CN110088706A - 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法 - Google Patents

可自动校准加热不燃烧烤烟加热温度的设备、系统及方法 Download PDF

Info

Publication number
CN110088706A
CN110088706A CN201980000559.5A CN201980000559A CN110088706A CN 110088706 A CN110088706 A CN 110088706A CN 201980000559 A CN201980000559 A CN 201980000559A CN 110088706 A CN110088706 A CN 110088706A
Authority
CN
China
Prior art keywords
heating
component
temperature
equipment
pcba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980000559.5A
Other languages
English (en)
Inventor
刘秋明
向智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimree Technology Co Ltd
Original Assignee
Kimree Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimree Technology Co Ltd filed Critical Kimree Technology Co Ltd
Publication of CN110088706A publication Critical patent/CN110088706A/zh
Pending legal-status Critical Current

Links

Classifications

    • A24F47/008
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radiation Pyrometers (AREA)
  • Baking, Grill, Roasting (AREA)

Abstract

本发明属于加热不燃烧烤烟温度校准技术领域,公开了可自动校准加热不燃烧烤烟加热温度的设备,包括:红外测温组件及控制板,红外测温组件检测加热不燃烧烤烟设备或PCBA组件的加热温度输入给控制板,控制板根据加热温度值,向加热不燃烧烤烟设备或PCBA组件发出校准信号,将加热不燃烧烤烟设备或PCBA组件的加热温度校准为目标温度值。本发明还公开了应用该设备的系统及方法,能够自动对发热组件的发热进行校准,提高生产效率。

Description

可自动校准加热不燃烧烤烟加热温度的设备、系统及方法
技术领域
本发明属于加热不燃烧烤烟温度校准技术领域,尤其涉及可自动校准加热不燃烧烤烟加热温度的设备、系统及方法。
背景技术
目前应用于加热不燃烧烟具关键技术“温控技术”中的温度一致性指标受外来因素影响大,为了保持不同烟具抽吸口感的一致性,均需要进行温度校准。目前常用的校温方法:需要将每一支烟具的调温按钮设置到一定的温度,然后用手持的红外仪器测定发热组件的温度,根据实测温度再调,直至调至目标温度为止。这种手动校温方式,工序繁琐,不利于批量化生产,从而使得加热不燃烧烟具存在的温度校准耗时耗力、温度整体一致性差而难以控制实现等缺点。
技术问题
本发明实施例的目的在于提供一种可自动校准加热不燃烧烤烟加热温度的设备、系统及方法,能够自动对发热组件的发热进行校准,提高生产效率。
技术解决方案
本发明实施例是这样实现的:
可自动校准加热不燃烧烤烟加热温度的设备,包括:红外测温组件及控制板,红外测温组件检测加热不燃烧烤烟设备或PCBA组件的加热温度输入给控制板,控制板根据加热温度值,向加热不燃烧烤烟设备或PCBA组件发出校准信号,将加热不燃烧烤烟设备或PCBA组件的加热温度校准在目标温度值的阈值范围内。
其中,所述红外测温组件包括电源及与其电连接的红外探头,所述控制板包括相互连接的ACD模块和UART通信模块,所述红外探头与ACD模块连接。
其中,红外探头测量加热不燃烧烤烟设备或PCBA中加热组件的当前温度值,将温度值的模拟数据输入给ACD模块,由其转换为相应的数字数据的当前温度值数据包,UART通信模块向加热不燃烧烤烟设备或PCBA发送包含测试包、唤醒包、校准包、目标温度值数据包以及当前温度值数据包的校准信号。
其中,所述控制板还包括控制ADC模块及UART通信模块开始工作的按键模块,按键模块分别与ADC模块及UART通信模块连接。
所述的设备,还包括用于显示目标温度值、当前温度值以及UART通信模块工作状态的显示模块,显示模块分别与ADC模块及UART通信模块连接。
可自动校准加热不燃烧烤烟加热温度的系统,包括加热不燃烧烤烟设备或PCBA组件和如上任一所述设备,加热不燃烧烤烟设备或PCBA组件接收校准信号,并将加热温度校准为目标温度值。
其中,加热不燃烧烤烟设备或PCBA组件包括加热组件、UART通信模块、比较模块及存储模块,加热组件内置在加热不燃烧烤烟设备或PCBA组件内,UART通信模块与比较模块连接,比较模块与存储模块连接。
可自动校准加热不燃烧烤烟加热温度的方法,包括:
101、加热组件按照目标温度值的大小进行加热;
102、检测加热组件的发热温度,得出加热组件的当前温度值;
103、比较所述当前温度值与目标温度值的大小;
104、若两者的差值绝对值在阈值范围内,则将加热组件的阻值保存;
105、若两者的差值绝对值不在阈值范围内,调整加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存。
其中,步骤105包括:
当前温度值大于目标温度值时,则减小加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存;当前温度值小于目标温度值时,则增大加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存。
其中,步骤101之前还包括:
通过自定义UART通信协议;
向加热不燃烧烤烟设备或PCBA发送测试包,以测试与加热不燃烧烤烟设备或PCBA的通信连通性;
向加热不燃烧烤烟设备或PCBA发送唤醒包,启动加热不燃烧烤烟设备或PCBA。
其中,向加热不燃烧烤烟设备或PCBA发送唤醒包之后,还包括:
向加热不燃烧烤烟设备或PCBA发送校准包,以校准常温下加热组件的阻值、进入校准模式;
向加热不燃烧烤烟设备或PCBA发送目标温度值数据包,以使加热组件按照目标温度值的大小进行加热。
其中,向加热不燃烧烤烟设备或PCBA发送测试包、唤醒包、校准包及目标温度值数据包后,分别等待数秒或数十秒时间。
其中,步骤102中包括:通过自定义UART通信协议,向加热不燃烧烤烟设备或PCBA发送当前温度值数据包。
其中,自定义UART通信协议的数据包结构依次包括二字节数的包头、一字节数的CMD、二字节数的有效数据段和一字节数的校验位。
其中,加热不燃烧烤烟设备或PCBA收到自定义UART通信协议的数据包后,对数据包进行解析,并执行相应操作,直至完成校温。
其中,减小或增大加热组件的阻值后,等待数秒或数十秒时间,再对加热组件的温度进行测量。
其中,通过红外测温组件对发热组件的发热温度进行检测。
有益效果
本发明实施例通过对发热组件发热温度进行实时测量,并与目标温度实时对比,通过发送携带实时温度、目标温度及调整策略等信息的自定义UART通信数据包,由PCBA或加热不燃烧烟具接收并解析该数据包,进行自动校准,直至完成校温,这样整个校温过程不再需要人工调节,提高了温控模块的校准效率;本发明提供的红外自动较温设备,适用于各类型的加热不燃烧烤烟设备,便于自动化生产,省时省力,校准温度准确,提高生产效率。
附图说明
图1是本发明的温度校准设备及系统框图;
图2是本发明的温度校准的方法流程图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述:
加热不燃烧烟具尤为重要的技术之一便是“温控”,温控模块对温度控制的好坏直接决定了一支烟的抽吸体验,而用户体验是一个产品核心竞争力的重要体现,因此不断优化温度控制是加热不燃烧烟具发展的重要方向,本项目针对目前加热不燃烧烟具存在的温度校准耗时耗力、温度整体一致性差而难以控制实现而设计研发了一套“红外温度自动校准设备”以及自动校准方法。
图1中,本发明的可自动校准加热不燃烧烤烟加热温度的设备,包括:红外测温组件及控制板,红外测温组件检测加热不燃烧烤烟设备或PCBA组件的加热温度输入给控制板,控制板根据加热温度值,向加热不燃烧烤烟设备或PCBA组件发出校准信号,将加热不燃烧烤烟设备或PCBA组件的加热温度校准在目标温度值的阈值范围内。本发明中阈值在5度的范围或者更低的3度范围内。本发明采用Arduino控制板,也可以是其他控制板或模块,所述红外测温组件包括电源及与其电连接的红外探头,所述控制板包括相互连接的ACD模块和UART通信模块,所述红外探头与ACD模块连接;红外探头测量加热不燃烧烤烟设备或PCBA中加热组件的当前温度值,将温度值的模拟数据输入给ACD模块,尤其转换为相应的数字数据的当前温度值数据包,UART通信模块向加热不燃烧烤烟设备或PCBA发送测试包、唤醒包、校准包、目标温度值数据包以及当前温度值数据包。
其中,所述控制板还包括控制ADC模块及UART通信模块开始工作的按键模块,按键模块分别与ADC模块及UART通信模块连接。
所述的设备,还包括用于显示目标温度值、当前温度值以及UART通信模块工作状态的显示模块,显示模块分别与ADC模块及UART通信模块连接。
ADC模块及UART通信模块会随着转换完成而自动关闭,显示模块可以是LCD显示屏,实时显示当前温度和目标温度,且可通过键盘对目标温度进行调整,简化设备和操作,使得整个设备可以离线进行操作。
关于红外测温组件:
自然界中,一切温度高于零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
本系统所用的红外测温组件由光学系统、光电探测器、信号放大器及信号处理、信号输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号通过信号输出部分输出。此数据是与其连接的下一模块最为重要的数据。
关于Arduino控制板:
Arduino控制板由按键模块、UART通信模块、ADC模块及其主控组成:按键模块主要功能是控制数据采集及发送的开始,按下按键ADC模块及UART通信模块开始工作;ADC模块将红外测温组件输出的电信号(模拟电压信号)转换为数字信号,经由红外组件给定的算法转化为温度数据;UART通信模块按照一定的数据格式(自定通信协议)将温度数据发送给从机设备(PCBA或产品)使其执行与命令相对应的操作。
ADC模块数据转换:
红外组件输出的电信号的范围为0.00V-5.00V对应温度为0℃至500℃,Arduino控制板的ADC模块的参考电压为5.00V,位数为十位,设红外设备输出的电压为V,参考电压为V0,ADC模块的输出为D,其转化为温度的公式如下:
UART通信协议:
UART通信数据包格式如表2-1所示。
表2-1数据包格式
数据段 包头 CMD 数据 校验位
字节数 2 1 2 1
注:一个字节代表八位二进制数
具体通信协议如表2-2所示。
表2-2通信协议
注:H代表温度数据高八位,L代表温度数据的低八位
加热不燃烧烤烟设备或PCBA收到Arduino发送的数据后按照给定的通信协议进行数据解包并执行相应操作,直至完成校温。
本发明的UART通信模块,可以是其他类型的通信模块(包括有线和无线类型),能够完成数据信号传输及解析即可。
在图1中,本发明提供了可自动校准加热不燃烧烤烟加热温度的系统,包括加热不燃烧烤烟设备或PCBA组件和上述可自动校准加热不燃烧烤烟加热温度的设备,加热不燃烧烤烟设备或PCBA组件接收校准信号,并将加热温度校准为目标温度值。其中,加热不燃烧烤烟设备或PCBA组件包括加热组件、UART通信模块、比较模块及存储模块,加热组件内置在加热不燃烧烤烟设备或PCBA组件内,UART通信模块与比较模块连接,比较模块与存储模块连接。
系统中,红外探测组件通过红外探头检测加热组件的温度,控制板根据当前检测到的温度,通过UART通信模块向加热不燃烧烤烟设备或PCBA组件发送校准信号,校准信号中包括当前温度值及目标温度值及校准信息等数据包,加热不燃烧烤烟设备或PCBA组件的UART通信模块接收并解析这些数据包,执行相应的操作,调整加热组件的阻值,使得加热温度趋于目标温度值,直至调整完毕,这样就实现了自动校准功能。
如图2所示,可自动校准加热不燃烧烤烟加热温度的方法,包括:
101、加热组件按照目标温度值的大小进行加热;
102、检测加热组件的发热温度,得出加热组件的当前温度值;通过自定义UART通信协议,向加热不燃烧烤烟设备或PCBA发送当前温度值数据包。
103、比较所述当前温度值与目标温度值的大小;
104、若两者的差值绝对值在阈值范围内,则将加热组件的阻值保存;
105、若两者的差值绝对值不在阈值范围内,当前温度值大于目标温度值时,则减小加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存;当前温度值小于目标温度值时,则增大加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存。这里可以按步进方式减小或增大加热组件的阻值,阻值的保存可以存储在flash中或其他的存储介质中,减小或增大加热组件的阻值后,等待数秒或数十秒时间,再对加热组件的温度进行测量,步进等待时间一般为几秒钟,阈值在5度的范围或者更低的3度范围内。
其中,步骤101之前还包括:
通过自定义UART通信协议;
向加热不燃烧烤烟设备或PCBA发送测试包,以测试与加热不燃烧烤烟设备或PCBA的通信连通性;
向加热不燃烧烤烟设备或PCBA发送唤醒包,相当于就是唤醒烤烟设备或者PCBA组件启动;
向加热不燃烧烤烟设备或PCBA发送校准包,以校准常温下加热组件的阻值、进入校准模式;
向加热不燃烧烤烟设备或PCBA发送目标温度值数据包,以使加热组件按照目标温度值的大小进行加热。
上述向加热不燃烧烤烟设备或PCBA发送测试包、唤醒包、校准包及目标温度值数据包后,分别等待数秒或数十秒时间,本发明中以1秒、1.5秒、0.5秒及20秒为例,等待时间可以根据实际情况自动设定。
本发明中的自定义UART通信协议的数据包结构依次包括二字节数的包头、一字节数的CMD、二字节数的有效数据段和一字节数的校验位,详见前文数据包表格。
加热不燃烧烤烟设备或PCBA收到自定义UART通信协议的各种数据包后,对数据包进行解析,并执行相应操作,直至完成校温。
本发明中,是通过红外测温组件对发热组件的发热温度进行检测。
本发明的实施例中,通过对发热组件发热温度进行实时测量,并与目标温度实时对比,通过发送携带实时温度、目标温度及调整策略等信息的自定义UART通信数据包,由PCBA或加热不燃烧烟具接收并解析该数据包,进行自动校准,直至完成校温,这样整个校温过程不再需要人工调节,提高了温控模块的校准效率;本发明提供的红外自动较温设备,适用于各类型的加热不燃烧烤烟设备,便于自动化生产,省时省力,校准温度准确,提高生产效率。
以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明的实施方式
参见本发明的最佳实施方式。
工业实用性
本发明提供了提供一种可自动校准加热不燃烧烤烟加热温度的设备、系统及方法,能够自动对发热组件的发热进行校准,提高生产效率。

Claims (17)

1.可自动校准加热不燃烧烤烟加热温度的设备,其特征在于,包括:红外测温组件及控制板,红外测温组件检测加热不燃烧烤烟设备或PCBA组件的加热温度输入给控制板,控制板根据加热温度值,向加热不燃烧烤烟设备或PCBA组件发出校准信号,将加热不燃烧烤烟设备或PCBA组件的加热温度校准在目标温度值的阈值范围内。
2.根据权利要求1所述的设备,其特征在于:所述红外测温组件包括电源及与其电连接的红外探头,所述控制板包括相互连接的ACD模块和UART通信模块,所述红外探头与ACD模块连接。
3.根据权利要求2所述的设备,其特征在于:红外探头测量加热不燃烧烤烟设备或PCBA中加热组件的当前温度值,将温度值的模拟数据输入给ACD模块,由其转换为相应的数字数据的当前温度值数据包,UART通信模块向加热不燃烧烤烟设备或PCBA发送包含测试包、唤醒包、校准包、目标温度值数据包以及当前温度值数据包的校准信号。
4.根据权利要求2所述的设备,其特征在于:所述控制板还包括控制ADC模块及UART通信模块开始工作的按键模块,按键模块分别与ADC模块及UART通信模块连接。
5.根据权利要求2所述的设备,其特征在于:还包括用于显示目标温度值、当前温度值以及UART通信模块工作状态的显示模块,显示模块分别与ADC模块及UART通信模块连接。
6.可自动校准加热不燃烧烤烟加热温度的系统,其特征在于:包括加热不燃烧烤烟设备或PCBA组件和权利要求1-5任一所述设备,加热不燃烧烤烟设备或PCBA组件接收校准信号,并将加热温度校准为目标温度值。
7.根据权利要求6所述的系统,其特征在于:加热不燃烧烤烟设备或PCBA组件包括加热组件、UART通信模块、比较模块及存储模块,加热组件内置在加热不燃烧烤烟设备或PCBA组件内,UART通信模块与比较模块连接,比较模块与存储模块连接。
8.可自动校准加热不燃烧烤烟加热温度的方法,其特征在于,包括:
101、加热组件按照目标温度值的大小进行加热;
102、检测加热组件的发热温度,得出加热组件的当前温度值;
103、比较所述当前温度值与目标温度值的大小;
104、若两者的差值绝对值在阈值范围内,则将加热组件的阻值保存;
105、若两者的差值绝对值不在阈值范围内,调整加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存。
9.根据权利要求8所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于,步骤105包括:
当前温度值大于目标温度值时,则减小加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存;当前温度值小于目标温度值时,则增大加热组件的阻值,并继续测量当前温度值,直至两者的差值在阈值范围内,将加热组件的阻值保存。
10.根据权利要求8所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于,步骤101之前还包括:
通过自定义UART通信协议;
向加热不燃烧烤烟设备或PCBA发送测试包,以测试与加热不燃烧烤烟设备或PCBA的通信连通性;
向加热不燃烧烤烟设备或PCBA发送唤醒包,启动加热不燃烧烤烟设备或PCBA。
11.根据权利要求10所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于,向加热不燃烧烤烟设备或PCBA发送唤醒包之后,还包括:
向加热不燃烧烤烟设备或PCBA发送校准包,以校准常温下加热组件的阻值、进入校准模式;
向加热不燃烧烤烟设备或PCBA发送目标温度值数据包,以使加热组件按照目标温度值的大小进行加热。
12.根据权利要求11所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于:向加热不燃烧烤烟设备或PCBA发送测试包、唤醒包、校准包及目标温度值数据包后,分别等待数秒或数十秒时间。
13.根据权利要求10所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于,步骤102中包括:通过自定义UART通信协议,向加热不燃烧烤烟设备或PCBA发送当前温度值数据包。
14.根据权利要求10或13所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于:自定义UART通信协议的数据包结构依次包括二字节数的包头、一字节数的CMD、二字节数的有效数据段和一字节数的校验位。
15.根据权利要求14所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于:加热不燃烧烤烟设备或PCBA收到自定义UART通信协议的数据包后,对数据包进行解析,并执行相应操作,直至完成校温。
16.根据权利要求9所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于:减小或增大加热组件的阻值后,等待数秒或数十秒时间,再对加热组件的温度进行测量。
17.根据权利要求8所述的可自动校准加热不燃烧烤烟加热温度的方法,其特征在于:通过红外测温组件对发热组件的发热温度进行检测。
CN201980000559.5A 2019-03-20 2019-03-20 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法 Pending CN110088706A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078919 WO2020186485A1 (zh) 2019-03-20 2019-03-20 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法

Publications (1)

Publication Number Publication Date
CN110088706A true CN110088706A (zh) 2019-08-02

Family

ID=67424449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980000559.5A Pending CN110088706A (zh) 2019-03-20 2019-03-20 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法

Country Status (2)

Country Link
CN (1) CN110088706A (zh)
WO (1) WO2020186485A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111528532A (zh) * 2020-04-24 2020-08-14 云南中烟工业有限责任公司 一种加热不燃烧卷烟装置的温控系统及其温度控制方法
WO2020186485A1 (zh) * 2019-03-20 2020-09-24 惠州市吉瑞科技有限公司深圳分公司 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法
CN112790447A (zh) * 2021-01-27 2021-05-14 深圳市太美亚电子科技有限公司 一种非燃烧电子烟自动温度校准系统及方法
CN114158791A (zh) * 2020-09-10 2022-03-11 常州市派腾电子技术服务有限公司 产品测温方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109968A (zh) * 2007-08-10 2008-01-23 杭州亿恒科技有限公司 可编程温湿度控制器
CN101691939A (zh) * 2009-09-03 2010-04-07 海信科龙电器股份有限公司 一种智能双模切换空调
CN102749368A (zh) * 2012-07-16 2012-10-24 天津理工大学 一种溶解氧测量系统
CN102980274A (zh) * 2012-12-18 2013-03-20 华为技术有限公司 精密空调系统风机控制方法、装置及精密空调系统
CN103256687A (zh) * 2013-04-28 2013-08-21 广东美的制冷设备有限公司 空调器的自适应控制方法和装置
CN103955242A (zh) * 2013-09-30 2014-07-30 珠海中慧微电子有限公司 低温环境下对sim卡自动加热的gprs模块及温度控制方法
CN204682527U (zh) * 2015-01-22 2015-10-07 卓尔悦(常州)电子科技有限公司 温控系统及含有温控系统的电子烟
CN204743565U (zh) * 2015-07-06 2015-11-11 四川建筑职业技术学院 一种智能型加热保温杯
CN107367954A (zh) * 2017-08-28 2017-11-21 苏州工业职业技术学院 一种基于Arduino的智慧家居环境参数控制系统
CN109164851A (zh) * 2018-11-13 2019-01-08 深圳市康柏特科技开发有限公司 电阻类发热设备的温控自动校正设备及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136304B (zh) * 2014-05-26 2019-03-05 北京北方华创微电子装备有限公司 温度校准方法及系统
CN206209308U (zh) * 2016-11-04 2017-05-31 广东石油化工学院 多功能智能家居控制模拟系统
WO2020186485A1 (zh) * 2019-03-20 2020-09-24 惠州市吉瑞科技有限公司深圳分公司 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109968A (zh) * 2007-08-10 2008-01-23 杭州亿恒科技有限公司 可编程温湿度控制器
CN101691939A (zh) * 2009-09-03 2010-04-07 海信科龙电器股份有限公司 一种智能双模切换空调
CN102749368A (zh) * 2012-07-16 2012-10-24 天津理工大学 一种溶解氧测量系统
CN102980274A (zh) * 2012-12-18 2013-03-20 华为技术有限公司 精密空调系统风机控制方法、装置及精密空调系统
CN103256687A (zh) * 2013-04-28 2013-08-21 广东美的制冷设备有限公司 空调器的自适应控制方法和装置
CN103955242A (zh) * 2013-09-30 2014-07-30 珠海中慧微电子有限公司 低温环境下对sim卡自动加热的gprs模块及温度控制方法
CN204682527U (zh) * 2015-01-22 2015-10-07 卓尔悦(常州)电子科技有限公司 温控系统及含有温控系统的电子烟
CN204743565U (zh) * 2015-07-06 2015-11-11 四川建筑职业技术学院 一种智能型加热保温杯
CN107367954A (zh) * 2017-08-28 2017-11-21 苏州工业职业技术学院 一种基于Arduino的智慧家居环境参数控制系统
CN109164851A (zh) * 2018-11-13 2019-01-08 深圳市康柏特科技开发有限公司 电阻类发热设备的温控自动校正设备及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
文常保等: "具有液气转换功能的传感器恒温实验系统", 《实验技术与管理》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020186485A1 (zh) * 2019-03-20 2020-09-24 惠州市吉瑞科技有限公司深圳分公司 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法
CN111528532A (zh) * 2020-04-24 2020-08-14 云南中烟工业有限责任公司 一种加热不燃烧卷烟装置的温控系统及其温度控制方法
CN114158791A (zh) * 2020-09-10 2022-03-11 常州市派腾电子技术服务有限公司 产品测温方法及装置
CN112790447A (zh) * 2021-01-27 2021-05-14 深圳市太美亚电子科技有限公司 一种非燃烧电子烟自动温度校准系统及方法

Also Published As

Publication number Publication date
WO2020186485A1 (zh) 2020-09-24

Similar Documents

Publication Publication Date Title
CN110088706A (zh) 可自动校准加热不燃烧烤烟加热温度的设备、系统及方法
CN102374902B (zh) 一种提高辐射温度计测温准确度的量子论修正方法
CN104457817B (zh) 一种单芯片集成的传感器信号调理电路
CN101504552B (zh) 温度校准系统及方法
CN212645914U (zh) 黑体辐射装置及测温系统
CN109164851A (zh) 电阻类发热设备的温控自动校正设备及方法
Adi et al. Performance evaluation WPAN of RN-42 bluetooth based (802.15. 1) for sending the multi-sensor LM35 data temperature and raspBerry pi 3 Model B for the database and internet gateway
CN112754084A (zh) 超前触发的烟具加热控制方法
CN108760082A (zh) 一种智能手机体温测试方法及系统
CN106131992A (zh) 具有声控功能的智能微波炉
US20160182057A1 (en) Slow-clock calibration method and unit, clock circuit, and mobile communication terminal
CN103092815B (zh) 对监测装置中的传递函数进行校准的方法
CN107192464A (zh) 一种长波光导红外探测器非均匀性校正电路
CN114073412A (zh) 温度检测电路、方法及烹饪器具
Peng et al. Industrial Temperature Monitoring system design based on zigbee and infrared temperature Sensing
CN107368128A (zh) 一种调整温场温度的方法及系统
CN101658355B (zh) 一种直发器温度校准装置与方法
US20170295453A1 (en) User access to wireless low energy device
CN102727189A (zh) 一种红外体温计测量方法
CN102338663A (zh) 无线色温测量系统及其方法
CN111338264B (zh) 电器自动设置参数的方法及电器
CN103746720A (zh) 无线通信模块调整系统及其调整方法
US20220381628A1 (en) Method of Calibrating Temperature Sensor
CN111938420B (zh) 一种湿度控制系统、控制方法及蒸汽烹饪装置
CN208043251U (zh) 一种校验红外耳温计的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802

RJ01 Rejection of invention patent application after publication