CN110110398A - A Method for Automatic Metasurface Design Based on Convolutional Autoencoder - Google Patents
A Method for Automatic Metasurface Design Based on Convolutional Autoencoder Download PDFInfo
- Publication number
- CN110110398A CN110110398A CN201910315408.0A CN201910315408A CN110110398A CN 110110398 A CN110110398 A CN 110110398A CN 201910315408 A CN201910315408 A CN 201910315408A CN 110110398 A CN110110398 A CN 110110398A
- Authority
- CN
- China
- Prior art keywords
- super surface
- convolution self
- amplitude
- encoding encoder
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 239000011159 matrix material Substances 0.000 claims abstract description 37
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000013136 deep learning model Methods 0.000 claims abstract description 19
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 238000013135 deep learning Methods 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 43
- 230000004913 activation Effects 0.000 claims description 15
- 239000013598 vector Substances 0.000 claims description 15
- 238000013528 artificial neural network Methods 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 3
- 239000013604 expression vector Substances 0.000 claims 2
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract 1
- 238000011176 pooling Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
- G06F17/153—Multidimensional correlation or convolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Radar Systems Or Details Thereof (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
技术领域technical field
本发明属于超表面设计技术领域,涉及一种基于卷积自编码器的超表面自动设计方法。The invention belongs to the technical field of metasurface design, and relates to an automatic metasurface design method based on a convolutional autoencoder.
背景技术Background technique
超表面是指一种厚度小于波长的人工层状材料。通过相位突变空间分布的设计,超表面可实现对电磁波偏振、振幅、相位、极化方式、传播模式等传播特性的灵活有效调控。超表面可视为超材料的二维平面亚波结构阵列。A metasurface is an artificial layered material with a thickness smaller than a wavelength. Through the design of the spatial distribution of phase mutations, metasurfaces can flexibly and effectively control the propagation characteristics of electromagnetic waves such as polarization, amplitude, phase, polarization mode, and propagation mode. A metasurface can be viewed as a two-dimensional array of planar subwave structures of metamaterials.
目前广泛应用的相位梯度超表面、编码超表面等,需要同时设计的反射折射的幅度和相位。然而目前基于超表面实现幅度和相位调控的方法大都只能针对幅度和相位中的单个参量进行调控,很难实现对幅度和相位的同时调控。设计者很难同时设计超表面的结构使幅度和相位达到需要的大小。同时,现有技术中,设计超表面不仅耗费时间,而且耗费计算资源,需要进行复杂的扫参过程,需要进行建模和参数优化,设计步骤繁杂,工程师很难通过设计目标直接给出对应的超表面,设计效率低。Currently widely used phase gradient metasurfaces, encoding metasurfaces, etc., need to simultaneously design the magnitude and phase of catadioptric refraction. However, most current methods for amplitude and phase control based on metasurfaces can only control a single parameter in the amplitude and phase, and it is difficult to achieve simultaneous control of the amplitude and phase. It is difficult for designers to simultaneously design the structure of the metasurface so that the amplitude and phase can reach the required size. At the same time, in the existing technology, designing a metasurface is not only time-consuming, but also computationally resource-intensive. It requires a complex parameter scanning process, modeling and parameter optimization, and the design steps are complicated. It is difficult for engineers to directly give the corresponding design goals. Metasurface, low design efficiency.
发明内容Contents of the invention
本发明的目的是提供一种基于卷积自编码器的超表面自动设计方法,解决了现有技术中存在的难以实现对超表面幅度和相位同时进行调控,而且设计效率低的问题。The purpose of the present invention is to provide a metasurface automatic design method based on a convolutional autoencoder, which solves the problems in the prior art that it is difficult to simultaneously regulate the metasurface amplitude and phase, and the design efficiency is low.
本发明所采用的技术方案是,一种基于卷积自编码器的超表面自动设计方法,包括以下步骤:The technical scheme adopted in the present invention is, a kind of metasurface automatic design method based on convolution autoencoder, comprises the following steps:
步骤1,随机生成若干个超表面单元结构,使用电磁仿真软件分别计算每个超表面的反射相位和幅值;Step 1: Randomly generate several metasurface unit structures, and use electromagnetic simulation software to calculate the reflection phase and amplitude of each metasurface;
步骤2,采用基于卷积自编码器的深度学习方法,通过将步骤1中计算得到的反射相位和幅值同时输入卷积自编码器,输出对应的超表面单元结构,来训练深度学习模型;Step 2, using the deep learning method based on the convolutional autoencoder, by inputting the reflection phase and amplitude calculated in step 1 into the convolutional autoencoder at the same time, and outputting the corresponding hypersurface unit structure, to train the deep learning model;
步骤3,将设计目标的反射相位和幅值输入步骤2中训练完毕的深度学习模型中,使用卷积自编码器完成特征提取以及特征与超表面矩阵之间的匹配,即获得所需要设计的超表面结构。Step 3, input the reflection phase and amplitude of the design target into the deep learning model trained in step 2, use the convolutional self-encoder to complete the feature extraction and the matching between the feature and the hypersurface matrix, that is, to obtain the required design metasurface structure.
本发明的特点还在于:The present invention is also characterized in that:
步骤1中的电磁仿真软件为CST STUDIO SUITE MWS。The electromagnetic simulation software in step 1 is CST STUDIO SUITE MWS.
步骤1的具体过程如下:The specific process of step 1 is as follows:
首先使用MATLAB软件输出随机生成的超表面单元结构的矩阵,其中标记为“1”的区域表示该区域填充有金属,标记为“0”的区域表示该区域空白,再使用电磁仿真软件CSTSTUDIO SUITE MWS进行计算得到超表面单元的反射相位和幅值。First use the MATLAB software to output the matrix of the randomly generated metasurface unit structure, where the area marked "1" indicates that the area is filled with metal, and the area marked "0" indicates that the area is blank, and then use the electromagnetic simulation software CSTSTUDIO SUITE MWS Calculate the reflection phase and amplitude of the metasurface unit.
步骤2中训练深度学习模型的具体过程如下:The specific process of training the deep learning model in step 2 is as follows:
步骤2.1,数据采集生成及预处理过程:使用MATLAB语言画出超表面单元的反射相位和幅值的图像,对该图像的灰度和像素特征进行归一化操作,设定图像为32×32×1的单通道灰度图,将图像的像素限定至0~1之间,并以此像素在0~1之间的图像作为深度学习模型的输入;Step 2.1, data acquisition generation and preprocessing process: use MATLAB language to draw the image of the reflection phase and amplitude of the metasurface unit, perform normalization operation on the grayscale and pixel features of the image, and set the image to 32×32 ×1 single-channel grayscale image, the pixels of the image are limited to between 0 and 1, and the image with pixels between 0 and 1 is used as the input of the deep learning model;
步骤2.2,采用卷积自编码器提取特征的过程:将步骤2.1中获得的像素在0~1之间的图像输入卷积自编码器,首先通过若干次卷积、池化操作和相应次数的上采样、反卷积操作将输入的反射相位和幅值曲线图像压缩重构到一个表示空间中,然后再根据这个表示空间对数据进行提取得到最后的输出数据矩阵;然后将卷积自编码器的编码部分拆解下来,对输入图像数据进行编码,将原输入图像压缩成表示向量,通过激活函数Ⅰ迭代调整卷积核直至损失函数Ⅰ最小化,得到损失函数Ⅰ最小化时的表示向量;Step 2.2, the process of using convolutional autoencoder to extract features: input the image with pixels between 0 and 1 obtained in step 2.1 into the convolutional autoencoder, firstly through several convolutions, pooling operations and corresponding number of The upsampling and deconvolution operations compress and reconstruct the input reflection phase and amplitude curve images into a representation space, and then extract the data according to this representation space to obtain the final output data matrix; then the convolution self-encoder The encoding part of is disassembled, the input image data is encoded, the original input image is compressed into a representation vector, the convolution kernel is iteratively adjusted through the activation function I until the loss function I is minimized, and the representation vector when the loss function I is minimized is obtained;
步骤2.3,基于卷积自编码器的超表面结构矩阵匹配过程:通过激活函数Ⅱ和损失函数Ⅱ采用全连接的人工神经网络进行训练,输入卷积自编码器的编码部分生成的表示向量矩阵,输出超表面结构矩阵,直至损失函数Ⅱ最小化时即完成步骤2.2中损失函数Ⅰ最小化时的表示向量特征与超表面结构之间的匹配,深度学习模型训练完毕。Step 2.3, the metasurface structure matrix matching process based on the convolutional autoencoder: use the fully connected artificial neural network for training through the activation function II and the loss function II, and input the representation vector matrix generated by the encoding part of the convolutional autoencoder, Output the metasurface structure matrix, until the loss function II is minimized, the matching between the representation vector features and the hypersurface structure when the loss function I is minimized in step 2.2 is completed, and the training of the deep learning model is completed.
激活函数Ⅰ为其中x代表神经网络每一层线性加权后的输出数据;损失函数Ⅰ为交叉熵代价函数其中x代表输出数据的个数,y为期望的输出,y'为实际的输出。The activation function I is Where x represents the output data of each layer of the neural network after linear weighting; the loss function I is the cross entropy cost function Where x represents the number of output data, y is the desired output, and y' is the actual output.
激活函数Ⅱ采用ReLU=max(0,x),其中x代表神经网络每一层线性加权求和后的输出数据;损失函数Ⅱ为均方误差其中yi为期望输出,y′i为实际输出。The activation function II adopts ReLU=max(0,x), where x represents the output data of each layer of the neural network after the linear weighted summation; the loss function II is the mean square error Where yi is the desired output, and y′ i is the actual output.
本发明的有益效果是:解决了现有技术中存在的难以实现对超表面幅度和相位同时进行调控,而且设计效率低的问题,通过基于卷积自编码器的深度学习模型将超表面结构矩阵与其电磁特性进行匹配,可以同时实现对超表面反射相位和反射幅值的设计;而且使用卷积自编码器的方法可以实现无监督学习,该方法仿造生物的视觉注意机制构建,结合卷积神经网络的卷积和池化等操作,无需复杂的扫参过程,无需建模和参数优化,对超表面的设计可以实现自动化,简化了设计步骤,设计效率高。The beneficial effect of the present invention is: it solves the problems in the prior art that it is difficult to control the amplitude and phase of the metasurface at the same time, and the design efficiency is low, and the metasurface structure matrix Matching its electromagnetic properties can realize the design of metasurface reflection phase and reflection amplitude at the same time; and the method of using convolutional autoencoder can realize unsupervised learning. This method imitates the construction of biological visual attention mechanism, combined with convolutional neural network Operations such as convolution and pooling of the network do not require complex parameter scanning processes, modeling and parameter optimization, and the design of metasurfaces can be automated, which simplifies the design steps and has high design efficiency.
附图说明Description of drawings
图1是本发明一种基于卷积自编码器的超表面自动设计方法中所述超表面的单元结构示意图;Fig. 1 is a schematic diagram of the unit structure of the metasurface described in a metasurface automatic design method based on a convolutional autoencoder of the present invention;
图2是本发明中基于卷积自编码器的深度学习模型训练流程图;Fig. 2 is the flow chart of deep learning model training based on convolution autoencoder in the present invention;
图3是本发明中基于卷积自编码器的超表面结构设计流程图;Fig. 3 is a flow chart of metasurface structure design based on convolutional autoencoder in the present invention;
图4是本发明一种基于卷积自编码器的超表面自动设计方法中所述卷积自编码器的结构示意图;Fig. 4 is a structural representation of the convolutional autoencoder described in a metasurface automatic design method based on the convolutional autoencoder of the present invention;
图5(a)是本发明实施例中提出的反射幅值和相位的设计目标;图5(b)是针对图5(a)中的设计目标所设计的超表面反射幅值和相位的值。Fig. 5 (a) is the design goal of reflection magnitude and phase proposed in the embodiment of the present invention; Fig. 5 (b) is the value of metasurface reflection magnitude and phase designed for the design goal in Fig. 5 (a) .
图中,1.介质层,2.结构层,3.金属背板。In the figure, 1. Dielectric layer, 2. Structure layer, 3. Metal backplane.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明一种基于卷积自编码器的超表面自动设计方法,如图1、2和3所示,包括以下步骤:A kind of metasurface automatic design method based on convolution autoencoder of the present invention, as shown in Figure 1, 2 and 3, comprises the following steps:
步骤1,随机生成若干个超表面单元结构,使用电磁仿真软件分别计算每个超表面的反射相位和幅值;Step 1: Randomly generate several metasurface unit structures, and use electromagnetic simulation software to calculate the reflection phase and amplitude of each metasurface;
步骤2,采用基于卷积自编码器的深度学习方法,通过将步骤1中计算得到的反射相位和幅值同时输入卷积自编码器,输出对应的超表面单元结构,来训练深度学习模型;Step 2, using the deep learning method based on the convolutional autoencoder, by inputting the reflection phase and amplitude calculated in step 1 into the convolutional autoencoder at the same time, and outputting the corresponding hypersurface unit structure, to train the deep learning model;
步骤3,将设计目标的反射相位和幅值输入步骤2中训练完毕的深度学习模型中,使用卷积自编码器完成特征提取以及特征与超表面矩阵之间的匹配,即获得所需要设计的超表面结构。Step 3, input the reflection phase and amplitude of the design target into the deep learning model trained in step 2, use the convolutional self-encoder to complete the feature extraction and the matching between the feature and the hypersurface matrix, that is, to obtain the required design metasurface structure.
步骤1中的电磁仿真软件为CST STUDIO SUITE MWS。The electromagnetic simulation software in step 1 is CST STUDIO SUITE MWS.
步骤1的具体过程如下:The specific process of step 1 is as follows:
首先使用MATLAB软件输出随机生成的超表面单元结构的矩阵,其中标记为“1”的区域表示该区域填充有金属,标记为“0”的区域表示该区域空白,再使用电磁仿真软件CSTSTUDIO SUITE MWS进行计算得到超表面单元的反射相位和幅值。First use the MATLAB software to output the matrix of the randomly generated metasurface unit structure, where the area marked "1" indicates that the area is filled with metal, and the area marked "0" indicates that the area is blank, and then use the electromagnetic simulation software CSTSTUDIO SUITE MWS Calculate the reflection phase and amplitude of the metasurface unit.
步骤2中训练深度学习模型的具体过程如下:The specific process of training the deep learning model in step 2 is as follows:
步骤2.1,数据采集生成及预处理过程:使用MATLAB语言画出超表面单元的反射相位和幅值的图像,并设定该图像的灰度和像素,设定图像为32×32×1的单通道灰度图,由于灰度图的像素范围在0~255之间,为使特征分布更加均匀,对特征进行归一化操作,将图像的像素限定至0~1之间,并以此像素在0~1之间的图像作为深度学习模型的输入;Step 2.1, data acquisition generation and preprocessing process: use MATLAB language to draw the image of the reflection phase and amplitude of the metasurface unit, and set the grayscale and pixels of the image, and set the image as a single unit of 32×32×1 Channel grayscale image, since the pixel range of the grayscale image is between 0 and 255, in order to make the feature distribution more uniform, the feature is normalized, the pixel of the image is limited to between 0 and 1, and the pixel is used to The image between 0 and 1 is used as the input of the deep learning model;
步骤2.2,采用卷积自编码器提取特征的过程:将步骤2.1中获得的像素在0~1之间的图像输入卷积自编码器,首先通过若干次卷积、池化操作和相应次数的上采样、反卷积操作将输入的反射相位和幅值曲线图像压缩重构到一个表示空间中,然后再根据这个表示空间对数据进行提取得到最后的输出数据矩阵;然后将卷积自编码器的编码部分拆解下来,对输入图像数据进行编码,将原输入图像压缩成表示向量,通过激活函数Ⅰ迭代调整卷积核直至损失函数Ⅰ最小化,得到损失函数Ⅰ最小化时的表示向量;Step 2.2, the process of using convolutional autoencoder to extract features: input the image with pixels between 0 and 1 obtained in step 2.1 into the convolutional autoencoder, firstly through several convolutions, pooling operations and corresponding number of The upsampling and deconvolution operations compress and reconstruct the input reflection phase and amplitude curve images into a representation space, and then extract the data according to this representation space to obtain the final output data matrix; then the convolution self-encoder The encoding part of is disassembled, the input image data is encoded, the original input image is compressed into a representation vector, the convolution kernel is iteratively adjusted through the activation function I until the loss function I is minimized, and the representation vector when the loss function I is minimized is obtained;
步骤2.3,基于卷积自编码器的超表面结构矩阵匹配过程:通过激活函数Ⅱ和损失函数Ⅱ采用全连接的人工神经网络进行训练,输入卷积自编码器的编码部分生成的表示向量矩阵,输出超表面结构矩阵,直至损失函数Ⅱ最小化时即完成步骤2.2中损失函数Ⅰ最小化时的表示向量特征与超表面结构之间的匹配,深度学习模型训练完毕。Step 2.3, the metasurface structure matrix matching process based on the convolutional autoencoder: use the fully connected artificial neural network for training through the activation function II and the loss function II, and input the representation vector matrix generated by the encoding part of the convolutional autoencoder, Output the metasurface structure matrix, until the loss function II is minimized, the matching between the representation vector features and the hypersurface structure when the loss function I is minimized in step 2.2 is completed, and the training of the deep learning model is completed.
激活函数Ⅰ为其中x代表神经网络每一层线性加权后的输出数据;损失函数Ⅰ为交叉熵代价函数其中x代表输出数据的个数,y为期望的输出,y'为实际的输出。The activation function I is Where x represents the output data of each layer of the neural network after linear weighting; the loss function I is the cross entropy cost function Where x represents the number of output data, y is the desired output, and y' is the actual output.
激活函数Ⅱ采用ReLU=max(0,x),其中x代表神经网络每一层线性加权求和后的输出数据;损失函数Ⅱ为均方误差其中yi为期望输出,y′i为实际输出。The activation function II adopts ReLU=max(0,x), where x represents the output data of each layer of the neural network after the linear weighted summation; the loss function II is the mean square error Where yi is the desired output, and y′ i is the actual output.
实施例Example
如图1所示,步骤1中的超表面单元结构由介质层1、结构层2以及金属背板层3组成,介质层1的下表面为金属背板层3,介质层1的上表面为结构层2,本实施例中超表面单元结构的介质层1的材料为玻璃纤维环氧树脂覆铜板(Fr4),介质层1的厚度为1.5mm,金属背板层3的厚度为0.018mm,在微波频段下结构层2和金属背板层3的材料均为铜;结构层2划分为64个用“0”或“1”标记的区域,标记为“1”的区域表示该区域填充有金属,标记为“0”的区域表示该区域空白,因此结构层2可以用矩阵表示,介质层1材料和厚度为固定值的情况下超表面单元结构也可以用矩阵来表示。As shown in Figure 1, the metasurface unit structure in step 1 is composed of a dielectric layer 1, a structural layer 2 and a metal backplane layer 3, the lower surface of the dielectric layer 1 is the metal backplane layer 3, and the upper surface of the dielectric layer 1 is Structural layer 2, the material of the dielectric layer 1 of the supersurface unit structure in the present embodiment is glass fiber epoxy resin copper-clad laminate (Fr4), the thickness of the dielectric layer 1 is 1.5mm, and the thickness of the metal backplane layer 3 is 0.018mm. The material of the structure layer 2 and the metal backplane layer 3 in the microwave frequency band is copper; the structure layer 2 is divided into 64 areas marked with "0" or "1", and the area marked with "1" means that the area is filled with metal , the area marked "0" indicates that the area is blank, so the structural layer 2 can be represented by a matrix, and the metasurface unit structure can also be represented by a matrix when the material and thickness of the dielectric layer 1 are fixed values.
如图2、3和4所示,首先使用MATLAB软件输出随机生成的2000组超表面单元结构的8*8矩阵,再使用电磁仿真软件CST STUDIO SUITE MWS进行计算得到2000组超表面单元的反射相位和幅值。As shown in Figures 2, 3 and 4, first use MATLAB software to output the 8*8 matrix of 2000 sets of metasurface unit structures randomly generated, and then use the electromagnetic simulation software CST STUDIO SUITE MWS to calculate the reflection phase of 2000 sets of metasurface units and magnitude.
由于输入的二维图像从计算机角度而言是一系列二维数组,直观上很难从中提取合适的特征与输出矩阵进行匹配。因此,首先对输入图像进行特征提取操作。使用卷积自编码器的方法可以实现对图像的无监督学习,该方法仿造生物的视觉注意机制构建,结合卷积神经网络的卷积和池化操作,从而实现特征提取。Since the input two-dimensional image is a series of two-dimensional arrays from the computer point of view, it is intuitively difficult to extract appropriate features from it to match the output matrix. Therefore, the feature extraction operation is first performed on the input image. The unsupervised learning of images can be realized by using the method of convolutional self-encoder. This method imitates the construction of biological visual attention mechanism, and combines the convolution and pooling operations of convolutional neural network to realize feature extraction.
如图3所示,针对大小为32×32×1的单通道输入图像,对其进行卷积操作及池化操作,每层卷积核的大小及深度不同,但步幅均为1,补零方式均为等效填充(samepadding),池化操作均使用最大池化函数(MaxPooling),图3中模型编码端的基本参数为:As shown in Figure 3, for a single-channel input image with a size of 32×32×1, convolution operation and pooling operation are performed on it. The size and depth of each convolution kernel are different, but the stride is 1, and the complement The zero method is equivalent padding (same padding), and the pooling operation uses the maximum pooling function (MaxPooling). The basic parameters of the model encoding end in Figure 3 are:
编码部分:Encoding part:
第一层卷积:7×7的卷积核32个,步长为1,填充方式为等效填充(same padding);The first layer of convolution: 32 7×7 convolution kernels, the step size is 1, and the padding method is equivalent padding (same padding);
第一层池化:池化过滤器大小为4×4,最大池化函数;The first layer of pooling: the pooling filter size is 4×4, and the maximum pooling function;
第二层卷积:5×5的卷积核64个,其余参数与第一层卷积一致;The second layer of convolution: 64 convolution kernels of 5×5, and the remaining parameters are consistent with the first layer of convolution;
第二层池化:池化过滤器大小为4×4,最大池化函数;The second layer of pooling: the pooling filter size is 4×4, and the maximum pooling function;
第三层卷积:3×3的卷积核128个,其余参数与第一层卷积一致;The third layer of convolution: 128 3×3 convolution kernels, and the rest of the parameters are consistent with the first layer of convolution;
第三层池化:池化过滤器大小为2×3,最大池化函数。The third layer of pooling: the pooling filter size is 2×3, and the maximum pooling function.
以上操作完成后,即将原始输入大小为32×32×1的矩阵压缩成1×1×128的矩阵,再通过解码部分对数据进行重构,图3模型解码端的基本参数为:After the above operations are completed, the matrix with the original input size of 32×32×1 is compressed into a matrix of 1×1×128, and then the data is reconstructed through the decoding part. The basic parameters of the decoding end of the model in Figure 3 are:
第一层上采样:采样核大小为2×2;The first layer of upsampling: the sampling kernel size is 2×2;
第一层反卷积:3×3的卷积核64个,步长为1,填充方式为等效填充(samepadding);The first layer of deconvolution: 64 3×3 convolution kernels, the step size is 1, and the padding method is equivalent padding (same padding);
第二层上采样:采样核大小为4×4;Upsampling on the second layer: the sampling kernel size is 4×4;
第二层反卷积:5×5的卷积核32个,步长为1,填充方式为等效填充(samepadding);The second layer of deconvolution: 32 5×5 convolution kernels, the step size is 1, and the padding method is equivalent padding (same padding);
第三层上采样:采样核大小为4×4;Upsampling on the third layer: the sampling kernel size is 4×4;
第二层反卷积:7×7的卷积核1个,步长为1,填充方式为等效填充(samepadding)。The second layer of deconvolution: 1 convolution kernel of 7×7, the step size is 1, and the padding method is equivalent padding (same padding).
以上解码操作完成后,即将编码端压缩的1×1×128矩阵重构成32×32×1的矩阵。After the above decoding operation is completed, the 1×1×128 matrix compressed by the encoding end is reconstructed into a 32×32×1 matrix.
该卷积自编码器的执行过程,即为求交叉熵代价函数最小值的过程。根据给定的输入图像,通过激活函数Ⅰ不断迭代调整卷积核,使得损失函数Ⅰ最小化,重构的图像与原输入图像最相似。卷积自编码器训练完成后,将其编码部分拆解下来,取出编码部分压缩的1×1×128矩阵作为特征提取后的结果,即特征维度由原本的32×32×1=1024维压缩至1×1×128=128维,特征维度变为原来的12.5%,而对图像的效果影响甚微。The execution process of the convolutional autoencoder is the process of finding the minimum value of the cross-entropy cost function. According to the given input image, the convolution kernel is adjusted iteratively through the activation function I, so that the loss function I is minimized, and the reconstructed image is most similar to the original input image. After the convolutional self-encoder training is completed, its encoding part is disassembled, and the compressed 1 × 1 × 128 matrix of the encoding part is taken out as the result of feature extraction, that is, the feature dimension is compressed from the original 32 × 32 × 1 = 1024 To 1×1×128=128 dimensions, the feature dimension becomes 12.5% of the original, and has little effect on the effect of the image.
基于卷积自编码器的超表面结构矩阵匹配过程为针对新提取的表示向量特征与超表面结构矩阵之间的匹配,采用全连接的人工神经网络进行训练,输入卷积自编码器的编码端生成的表示向量矩阵,输出超表面结构矩阵。The hypersurface structure matrix matching process based on the convolutional autoencoder is to match the newly extracted representation vector features with the hypersurface structure matrix, using a fully connected artificial neural network for training, and inputting the encoding end of the convolutional autoencoder The resulting matrix of representation vectors outputs a matrix of metasurface structures.
本发明实施例中为实现新提取的128维特征与超表面结构矩阵之间的匹配,该网络的输入为新生成的128维特征矩阵,采用激活函数Ⅱ在神经网络中加入非线性因素,损失函数Ⅱ最小化时输出大小为8×8的超表面结构矩阵。该模型可定义为:In the embodiment of the present invention, in order to realize the matching between the newly extracted 128-dimensional feature and the metasurface structure matrix, the input of the network is the newly generated 128-dimensional feature matrix, and the activation function II is used to add nonlinear factors to the neural network, and the loss When function II is minimized, the output size is 8×8 metasurface structure matrix. The model can be defined as:
Y=f(Xβ)Y=f(Xβ)
其中,X为输入向量,β为参数向量,Y为输出向量,f(*)为激活函数。Among them, X is the input vector, β is the parameter vector, Y is the output vector, and f(*) is the activation function.
该神经网络的学习过程即为求均方误差最小值的过程,根据初始β参数的设置求得一个输出y′i,计算y′i与期望输出yi之间的均方误差的值,采用梯度下降算法确定均方误差的最小值,并通过后向传播算法(BP算法)不断迭代更新神经网络中每一个β参数的设置,从而得到损失函数Ⅱ最小化情况下神经网络β参数的值。The learning process of the neural network is the process of seeking the minimum value of the mean square error. According to the initial β parameter setting, an output y′ i is obtained, and the value of the mean square error between y′ i and the expected output y i is calculated. The gradient descent algorithm determines the minimum value of the mean square error, and iteratively updates the setting of each β parameter in the neural network through the back propagation algorithm (BP algorithm), so as to obtain the value of the β parameter of the neural network under the condition of minimizing the loss function II.
模型训练完毕后,如图5(a)所示,本实施例中的设计目标是在15.9GHz和18GHz处具有吸波特性的超表面单元,从8GHz到14.5GHz,相位有180度的改变。After the model training is completed, as shown in Figure 5(a), the design target in this embodiment is a metasurface unit with wave-absorbing properties at 15.9GHz and 18GHz, and the phase has a 180-degree change from 8GHz to 14.5GHz .
将相位和反射系数的设计目标作为输入,深度学习模型会自动输出8*8的矩阵:Taking the design goals of phase and reflection coefficient as input, the deep learning model will automatically output an 8*8 matrix:
为了验证设计结果的准确性,将该矩阵表示的结构在CST STUDIO SUITE MWS中进行计算,如图5(b)所示,模型的电磁特性和设计目标十分接近,在15.9GHz和18GHz处有两个强吸收峰,呈现了强吸波特性;从8GHz到14.5GHz,超表面实现了180度的相位改变,这证明了设计结果的有效性。In order to verify the accuracy of the design results, the structure represented by the matrix is calculated in CST STUDIO SUITE MWS, as shown in Figure 5(b), the electromagnetic characteristics of the model are very close to the design goals, and there are two A strong absorption peak presents a strong wave-absorbing characteristic; from 8 GHz to 14.5 GHz, the metasurface achieves a 180-degree phase change, which proves the validity of the design results.
本发明一种基于卷积自编码器的超表面自动设计方法,其优点在于在于:将超表面结构的反射幅值和相位通过基于卷积自编码器的超表面设计方法连接了起来,在设计过程中,可以做到同时设计超表面的反射幅值和反射相位;使用卷积自编码器的方法可以实现无监督学习,无需建模和参数优化,这就可以自动生成超表面结构,简化了设计步骤,提升了设计效率。A metasurface automatic design method based on a convolutional self-encoder of the present invention has the advantage that the reflection amplitude and phase of the metasurface structure are connected through the metasurface design method based on a convolutional self-encoder. In the process, the reflection amplitude and reflection phase of the metasurface can be designed at the same time; the method of using the convolutional autoencoder can realize unsupervised learning without modeling and parameter optimization, which can automatically generate the metasurface structure, simplifying the The design steps improve the design efficiency.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910315408.0A CN110110398B (en) | 2019-04-19 | 2019-04-19 | A Method for Automatic Metasurface Design Based on Convolutional Autoencoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910315408.0A CN110110398B (en) | 2019-04-19 | 2019-04-19 | A Method for Automatic Metasurface Design Based on Convolutional Autoencoder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110110398A true CN110110398A (en) | 2019-08-09 |
CN110110398B CN110110398B (en) | 2023-05-12 |
Family
ID=67485763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910315408.0A Expired - Fee Related CN110110398B (en) | 2019-04-19 | 2019-04-19 | A Method for Automatic Metasurface Design Based on Convolutional Autoencoder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110110398B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110647024A (en) * | 2019-10-30 | 2020-01-03 | 武汉大学 | Method for realizing circuitous phase coding multiplexing based on super-surface array structure |
CN111241700A (en) * | 2020-01-19 | 2020-06-05 | 中国科学院光电技术研究所 | Intelligent design method of microwave broadband super-surface absorber |
CN111430903A (en) * | 2020-04-01 | 2020-07-17 | 中国人民解放军空军工程大学 | Radiation scattering integrated low-RCS antenna housing and design method thereof |
CN111767678A (en) * | 2020-07-06 | 2020-10-13 | 桂林电子科技大学 | On-demand structure design method of metamaterial electromagnetic induction transparent devices based on deep learning neural network |
CN113205179A (en) * | 2021-05-08 | 2021-08-03 | 湖南太观科技有限公司 | Deep learning framework for medium laser acceleration |
CN113822424A (en) * | 2021-07-27 | 2021-12-21 | 湖南大学 | All-optical diffraction neural network system based on super-structured surface |
CN114841331A (en) * | 2022-03-17 | 2022-08-02 | 浙江大学 | Three-dimensional posture real-time recognition system and method based on brain-like metamaterial |
CN115167088A (en) * | 2022-07-12 | 2022-10-11 | 中国人民解放军空军工程大学 | A customizable holographic metasurface design method based on deep learning |
CN115964955A (en) * | 2023-01-11 | 2023-04-14 | 哈尔滨工业大学 | Discretely coded metasurface element electromagnetic response prediction method and equipment |
CN118889069A (en) * | 2024-10-08 | 2024-11-01 | 华南理工大学 | Ultra-wideband multi-bit phase-encoded cellular electromagnetic unit, structure and determination method |
CN119395629A (en) * | 2024-12-31 | 2025-02-07 | 成都华日通讯技术股份有限公司 | Method, device, equipment and medium for locating electromagnetic radiation source based on fusion information |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014191781A (en) * | 2013-03-28 | 2014-10-06 | Asahi Kasei Corp | Meta material design method, meta material structure, meta material design system, and program |
CN107967386A (en) * | 2017-11-27 | 2018-04-27 | 上海交通大学 | The design method and its device of electromagnetism metamaterial unit |
CN108539427A (en) * | 2018-06-16 | 2018-09-14 | 中国人民解放军空军工程大学 | The super surface Ai Li Beam generators and design method regulated and controled simultaneously based on amplitude and phase |
CN108733924A (en) * | 2018-05-21 | 2018-11-02 | 东南大学 | A kind of intellectualized design method of digital coding metamaterial unit |
CN109489485A (en) * | 2018-11-28 | 2019-03-19 | 浙江大学 | A kind of adaptive super surface electromagnetism stealth clothing system and its working method |
-
2019
- 2019-04-19 CN CN201910315408.0A patent/CN110110398B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014191781A (en) * | 2013-03-28 | 2014-10-06 | Asahi Kasei Corp | Meta material design method, meta material structure, meta material design system, and program |
CN107967386A (en) * | 2017-11-27 | 2018-04-27 | 上海交通大学 | The design method and its device of electromagnetism metamaterial unit |
CN108733924A (en) * | 2018-05-21 | 2018-11-02 | 东南大学 | A kind of intellectualized design method of digital coding metamaterial unit |
CN108539427A (en) * | 2018-06-16 | 2018-09-14 | 中国人民解放军空军工程大学 | The super surface Ai Li Beam generators and design method regulated and controled simultaneously based on amplitude and phase |
CN109489485A (en) * | 2018-11-28 | 2019-03-19 | 浙江大学 | A kind of adaptive super surface electromagnetism stealth clothing system and its working method |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110647024A (en) * | 2019-10-30 | 2020-01-03 | 武汉大学 | Method for realizing circuitous phase coding multiplexing based on super-surface array structure |
CN111241700A (en) * | 2020-01-19 | 2020-06-05 | 中国科学院光电技术研究所 | Intelligent design method of microwave broadband super-surface absorber |
CN111241700B (en) * | 2020-01-19 | 2022-12-30 | 中国科学院光电技术研究所 | Intelligent design method of microwave broadband super-surface absorber |
CN111430903A (en) * | 2020-04-01 | 2020-07-17 | 中国人民解放军空军工程大学 | Radiation scattering integrated low-RCS antenna housing and design method thereof |
CN111430903B (en) * | 2020-04-01 | 2021-08-10 | 中国人民解放军空军工程大学 | Radiation scattering integrated low-RCS antenna housing and design method thereof |
CN111767678A (en) * | 2020-07-06 | 2020-10-13 | 桂林电子科技大学 | On-demand structure design method of metamaterial electromagnetic induction transparent devices based on deep learning neural network |
CN113205179A (en) * | 2021-05-08 | 2021-08-03 | 湖南太观科技有限公司 | Deep learning framework for medium laser acceleration |
CN113822424B (en) * | 2021-07-27 | 2023-10-20 | 湖南大学 | All-optical diffraction neural network system based on super-structured surface |
CN113822424A (en) * | 2021-07-27 | 2021-12-21 | 湖南大学 | All-optical diffraction neural network system based on super-structured surface |
CN114841331A (en) * | 2022-03-17 | 2022-08-02 | 浙江大学 | Three-dimensional posture real-time recognition system and method based on brain-like metamaterial |
CN114841331B (en) * | 2022-03-17 | 2025-06-10 | 浙江大学 | A three-dimensional posture real-time recognition system and method based on brain-like metamaterials |
CN115167088A (en) * | 2022-07-12 | 2022-10-11 | 中国人民解放军空军工程大学 | A customizable holographic metasurface design method based on deep learning |
CN115167088B (en) * | 2022-07-12 | 2024-04-16 | 中国人民解放军空军工程大学 | Customizable holographic super-surface design method based on deep learning |
CN115964955B (en) * | 2023-01-11 | 2023-12-15 | 哈尔滨工业大学 | Discretely coded metasurface unit electromagnetic response prediction method and equipment |
CN115964955A (en) * | 2023-01-11 | 2023-04-14 | 哈尔滨工业大学 | Discretely coded metasurface element electromagnetic response prediction method and equipment |
CN118889069A (en) * | 2024-10-08 | 2024-11-01 | 华南理工大学 | Ultra-wideband multi-bit phase-encoded cellular electromagnetic unit, structure and determination method |
CN118889069B (en) * | 2024-10-08 | 2025-02-25 | 华南理工大学 | Ultra-wideband multi-bit phase-encoded cellular electromagnetic unit, structure and determination method |
CN119395629A (en) * | 2024-12-31 | 2025-02-07 | 成都华日通讯技术股份有限公司 | Method, device, equipment and medium for locating electromagnetic radiation source based on fusion information |
CN119395629B (en) * | 2024-12-31 | 2025-04-22 | 成都华日通讯技术股份有限公司 | Method, device, equipment and medium for locating electromagnetic radiation source based on fusion information |
Also Published As
Publication number | Publication date |
---|---|
CN110110398B (en) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110110398A (en) | A Method for Automatic Metasurface Design Based on Convolutional Autoencoder | |
CN113222822B (en) | Hyperspectral image super-resolution reconstruction method based on multi-scale transformation | |
CN107832787A (en) | Recognition Method of Radar Emitters based on bispectrum own coding feature | |
CN112686817A (en) | Image completion method based on uncertainty estimation | |
CN117523095B (en) | A sparse angle THz-CT image reconstruction method based on deep learning | |
CN112785539B (en) | Multi-focus Image Fusion Method Based on Image Adaptive Decomposition and Parameter Adaptation | |
CN119000565B (en) | A spectral reflectance image acquisition method and system based on intrinsic decomposition | |
Fu et al. | Highly-efficient design method for coding metasurfaces based on deep learning | |
CN119761184B (en) | Task-oriented learning-based super-surface design optimization method and system | |
CN113822825B (en) | Optical building target three-dimensional reconstruction method based on 3D-R2N2 | |
CN119294259A (en) | A hypersurface structure design method based on joint discriminative generative adversarial network | |
CN117975174B (en) | Three-dimensional digital core reconstruction method based on improvement VQGAN | |
CN112199892B (en) | Machine learning method for quickly constructing super surface according to needs | |
Li et al. | ST2SI: Image Style Transfer via Vision Transformer using Spatial Interaction | |
CN117953310A (en) | Remote sensing multi-mode image classification method based on continuous scale feature network | |
Chen et al. | 3D mesh transformer: A hierarchical neural network with local shape tokens | |
CN118052712A (en) | Remote sensing image super-resolution reconstruction method based on multi-stage space-frequency combination | |
CN116562128A (en) | Annular metamaterial reverse design system based on contrast learning | |
CN116612349A (en) | Information extraction method of near-shore raft mariculture from remote sensing images based on deep learning | |
Zhang | IoT Agricultural Pest Identification Based on Multiple Convolutional Models | |
CN115130386A (en) | A fast one-to-many design method for digital metasurfaces based on nested multilayer perceptrons | |
Yu et al. | Building extraction from remote sensing image based on improved segnet neural network and image pyramid | |
CN112785684A (en) | Three-dimensional model reconstruction method based on local information weighting mechanism | |
Ma et al. | A deep neural network-based higher performance error prediction algorithm for reversible data hiding | |
CN116882298A (en) | A forward design method of metasurface structural units based on convolutional neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230512 |