

Country Link
CN (1) CN110117642A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509421A (zh) * 2021-12-31 2022-05-17 电子科技大学 一种密接有序的表面增强拉曼基底及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061463A (zh) * 2010-12-02 2011-05-18 南京大学 一种表面具有高亲和力硼酸修饰的金片或金颗粒及其制法和用途
CN106596676A (zh) * 2016-12-22 2017-04-26 安阳师范学院 一种用于microRNAs检测的电化学方法
CN107216882A (zh) * 2017-07-21 2017-09-29 安徽师范大学 一种AgNPs@PDA‑CdSe量子点纳米组装体的制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061463A (zh) * 2010-12-02 2011-05-18 南京大学 一种表面具有高亲和力硼酸修饰的金片或金颗粒及其制法和用途
CN106596676A (zh) * 2016-12-22 2017-04-26 安阳师范学院 一种用于microRNAs检测的电化学方法
CN107216882A (zh) * 2017-07-21 2017-09-29 安徽师范大学 一种AgNPs@PDA‑CdSe量子点纳米组装体的制备和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QIAN ET AL.: "MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System", 《ACS SENSORS》 *
XIA ET AL.: "Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles", 《BIOSENSORS AND BIOELECTRONICS》 *
XING ET AL.: "Synthesis of Water-Dispersed Ferrecene/Phenylboronic Acid-Modified Bifunctional Gold Nanoparticles and the Application in Biosensing", 《MATERIALS》 *
钱思宇: "硼酸修饰型光纤表面等离子体共振传感技术在糖类及衍生物检测中的应用研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509421A (zh) * 2021-12-31 2022-05-17 电子科技大学 一种密接有序的表面增强拉曼基底及其制备方法
CN114509421B (zh) * 2021-12-31 2024-04-09 电子科技大学 一种密接有序的表面增强拉曼基底及其制备方法

Similar Documents

Publication Publication Date Title
Ali et al. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio (chemical) sensing applications. Review
Zheng et al. Lateral flow test for visual detection of multiple MicroRNAs
Guo et al. Simple, amplified, and multiplexed detection of microRNAs using time-gated FRET and hybridization chain reaction
Zhang et al. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor
Liao et al. Double-strand displacement biosensor and quencher-free fluorescence strategy for rapid detection of microRNA
Sipova et al. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level
Wu et al. Beyond capture: circulating tumor cell release and single‐cell analysis
Zhang et al. Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA
Qu et al. Strand displacement amplification reaction on quantum dot-encoded silica bead for visual detection of multiplex MicroRNAs
Kawamura et al. Biosensors
US10640813B2 (en) Exchange-induced remnant magnetization for label-free detection of DNA, micro-RNA, and DNA/RNA-binding biomarkers
Guo et al. Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease
Li et al. Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method
Yang et al. A self-powered 3D DNA walker with programmability and signal-amplification for illuminating microRNA in living cells
Wang et al. Immunomagnetic antibody plus aptamer pseudo-DNA nanocatenane followed by rolling circle amplication for highly-sensitive CTC detection
CN105164279A (zh) 靶核酸的多重分析
CN101955939B (zh) 用于不同亚型非小细胞肺癌分型的核酸适体及其筛选方法
CN104419765A (zh) 核酸序列测定方法及装置、核酸序列测定用元件及其制造方法
CN102653789A (zh) 一种生物分子的定量检测方法
KR20140025663A (ko) 실버나노클러스터 프로브 및 이를 이용한 표적 폴리뉴클레오티드 검출방법 그리고 실버나노클러스터 프로브의 설계방법
DE102012204366A1 (de) Verfahren und Kit zur Identifizierung und Quantifizierung von einer einzelsträngigen Ziel-Nukleinsäure
CN103913542A (zh) 一种针对靶标的即时定量分析方法
Guven et al. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering
Xia et al. Autocatalytic MNAzyme-integrated surface plasmon resonance biosensor for simultaneous detection of bacteria from nosocomial bloodstream infection specimens
Li et al. Electrophoresis separation assisted G-quadruplex DNAzyme-based chemiluminescence signal amplification strategy on a microchip platform for highly sensitive detection of microRNA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190813