CN110109204B - 一种基于塔姆结构的彩色辐射降温器 - Google Patents

一种基于塔姆结构的彩色辐射降温器 Download PDF

Info

Publication number
CN110109204B
CN110109204B CN201910404907.7A CN201910404907A CN110109204B CN 110109204 B CN110109204 B CN 110109204B CN 201910404907 A CN201910404907 A CN 201910404907A CN 110109204 B CN110109204 B CN 110109204B
Authority
CN
China
Prior art keywords
dielectric layer
thickness
color
layer
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910404907.7A
Other languages
English (en)
Other versions
CN110109204A (zh
Inventor
李孝峰
盛春香
安怡澹
杜俊
张程
叶燕
陈林森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
SVG Tech Group Co Ltd
Original Assignee
Suzhou University
SVG Tech Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University, SVG Tech Group Co Ltd filed Critical Suzhou University
Priority to CN201910404907.7A priority Critical patent/CN110109204B/zh
Publication of CN110109204A publication Critical patent/CN110109204A/zh
Priority to US16/692,925 priority patent/US11472935B2/en
Application granted granted Critical
Publication of CN110109204B publication Critical patent/CN110109204B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20418Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing the radiating structures being additional and fastened onto the housing

Abstract

本发明公开了一种基于塔姆结构的彩色辐射降温器,包括基底,基底自下而上依次设置有金属膜层和电介质层A至电介质层G,其中金属膜层与电介质层A至电介质层D组成塔姆结构,电介质层A至电介质层D组成分布式布拉格反射镜,选择性发射器由电介质层E至电介质层G组成。本发明的有益效果是:与传统的辐射降温器相比,显色的辐射降温器不仅具有降温功能,而且带有颜色使其在美学和装饰性等方面具有广泛应用。本发明提供了一种简化的色差计算方法来寻找与三补色最接近的三种颜色,设计颜色纯度较高,使其组合能得到更多的颜色,并且由于器件的降温效果主要与选择性发射器相关,所以颜色的调控对降温效果影响不大,显色和降温不冲突。

Description

一种基于塔姆结构的彩色辐射降温器
技术领域
本发明涉及辐射降温技术领域,具体为一种基于塔姆结构的彩色辐射降温器。
背景技术
辐射降温技术由于其不需要外加能量、对环境友好、节约能源等优势在节能建筑,电子/光电器件和个人热管理等方面具有广泛的应用和前景。宇宙空间的温度约为3K,这是一个巨大的天然冷源。任何物体只要温度大于绝对零度都能向外辐射能量。根据维恩位移定律:当地球温度为300K时,黑体辐射能力最大值所对应的波长约为9.6μm,此峰值波长位于大气透明窗口(即8-13μm)内。因此,辐射降温利用这个波段的大气透明窗口,以辐射的形式穿过大气至宇宙空间实现热交换,从而达到降温效果。物体除了向外辐射能量,同时还会吸收太阳辐射和大气辐射,还有一部分非辐射能量(热传导和热对流),所以物体的净辐射表示为:向外辐射量减去吸收的太阳辐射、大气辐射及非辐射量之和。当净辐射大于零时,物体可以实现降温。一般用辐射率来衡量物体以辐射形式向外释放能量相对强弱的能力,且根据基尔霍夫定律,在热平衡状态下物体的辐射率等于其吸收率,因此辐射降温器需要满足:8-13μm高吸收;其他波段高反射。
然而,由于辐射降温器在可见光区反射较大,呈白色,外观不美观,一定程度上限制了其在装饰等美学方面的应用。因此,对同时具有颜色和降温功能的降温器的研究引起了越来越多研究人员的兴趣。要使辐射降温器同时具有颜色和降温效果不仅需要满足传统降温器的波段要求外,还需要在减色法三原色波长(即435.8,546.1和700nm)处出现反射凹峰。例如,L.Zhu等人设计了一种可以在阳光下保持其颜色的辐射降温器,通过在周期性的硅纳米线阵列上放置周期性石英棒阵列,该降温器的颜色显示为淡粉色(Applied PhysicsLetters,2013,103(22),223902)。G.J.Lee等人通过在热发射器中嵌入MIM结构设计出一种显示减色法三原色(黄色、品红和青色)的辐射降温器。实验证明,最终稳态温度比环境温度低3.9℃(Advanced Optical Materials,2018,6(22),1800707)。但是这些已有的彩色辐射降温器的颜色调控复杂且与标准减色法三原色的色差较大,此外,颜色对入射角的变化较敏感。不同比例的减色法三原色(即三补色)可以组合成不同的颜色,所以三补色纯度越高,得到的颜色越多,应用更广泛。因此,需设计一种高纯度,高性能,颜色可调和对入射角度不敏感的彩色辐射降温器,其对未来彩色电子领域的发展具有极大的推动作用。
发明内容
本发明的目的在于提供一种基于塔姆结构的彩色辐射降温器,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于塔姆结构的彩色辐射降温器,所述基底自下而上依次设置有金属膜层、分布式布拉格反射镜、选择性发射器;其中:所述的金属膜层和分布式布拉格反射镜组成塔姆结构;分布式布拉格反射镜的厚度d、分布式布拉格反射镜的布拉格波长λB、分布式布拉格反射镜的折射率n之间的关系满足:d=λB/4n。
进一步的方案:一种基于塔姆结构的彩色辐射降温器,包括基底,所述基底自下而上依次设置有金属膜层和电介质层A至电介质层G,其中所述金属膜层与所述电介质层A至所述电介质层D组成塔姆结构,所述电介质层A至电介质层D组成分布式布拉格反射镜,所述选择性发射器由所述电介质层E至所述电介质层G组成。
优选的,所述基底厚度为300-3000μm。
优选的,所述基底材料为SiO2玻璃。
优选的,所述金属膜层的厚度为10-80nm,其最优厚度均由计算的最小色差值决定。
优选的,所述电介质层A的厚度为20-50nm,所述电介质层B的厚度为50-100nm,所述电介质层C的厚度为20-50nm,所述电介质层D的厚度为50-100nm,其最优厚度均由计算的最小色差值决定。
优选的,所述金属膜层的材料为Ag,且所述电介质层A至所述电介质层D的材料分别为S iC、MgF2、S iC与MgF2,材料满足在太阳波段的消光系数小,避免寄生吸热,且在大气透明窗口波段表现出辅助的热辐射特性,保证了系统的整体冷却效果。
优选的,所述选择性发射器中的所述电介质层E的厚度为52nm,所述选择性发射器中所述电介质层F的厚度为900nm,所述选择性发射器中的所述电介质层G的厚度为85nm,其最优厚度均由遗传算法优化得到。
优选的,所述选择性发射器中的所述电介质层E至所述电介质层G的材料分别为SiO2、SiN和SiO2,材料满足在可见光区高透射且这两种材料都存在共振使其在8-13μm的辐射率明显提高。
一种基于塔姆结构的黄色辐射降温器,制备方法如下:
S1)选取一块经过离子束清洗后的SiO2玻璃基底层,运用电子束蒸发技术,沉积Ag金属膜层,其厚度为24nm;
S2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为30nm的SiC电介质层A,薄膜沉积前先进行15min预溅射,然后在室温下沉积SiC薄膜,最后进行高温退火处理;
S3)使用电子束蒸发技术在电介质层A上沉积厚度为56nm的MgF2电介质层B,蒸发本底真空度为2×10-4Pa;
S4)接着使用射频磁控反应溅射技术在电介质层B上沉积厚度为30nm的SiC电介质层C,溅射方法同S2;
S5)使用电子束蒸发技术在电介质层C上沉积厚度为56nm的MgF2电介质层D,蒸发方法同S3;
S6)使用射频磁控反应溅射技术在电介质膜层D上沉积厚度为52nm的SiO2电介质层E,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;
S7)使用射频磁控反应溅射技术在电介质膜层E上沉积厚度为900nm的SiN电介质层F,溅射气体和反应气体分别为高纯度的Ar气和N2气,每次实验之前先用Ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;
S8)使用射频磁控反应溅射技术在电介质膜层F上沉积厚度为85nm的SiO2电介质层G,蒸发方法同S6。
工作原理:选择性发射器需要满足在主要大气透明窗口(8-13μm)高辐射,同时需保证可见光尽可能无损耗的穿过发射器以保证显色的纯度,另外其他波段高反射以减少寄生热。用于显色的塔姆结构由分布式布拉格反射镜和金属膜层组成,利用塔姆结构能够在分布式布拉格反射镜与金属膜层界面处激发光学塔姆态(即OTS)出现反射凹峰来实现显色功能,通过调控分布式布拉格反射镜和金属膜层的厚度可以得到不同的颜色,并计算随着分布式布拉格反射镜和金属膜层的厚度变化的色差(参考颜色为标准三补色),得到色差最小值(即所设计的高纯度的三补色)所对应的塔姆结构参数。通过对材料和结构的光学、热学和颜色机理的理解,本设计最终表明塔姆结构的引入不仅使传统的辐射降温器显示高纯度的三补色,而且其对入射角度不敏感,最重要的是增加了器件总体的辐射率,保证了辐射降温的效果。
方案中的电介质层A至电介质层G中的字母只是为了区分不同的电介质层而给出的编号,并不限定特定型号的电介质层,电介质层A至电介质层G对应也可替换为第一电介质层至第七电介质层。电介质层A至电介质层D组成显色的塔姆结构中的分布式布拉格反射镜。
有益效果
1.与传统的辐射降温器相比,显色的辐射降温器不仅具有较好的降温性能,而且带有颜色使其在美学和装饰性等方面具有广泛应用。
2.利用塔姆结构作为显色器件,对偏振不敏感,不需要特殊的入射角和色散调节元件就能够激发光学Tamm态(激发更容易),使其出现反射凹峰。并且由于塔姆结构的光谱相对较宽,所以其对角度的变化不敏感。
3.颜色的调控更简单,只需要改变DBR和金属的厚度就能得到不同色调和纯度的颜色,提供了一种简化的色差计算方法来寻找与三补色最接近的三种颜色,设计颜色纯度较高,使其组合能得到更多的颜色,应用更广泛。并且由于器件的降温效果主要与选择性发射器相关,所以颜色的调控对降温效果影响不大,显色和降温不冲突。
附图说明
图1为本发明的彩色辐射降温器结构示意图。
图2为本发明的彩色辐射降温器随着DBR厚度(λB)变化的反射光谱示意图,其中DBR的厚度表示为:d=λB/4n,其中λB为布拉格波长,n为DBR的折射率。
图3为本发明的彩色辐射降温器随着金属厚度(dAg)变化的反射光谱示意图。
附图标记
1-基底,2-金属膜层,3-电介质层A,4-电介质层B,5-电介质层C,6-电介质层D,7-电介质层E,8-电介质层F,9-电介质层G。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
一种基于塔姆结构的黄色辐射降温器,制备方法如下:
S1)选取一块经过离子束清洗后的SiO2玻璃基底层,运用电子束蒸发技术,沉积Ag金属膜层,其厚度为24nm;
S2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为30nm的SiC电介质层A,薄膜沉积前先进行15min预溅射,然后在室温下沉积SiC薄膜,最后进行高温退火处理;
S3)使用电子束蒸发技术在电介质层A上沉积厚度为56nm的MgF2电介质层B,蒸发本底真空度为2×10-4Pa;
S4)接着使用射频磁控反应溅射技术在电介质层B上沉积厚度为30nm的SiC电介质层C,溅射方法同S2;
S5)使用电子束蒸发技术在电介质层C上沉积厚度为56nm的MgF2电介质层D,蒸发方法同S3;
S6)使用射频磁控反应溅射技术在电介质膜层D上沉积厚度为52nm的SiO2电介质层E,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;
S7)使用射频磁控反应溅射技术在电介质膜层E上沉积厚度为900nm的SiN电介质层F,溅射气体和反应气体分别为高纯度的Ar气和N2气,每次实验之前先用Ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;
S8)使用射频磁控反应溅射技术在电介质膜层F上沉积厚度为85nm的SiO2电介质层G,蒸发方法同S6。
实施例2
一种基于塔姆结构的品红色辐射降温器,制备方法如下:
S1)选取一块经过离子束清洗后的SiO2玻璃基底层,运用电子束蒸发技术,沉积Ag金属膜层,其厚度为22nm;
S2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为38nm的SiC电介质层A。薄膜沉积前先进行15min预溅射,然后在室温下沉积SiC薄膜,最后进行高温退火处理;
S3)使用电子束蒸发技术在电介质层A上沉积厚度为72nm的MgF2电介质层B,蒸发本底真空度为2×10-4Pa;
S4)接着使用射频磁控反应溅射技术在电介质层B上沉积厚度为38nm的SiC电介质层C,溅射方法同S2;
S5)使用电子束蒸发技术在电介质层C上沉积厚度为72nm的MgF2电介质层D,蒸发方法同S3;
S6)使用射频磁控反应溅射技术在电介质膜层D上沉积厚度为52nm的SiO2电介质层E,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;
S7)使用射频磁控反应溅射技术在电介质膜层E上沉积厚度为900nm的SiN电介质层F,溅射气体和反应气体分别为高纯度的Ar气和N2气,每次实验之前先用Ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;
S8)使用射频磁控反应溅射技术在电介质膜层F上沉积厚度为85nm的SiO2电介质层G,蒸发方法同S6。
实施例3
一种基于塔姆结构的青色辐射降温器,制备方法如下:
S1)选取一块经过离子束清洗后的SiO2玻璃基底层,运用电子束蒸发技术,沉积Ag金属膜层,其厚度为23nm;
S2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为47nm的SiC电介质层A。薄膜沉积前先进行15min预溅射,然后在室温下沉积SiC薄膜,最后进行高温退火处理;
S3)使用电子束蒸发技术在电介质层A上沉积厚度为88nm的MgF2电介质层B,蒸发本底真空度为2×10-4Pa;
S4)接着使用射频磁控反应溅射技术在电介质层B上沉积厚度为47nm的SiC电介质层C,溅射方法同S2;
S5)使用电子束蒸发技术在电介质层C上沉积厚度为88nm的MgF2电介质层D,蒸发方法同S3;
S6)使用射频磁控反应溅射技术在电介质膜层D上沉积厚度为52nm的SiO2电介质层E,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;
S7)使用射频磁控反应溅射技术在电介质膜层E上沉积厚度为900nm的SiN电介质层F,溅射气体和反应气体分别为高纯度的Ar气和N2气,每次实验之前先用Ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;
S8)使用射频磁控反应溅射技术在电介质膜层F上沉积厚度为85nm的SiO2电介质层G,蒸发方法同S6。
在上述沉积过程中使用石英晶体监测器监测厚度。在可见光和近红外区利用分光光度计对彩色辐射降温器的反射率进行表征,该分光光度计具有非偏振光源和校准的高镜面反射率标准;在红外区,采用具有非偏振光光源并以金膜作为反射率标准的傅里叶变换红外光谱仪,对彩色辐射降温器的反射率进行表征。在该降温器背面装有电阻温度检测传感器,并与数据记录器相连接,测量该降温器的温度;使用日射强度计测量入射到降温器表面的太阳辐射照度并用数据记录器记录,其中日射强度计与彩色辐射降温器放置在同一平台上;周围环境温度使用电阻温度传感器测量,其探头需在样品附近的空气流动自由区域(样品周围的气穴除外)测量。
结合图1所示,本发明提供的这种彩色的辐射降温器,其由选择性发射器和塔姆结构组成,选择性发射器由电介质层E、F、G组成,其结构参数通过遗传算法优化得到,塔姆结构由电介质层A、B、C、D和金属膜层组成,其结构参数通过计算的最小色差值得到。
结合图2和图3彩色辐射降温器,分别随DBR(λB)和金属层厚度(dAg)变化的反射光谱所示,随着DBR厚度的增加,峰值波长向右移动,从而可以通过DBR厚度的调控,得到不同色调的颜色;随着金属层厚度的增加,峰值波长移动不大,峰值波长处对应的反射率减小,颜色变浅,从而可以通过金属层厚度的调控,得到不同纯度的颜色。因此首先固定Ag的厚度,计算随着DBR厚度的变化与标准黄色的色差值,找到最小色差值所对应的DBR厚度,然后在DBR厚度确定的基础上再计算,随着Ag厚度的变化与标准黄色的色差值,找到最小色差值对应的Ag的厚度。综上所述最优化后显示黄色的辐射降温器基底层采用500μm厚的SiO2玻璃基底层,在SiO2玻璃基底层自下而上依次沉积24nm厚的Ag金属膜层、30nm厚的SiC电介质层A、56nm厚的MgF2电介质层B、30nm厚的SiC电介质层C、56nm厚的MgF2电介质层D、52nm厚的SiO2电介质层E、900nm厚的SiN电介质层F以及85nm厚的SiO2电介质层G。同理可得到显示品红色以及青色的辐射降温器。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明性的保护范围之内的发明内容。

Claims (6)

1.一种基于塔姆结构的彩色辐射降温器,包括基底(1),其特征在于:所述基底(1)自下而上依次设置有金属膜层、分布式布拉格反射镜、选择性发射器;
其中:所述的金属膜层和分布式布拉格反射镜组成塔姆结构;分布式布拉格反射镜的厚度d、分布式布拉格反射镜的布拉格波长λB、分布式布拉格反射镜的折射率n之间的关系满足:d=λB/4n;
利用塔姆结构在分布式布拉格反射镜与金属膜层界面处激发光学塔姆态出现的反射凹峰来显色,通过调控分布式布拉格反射镜和金属膜层的厚度得到不同的颜色,并计算随着分布式布拉格反射镜和金属膜层的厚度变化的色差,得到色差最小值所对应的塔姆结构参数。
2.根据权利要求1所述的基于塔姆结构的彩色辐射降温器,其特征在于:所述基底(1)自下而上依次设置有金属膜层(2)和电介质层A(3)至电介质层G(9),其中所述金属膜层(2)与所述电介质层A(3)至所述电介质层D(6)组成塔姆结构,所述电介质层A(3)至电介质层D(6)组成分布式布拉格反射镜,所述选择性发射器由所述电介质层E(7)至所述电介质层G(9)组成。
3.根据权利要求2所述的基于塔姆结构的彩色辐射降温器,其特征在于:所述基底(1)厚度为300-3000μm。
4.根据权利要求2所述的基于塔姆结构的彩色辐射降温器,其特征在于:所述基底(1)材料为SiO2玻璃。
5.根据权利要求2所述的基于塔姆结构的彩色辐射降温器,其特征在于:所述金属膜层(2)的材料为Ag,且所述电介质层A(3)至所述电介质层D(6)的材料分别为SiC、MgF2、SiC与MgF2,材料满足在太阳波段的消光系数小,避免寄生吸热,且在大气透明窗口波段表现出辅助的热辐射特性,保证了系统的整体冷却效果。
6.根据权利要求2所述的基于塔姆结构的彩色辐射降温器,其特征在于:所述选择性发射器中的所述电介质层E(7)至所述电介质层G(9)的材料分别为SiO2、SiN和SiO2,材料满足在可见光区高透射且这两种材料都存在共振使其在8-13μm的辐射率明显提高。
CN201910404907.7A 2019-05-15 2019-05-15 一种基于塔姆结构的彩色辐射降温器 Active CN110109204B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910404907.7A CN110109204B (zh) 2019-05-15 2019-05-15 一种基于塔姆结构的彩色辐射降温器
US16/692,925 US11472935B2 (en) 2019-05-15 2019-11-22 Colored radiative cooler based on Tamm structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910404907.7A CN110109204B (zh) 2019-05-15 2019-05-15 一种基于塔姆结构的彩色辐射降温器

Publications (2)

Publication Number Publication Date
CN110109204A CN110109204A (zh) 2019-08-09
CN110109204B true CN110109204B (zh) 2021-06-04

Family

ID=67490366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910404907.7A Active CN110109204B (zh) 2019-05-15 2019-05-15 一种基于塔姆结构的彩色辐射降温器

Country Status (2)

Country Link
US (1) US11472935B2 (zh)
CN (1) CN110109204B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819941A (zh) * 2019-11-13 2020-02-21 上海卫星装备研究所 基于辅助沉积的膜层改性方法及系统
CN113035979B (zh) * 2021-03-09 2022-08-19 南京大学 用于太阳能热光伏电池的吸收-辐射器结构的制备方法
CN112984857A (zh) * 2021-03-09 2021-06-18 上海交通大学 一种具有结构色的辐射制冷多层膜结构
CN113791468B (zh) * 2021-09-15 2023-08-01 佛山纳诺特科技有限公司 彩色辐射制冷材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570378A (zh) * 2015-01-12 2015-04-29 苏州大学 一种宽带角度选择光学滤波器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108219172A (zh) 2018-02-09 2018-06-29 武汉理工大学 一种辐射降温薄膜及其制备方法
CN108901188A (zh) 2018-08-24 2018-11-27 宁波瑞凌辐射制冷科技有限公司 一种户外通讯射频基站的辐射降温装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570378A (zh) * 2015-01-12 2015-04-29 苏州大学 一种宽带角度选择光学滤波器及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
《Sputtered SiC coatings for radiative》;Afra S. Alketbi;《Journal of photonics for energy》;20181231;全文 *
Colored, Daytime Radiative Coolers with Thin-Film Resonators for Aesthetic Purposes;Gil Ju Lee;《Advanced Optical Materials》;20180707;正文第1800707(1-2页),附图1b *
Color-preserving daytime radiative cooling;Linxiao Zhu;《Applied physics letters》;20131231;全文 *
Photonic thermal management of coloured objects;Wei Li;《nature communication》;20181231;全文 *
tSelective tSelective tSelective tSelective thermal emittershermal emittershermal emittershermal emittershermal emittershermal emittershermal emitters with with with Tamm plasmon polaritonTamm plasmon polaritonTamm plasmon polaritonTamm plasmon polaritonTa;Zih-Ying;《Optics letters》;20161231;全文 *
选择性吸收/辐射元件及其在太阳能光热转换中的应用;迟克群;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20190415;正文第68-74页,附图5-9(b),5-10(b) *

Also Published As

Publication number Publication date
CN110109204A (zh) 2019-08-09
US20200362126A1 (en) 2020-11-19
US11472935B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CN110109204B (zh) 一种基于塔姆结构的彩色辐射降温器
Ma et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling
Taylor et al. Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling
Wang et al. Fabrication of VO2-based multilayer structure with variable emittance
Liu et al. Infrared chameleon-like behavior from VO2 (M) thin films prepared by transformation of metastable VO2 (B) for adaptive camouflage in both thermal atmospheric windows
Kats et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance
Granqvist et al. Surfaces for radiative cooling: Silicon monoxide films on aluminum
Kang et al. Thermochromic properties and low emissivity of ZnO: Al/VO2 double-layered films with a lowered phase transition temperature
Guo et al. A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation
Durrani et al. Dielectric/Ag/dielectric coated energy-efficient glass windows for warm climates
Yang et al. Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling
Wu et al. Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure
Fan et al. Yttria-stabilized zirconia coating for passive daytime radiative cooling in humid environment
CN103668067B (zh) 大角度多波段红外高反射膜系的制备方法
Beaini et al. Thermochromic VO2-based smart radiator devices with ultralow refractive index cavities for increased performance
Yin et al. Direct current reactive sputtering Cr–Cr2O3 cermet solar selective surfaces for solar hot water applications
Du et al. VO2-based intelligent thermal control coating for spacecraft by regulating infrared emittance
Yi et al. A new fabrication method for vanadium dioxide thin films deposited by ion beam sputtering
Taylor et al. Fabrication and characterization of furnace oxidized vanadium dioxide thin films
Chiu et al. Growth of b-axis oriented VO2 thin films on glass substrates using ZnO buffer layer
Deng et al. Temperature characteristics of Ge/ZnS one-dimension photonic crystal for infrared camouflage
CN112460836A (zh) 被动式辐射冷却复合材料薄膜
Fan et al. Tailoring the solar absorptivity of thermochromic material La0. 7Ca0. 2Sr0. 1MnO3
Tian et al. High-temperature and abrasion-resistant metal-insulator-metal metamaterials
Seo et al. Spatially-segmented colored radiative cooler with angle-robustness

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant