CN110111802B - 基于卡尔曼滤波的自适应去混响方法 - Google Patents

基于卡尔曼滤波的自适应去混响方法 Download PDF

Info

Publication number
CN110111802B
CN110111802B CN201810102375.7A CN201810102375A CN110111802B CN 110111802 B CN110111802 B CN 110111802B CN 201810102375 A CN201810102375 A CN 201810102375A CN 110111802 B CN110111802 B CN 110111802B
Authority
CN
China
Prior art keywords
sound source
signal
kalman filtering
dereverberation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810102375.7A
Other languages
English (en)
Other versions
CN110111802A (zh
Inventor
向腾
卢晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810102375.7A priority Critical patent/CN110111802B/zh
Publication of CN110111802A publication Critical patent/CN110111802A/zh
Application granted granted Critical
Publication of CN110111802B publication Critical patent/CN110111802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0224Processing in the time domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02082Noise filtering the noise being echo, reverberation of the speech

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明公开了一种基于卡尔曼滤波的自适应去混响方法。该方法包括以下步骤:(1)利用传声器获取信号,然后通过AD转换将模拟信号转换为数字信号;(2)对信号做短时傅里叶变换后,不同频带内的信号单独地利用卡尔曼滤波进行去混响;同时,采用声源定位方法判断声源位置是否改变,若声源位置发生改变,则将卡尔曼滤波的状态预测误差向量协方差矩阵重置为初始值;(3)将步骤2经卡尔曼滤波输出的时‑频域去混响信号通过短时傅里叶变换,得到时域去混响信号。本发明的方法能够有效提升卡尔曼滤波在声源突变场景下的去混响的性能。

Description

基于卡尔曼滤波的自适应去混响方法
技术领域
本发明属于语音增强的领域,具体涉及一种基于卡尔曼滤波的自适应去混响方法。
背景技术
使用传声器在房间内采集到的说话人的语音信号时,会同时采集到房间壁面的反射声,这些反射声被称为混响。当混响时间较长时,混响会影响语音通信中语音的清晰度,也会降低语音识别系统的识别率。
谱减法可以用来实现语音去混响(Lebart K,Boucher J M,Denbigh P N.A NewMethod Based on Spectral Subtraction for Speech Dereverberation[J].ActaAcustica United with Acustica,2001,87(3):359-366.)。中国专利CN102750956A中,利用短时傅里叶变换将单通道语音信号变换到时-频域,然后使用谱减法将当前帧的语音信号功率谱与估计的晚期混响功率谱相减,得到去混响信号的功率谱,最后通过短时傅里叶逆变换得到时域的去混响语音信号。然而,这种基于谱减法的去混响方法对语音音质有较大程度的损伤。
卡尔曼滤波是常用的自适应滤波方法。将卡尔曼滤波与多通道预测模型相结合,可以用来作为自适应去混响的方法。文献(Braun S,Habets E A P.OnlineDereverberation for Dynamic Scenarios Using a Kalman Filter With anAutoregressive Model[J].IEEE Signal Processing Letters,2016,23(12):1741-1745.)指出卡尔曼滤波具有较好的去混响性能。然而,由于该文中使用了单位矩阵作为状态转移矩阵,在声源位置发生突变之后,卡尔曼滤波的性能明显下降。文献(T.Dietzen,S.Doclo,A.Spriet,W.Tirry,M.Moonen,and T.van Waterschoot,“Low-ComplexityKalman filter for multi-channel linear-prediction-based blind speechdereverberation,”in 2017IEEE Workshop on Applications of Signal Processing toAudio and Acoustics(WASPAA),2017,pp.284–288.)使用了一个小于1的常数乘单位矩阵作为状态转移矩阵,没有出现声源位置改变前后算法性能相差显著的现象,但是算法总体的性能较差。
在实际的应用中,说话者在语音间隙的移动或者说话者的改变都会导致声源位置发生突变的场景的产生。因此,使用卡尔曼滤波去混响时,需要解决好声源位置发生突变带来的问题。
发明内容
现有技术在声源位置发生突变的场景中使用卡尔曼滤波的方法去混响时,难以保证在声源位置发生突变后算法具有较快的收敛速度的同时,还具有较好的稳态性能。本发明提出了一种基于卡尔曼滤波实现自适应去混响的方法,能够使得算法有效应对声源位置突变的场景,并保证算法在声源位置发生改变后的性能。
本发明采用的技术方案为:
基于卡尔曼滤波的自适应去混响方法,包括以下步骤:
步骤1,利用传声器获取信号,然后通过AD转换将模拟信号转换为数字信号;
步骤2,对信号做短时傅里叶变换后,不同频带内的信号单独地利用卡尔曼滤波进行去混响;同时,采用声源定位方法判断声源位置是否改变,若声源位置发生改变,则将卡尔曼滤波的状态预测误差向量协方差矩阵K(n,k)重置为初始值K(0),其中,(n,k)代表第n帧第k个频带;
步骤3,将步骤2经卡尔曼滤波输出的时-频域去混响信号通过短时傅里叶逆变换,得到时域去混响信号。
本发明将声源定位方法与卡尔曼滤波结合,实现了一种在声源位置发生突变的场景下的自适应去混响方法。该方法能够有效提升卡尔曼滤波在声源突变场景下的去混响的性能。
附图说明
图1是本发明实施例中传声器阵列的示意图;其中,1-传声器,
Figure GDA0002909076230000021
为声源相对传声器阵列的方位角。
图2是本发明实施例中传声器阵列和声源相对位置示意图;其中,2-声源。
图3是本发明结合声源定位方法的卡尔曼滤波处理流程图。
图4是本发明方法的三通道输入处理流程图。
图5是现有的卡尔曼滤波与本发明改进后的方法去混响的STOI评分曲线对比图。
图6是本发明实施例中声源定位及声源位置突变判定结果示意图。
具体实施方式
本发明改进的卡尔曼滤波的自适应去混响方法主要包括以下几个部分:
1、信号获取
将两个以上的传声器1以线阵列的形式布放来采集声源2的信号,然后通过AD转换将模拟信号转换为数字信号。
2、利用卡尔曼滤波去混响
1)对信号做短时傅里叶变换
若第m个传声器采集到的信号为x(m)(t),对其进行短时傅里叶变换,变换到时-频域,第n帧第k个频带的信号表示为x(m)(n,k)。
2)卡尔曼滤波迭代公式
不同频带内的信号被视为独立的信号,并单独地进行去混响处理。本发明实施例中仅关注第一个传声器采集到的信号的去混响流程。若第k个频带n时刻的滤波器系数用w(n,k)表示,那么去混响的期望信号d(1)(t)在时-频域内第n帧第k个频带的信号d(1)(n,k)可以通过多通道线性预测表示为
d(1)(n,k)=x(1)(n,k)-xT(n-D,k)w(n,k), (1)
式中,(·)T表示转置,
Figure GDA0002909076230000031
D为预测延时,M是传声器的个数,Lw为预测阶数。
将滤波器系数w(n,k)视为卡尔曼理论中的状态向量,x(1)(n,k)视为观测值,x(n-D,k)视为测量矩阵,d(1)(n,k)视为测量噪声。那么卡尔曼滤波理论中的状态方程可以表示为:
w(n+1,k)=Fw(n,k)+ω(n,k), (3)
式中,F为状态转移矩阵,ω(n,k)是过程噪声。测量方程可以表示为:
Figure GDA0002909076230000032
因此,卡尔曼滤波的迭代公式为:
Figure GDA0002909076230000033
Figure GDA0002909076230000034
Figure GDA0002909076230000035
Figure GDA0002909076230000036
Figure GDA0002909076230000037
Figure GDA0002909076230000038
式中,K(n,k)为预测系数的误差向量的协方差矩阵;σ2(n,k)是期望信号的方差;
Figure GDA0002909076230000039
和“A+”分别表示参数A的预测值和预测修正值,Q(n,k)为过程噪声的协方差矩阵,g(n,k)被称为卡尔曼增益。
3)卡尔曼滤波的参数估计及初始化
A.期望信号的方差估计:期望信号的方差可以通过下面的方法近似估计:
σ2(n,k)=βσ2(n,k)+(1-β)|x(1)(n,k)|2, (10)
式中,β是加权平滑因子。
B.误差向量协方差矩阵初始化:预测系数的误差向量协方差矩阵K(n,k)的初始化值K(0)与算法初始性能密切相关。本发明实施例使用下列的初始化方法:
K(0)=blockdiag{IM×M-1IM×M-2IM×M…} (11)
式中,blockdiag{·}表示构造块对角矩阵,IM×M表示维度为M×M的单位矩阵,γ为一个常数权重因子。
C.状态转移矩阵:由于声源2的位置大部分时刻不会发生改变,故需要使得状态转移矩阵非常接近单位矩阵才能保证卡尔曼滤波去混响的性能。本发明实施例中,使用固定的状态转移矩阵:
F=(1-α)1/2I, (12)
式中,α是一个常数。
D.噪声协方差矩阵估计:本发明实施例中,噪声的协方差矩阵被设为定值:
Q(n,k)=αK(0), (13)
式中,K(0)是误差向量协方差矩阵K(n,k)的初始值。
3、声源定位方法
本发明实施例中声源定位方法采用PHAT加权的GCC(Generalized CrossCorrelation,泛化互相关)算法。各个传声器1接收到的信号之间的泛化互相关函数为:
Figure GDA0002909076230000041
式中,
Figure GDA0002909076230000042
为声源相对于传声器阵列的方位角;
Figure GDA0002909076230000043
为声源信号到第m个传声器的时延,可以表示为
Figure GDA0002909076230000044
c0是空气中的声速,(xm,ym)是第m个传声器的坐标。Xm(n,k)是n时刻第m个传声器接收到的第k个频带的信号,K为快速傅里叶变换(FFT)的点数,M为传声器的个数。值得注意的是,Xm(n,k)是通过多帧信号平均得到的信号频谱。
当方位角
Figure GDA0002909076230000051
Figure GDA0002909076230000052
使得函数
Figure GDA0002909076230000053
取得最大值时,
Figure GDA0002909076230000054
即为声源方位的估计结果:
Figure GDA0002909076230000055
4、结合声源定位的卡尔曼滤波去混响算法
在卡尔曼滤波中,若将转移矩阵设为
F=λ-1/2I, (17)
为了保证算法在声源位置不发生改变的稳态情况下具有良好的性能,通常λ会取非常接近1的值。
在忽略过程噪声的情况下,协方差矩阵的迭代公式可以写为:
Figure GDA0002909076230000056
在声源位置发生突变之后,算法会进入重新收敛的过程。假设n+1时刻为声源2位置改变之后的时间点,那么K(n,k)的值可以视为声源2位置突变之后重新收敛过程中协方差矩阵的初始值。由于λ非常接近1,故不适当的协方差矩阵初始值会在很长一段时间内影响卡尔曼滤波的收敛结果,导致声源2位置发生改变之后算法性能下降。
因此,本发明将声源定位方法与卡尔曼滤波结合,利用声源定位算法检测声源位置,利用卡尔曼滤波实现去混响。当声源定位算法检测到声源位置发生改变时,卡尔曼滤波的参数K(n,k)将被重置为K(0)。
下面结合附图,对本发明实施例中的技术方案进行清楚、完整地描述。
1、测试样本及客观评价标准
本实施例的测试样本的干净语音来源于TIMIT语音库,混响语音通过在混响时间约为1.2s的房间内录制得到。录制混响语音时,使用扬声器播放干净语音。参见图1和2,本实施例使用三个传声器1采集信号,传声器1以间隔为6cm排列成线阵列,距地面1.5m,离声源2的距离为1.5m。扬声器与阵列处于同一水平面,分别放置在阵列的两侧录制两组数据,通过后期拼接为在10s处声源位置发生突变的样本,共64段不同语音。同时,在距离阵列2m左右的地方放置了一个-20dB的干扰声源。信号的采样频率为16000Hz。
本发明采用STOI(Short-Time Objective Intelligibility)评分作为客观评价标准。计算STOI评分时,以干净语音作为参考信号,以2s为帧长0.5s为帧移逐帧计算。最后将64个不同的语音样本的平均评分作为最终的STOI评分结果。
2、参数设置
1)卡尔曼滤波
短时傅里叶变换使用汉宁窗,窗长为512(32ms),帧移为128(8ms),预测延时为2,预测阶数为40。方差估计的加权平滑因子β为0.6。本实施例对比了设置不同的转移矩阵时卡尔曼滤波的性能,α分别设为-60dB和-45dB。K(0)的初始值中,γ取1.5.
2)声源定位
在声源定位算法中,FFT长度为2048(128ms),FFT的帧移为512(32ms),用来定位的数据帧的帧长为FFT长度的5倍。定位扫描时,
Figure GDA0002909076230000061
在0–180°范围内每隔3°取一个值。
3)声源位置改变的判定
由于较强的混响的影响,声源定位结果会有一些偏差。故需要设置合理的阈值对声源位置是否发生改变进行判定。本实施例中设置定位偏差的阈值为10°,即当当前声源定位结果与之前稳态情况下定位结果的平均值相差10°时,判定为声源位置突变,当出现3帧数据以上定位结果判定为声源位置突变时,则最终判定声源位置发生了突变,否则认为是定位误差。当声源位置发生改变时,判定程序将声源位置改变的信息返回给卡尔曼滤波参数重置的程序,同时声源位置改变的判定程序重置。
图6是本实施例声源定位的结果,图中“*”表示程序判定的声源位置发生改变的时刻。
3、方法的具体实现流程
参见图3和4,按照(11)(12)(13)式和上述的参数设置对算法初始化,建立声源定位时域信号缓存,用于缓存在声源定位中使用的数据,建立卡尔曼滤波时-域信号缓存,用于缓存在卡尔曼滤波中使用的数据,对于任意时刻,按照下列方式计算:
1)获取新的一帧数据,更新用于声源定位的时信号缓存,对新一帧数据加窗进行短时傅里叶变换,更新时-频域信号缓存;
2)按照声源定位中的参数设置,对时信号缓存数据分帧,加窗,计算多帧信号平均的频谱。根据(15)式估计声源方位。
3)按照上述声源位置改变判定方案的参数设置对声源位置进行检测。
4)对于所有频带,单独按下列的方式计算:
41)若步骤3)中判定声源位置发生了改变,则将卡尔曼滤波的参数K(n,k)置为K(0);
42)选取一定的窗函数、帧长、帧移,对信号做短时傅里叶变换,更新卡尔曼滤波时-频域信号缓存,按照(2)式排列为信号向量;
43)用(5)(6)两式分别对滤波器系数和协方差矩阵进行一步预测,得到预测值
Figure GDA0002909076230000071
Figure GDA0002909076230000072
44)用(4)式计算时-频域的期望信号d(1)(n,k),然后使用式(10)估计期望信号的方差;
45)使用(7)式计算卡尔曼增益g(n,k);
46)用(8)(9)两式分别对预测的滤波器系数
Figure GDA0002909076230000073
和协方差矩阵
Figure GDA0002909076230000074
进行修正,得到修正的预测值w+(n,k)和K+(n,k);
5)将时-频域的期望信号d(1)(n,k)通过短时傅里叶逆变换合成时域期望信号d(1)(t)。
为了体现本发明方法在声源突变场景下去混响的性能,本实施例对现有卡尔曼滤波和本发明改进后的方法进行对比,图5给出了现有卡尔曼滤波与本发明改进后的STOI评分曲线对比图,图中“REV.”表示混响语音,“DRV.”表示去混响语音,“KF”代表现有的卡尔曼滤波,“KF with DOA”代表改进的方法。从图5的STOI评分曲线可以看出,本发明改进后的卡尔曼滤波在声源位置发生突变时具有更快的收敛速度,能够在较短时间内达到较好的稳态性能。

Claims (3)

1.基于卡尔曼滤波的自适应去混响方法,其特征在于,包括以下步骤:
步骤1,利用传声器获取信号,然后通过AD转换将模拟信号转换为数字信号;
步骤2,对信号做短时傅里叶变换后,不同频带内的信号单独地利用卡尔曼滤波进行去混响;同时,采用声源定位方法判断声源位置是否改变,若声源位置发生改变,则将卡尔曼滤波的状态预测误差向量协方差矩阵K(n,k)重置为初始值K(0),其中,(n,k)代表第n帧第k个频带;
利用卡尔曼滤波进行去混响时,先对参数进行估计及初始化,具体如下:
1)期望信号的方差σ2(n,k)通过下面的方法近似估计:
σ2(n,k)=βσ2(n,k)+(1-β)|x(1)(n,k)|2
式中,β是加权平滑因子,x(1)(n,k)是第一个传声器采集到的信号;
2)误差向量协方差矩阵K(n,k)使用下列的方法初始化:
K(0)=blockdiag{IM×M-1IM×M-2IM×M…},
式中,K(0)是误差向量协方差矩阵K(n,k)的初始值,blockdiag{·}表示构造块对角矩阵,IM×M表示维度为M×M的单位矩阵,γ为一个常数权重因子;
3)状态转移矩阵F使用固定的状态转移矩阵:
F=(1-α)1/2I,
式中,α是一个常数,I为单位矩阵;
4)噪声协方差矩阵Q(n,k)设为定值:
Q(n,k)=αK(0);
步骤3,将步骤2经卡尔曼滤波输出的时-频域去混响信号通过短时傅里叶逆变换,得到时域的去混响信号。
2.根据权利要求1所述的基于卡尔曼滤波的自适应去混响方法,其特征在于,所述传声器采用两个以上,并以线阵列的形式布放来采集信号。
3.根据权利要求1所述的基于卡尔曼滤波的自适应去混响方法,其特征在于,所述声源定位方法中,根据下式估计声源方位:
Figure FDA0002909076220000011
其中,
Figure FDA0002909076220000021
代表各个传声器接收到的信号之间的泛化互相关函数,
Figure FDA0002909076220000022
为声源信号到第m个传声器的时延,
Figure FDA0002909076220000023
为声源相对于传声器阵列的方位角,Xm(n,k)是n时刻第m个传声器接收到的第k个频带的信号,K为快速傅里叶变换的点数,M是传声器的个数;
当方位角
Figure FDA0002909076220000024
Figure FDA0002909076220000025
使得函数
Figure FDA0002909076220000026
取得最大值时,
Figure FDA0002909076220000027
即为声源方位的估计结果,即:
Figure FDA0002909076220000028
CN201810102375.7A 2018-02-01 2018-02-01 基于卡尔曼滤波的自适应去混响方法 Active CN110111802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810102375.7A CN110111802B (zh) 2018-02-01 2018-02-01 基于卡尔曼滤波的自适应去混响方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810102375.7A CN110111802B (zh) 2018-02-01 2018-02-01 基于卡尔曼滤波的自适应去混响方法

Publications (2)

Publication Number Publication Date
CN110111802A CN110111802A (zh) 2019-08-09
CN110111802B true CN110111802B (zh) 2021-04-27

Family

ID=67483195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810102375.7A Active CN110111802B (zh) 2018-02-01 2018-02-01 基于卡尔曼滤波的自适应去混响方法

Country Status (1)

Country Link
CN (1) CN110111802B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726972B (zh) * 2019-10-21 2022-09-16 南京南大电子智慧型服务机器人研究院有限公司 干扰及高混响环境下使用传声器阵列的语音声源定位方法
CN111798869B (zh) * 2020-09-10 2020-11-17 成都启英泰伦科技有限公司 一种基于双麦克风阵列的声源定位方法
CN113571076A (zh) * 2021-06-16 2021-10-29 北京小米移动软件有限公司 信号处理方法、装置、电子设备和存储介质
CN113488066B (zh) * 2021-06-18 2024-06-18 北京小米移动软件有限公司 音频信号处理方法、音频信号处理装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967658A (zh) * 2005-11-14 2007-05-23 北京大学科技开发部 小尺度麦克风阵列语音增强系统和方法
CN101278337A (zh) * 2005-07-22 2008-10-01 索福特迈克斯有限公司 噪声环境中语音信号的健壮分离
CN102750956A (zh) * 2012-06-18 2012-10-24 歌尔声学股份有限公司 一种单通道语音去混响的方法和装置
CN105989850A (zh) * 2016-06-29 2016-10-05 北京捷通华声科技股份有限公司 一种回声对消方法及装置
CN106328156A (zh) * 2016-08-22 2017-01-11 华南理工大学 一种音视频信息融合的麦克风阵列语音增强系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965891B2 (ja) * 2006-04-25 2012-07-04 キヤノン株式会社 信号処理装置およびその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101278337A (zh) * 2005-07-22 2008-10-01 索福特迈克斯有限公司 噪声环境中语音信号的健壮分离
CN1967658A (zh) * 2005-11-14 2007-05-23 北京大学科技开发部 小尺度麦克风阵列语音增强系统和方法
CN102750956A (zh) * 2012-06-18 2012-10-24 歌尔声学股份有限公司 一种单通道语音去混响的方法和装置
CN105989850A (zh) * 2016-06-29 2016-10-05 北京捷通华声科技股份有限公司 一种回声对消方法及装置
CN106328156A (zh) * 2016-08-22 2017-01-11 华南理工大学 一种音视频信息融合的麦克风阵列语音增强系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Improved pedestrian tracking through Kalman covariance error selective reset;E.de la Rubia .etal;《ELECTRONICS LETTERS》;20130328;全文 *
一种自适应协方差矩阵旋转变换卡尔曼滤波算法及其应用;高磊;《航天控制》;20040630;第22卷(第3期);全文 *
浅海主动声呐空时自适应混响抑制方法;黄晓燕;《信息与信号处理》;20151231;第51卷(第11期);全文 *

Also Published As

Publication number Publication date
CN110111802A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN110100457B (zh) 基于噪声时变环境的加权预测误差的在线去混响算法
CN108172231B (zh) 一种基于卡尔曼滤波的去混响方法及系统
CN108172235B (zh) 基于维纳后置滤波的ls波束形成混响抑制方法
CN106710601B (zh) 一种语音信号降噪拾音处理方法和装置及冰箱
CN110111802B (zh) 基于卡尔曼滤波的自适应去混响方法
CN106782590B (zh) 基于混响环境下麦克风阵列波束形成方法
Schwartz et al. Online speech dereverberation using Kalman filter and EM algorithm
Krueger et al. Speech enhancement with a GSC-like structure employing eigenvector-based transfer function ratios estimation
JP5124014B2 (ja) 信号強調装置、その方法、プログラム及び記録媒体
US10930298B2 (en) Multiple input multiple output (MIMO) audio signal processing for speech de-reverberation
WO2015196729A1 (zh) 一种麦克风阵列语音增强方法及装置
Nelke et al. Dual microphone noise PSD estimation for mobile phones in hands-free position exploiting the coherence and speech presence probability
JP4448464B2 (ja) 雑音低減方法、装置、プログラム及び記録媒体
Yang et al. Dereverberation with differential microphone arrays and the weighted-prediction-error method
CN110111804B (zh) 基于rls算法的自适应去混响方法
Jin et al. Multi-channel noise reduction for hands-free voice communication on mobile phones
Yousefian et al. Using power level difference for near field dual-microphone speech enhancement
US20130253923A1 (en) Multichannel enhancement system for preserving spatial cues
CN116052702A (zh) 一种基于卡尔曼滤波的低复杂度多通道去混响降噪方法
JP4116600B2 (ja) 収音方法、収音装置、収音プログラム、およびこれを記録した記録媒体
JP6567216B2 (ja) 信号処理装置
CN103187068B (zh) 基于Kalman的先验信噪比估计方法、装置及噪声抑制方法
CN113160842B (zh) 一种基于mclp的语音去混响方法及系统
CN113948101A (zh) 一种基于空间区分性检测的噪声抑制方法及装置
Xiang et al. RLS-based adaptive dereverberation tracing abrupt position change of target speaker

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant