CN110085891B - 燃料电池的电堆入口空气压力调节方法及相关装置 - Google Patents

燃料电池的电堆入口空气压力调节方法及相关装置 Download PDF

Info

Publication number
CN110085891B
CN110085891B CN201910576491.7A CN201910576491A CN110085891B CN 110085891 B CN110085891 B CN 110085891B CN 201910576491 A CN201910576491 A CN 201910576491A CN 110085891 B CN110085891 B CN 110085891B
Authority
CN
China
Prior art keywords
electronic throttle
pressure
pile
air pressure
entrance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910576491.7A
Other languages
English (en)
Other versions
CN110085891A (zh
Inventor
江楠
鹿文慧
胡金金
王文霞
卢洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weichai Power Co Ltd
Original Assignee
Weichai Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weichai Power Co Ltd filed Critical Weichai Power Co Ltd
Priority to CN201910576491.7A priority Critical patent/CN110085891B/zh
Publication of CN110085891A publication Critical patent/CN110085891A/zh
Application granted granted Critical
Publication of CN110085891B publication Critical patent/CN110085891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供一种燃料电池的电堆入口压力调节方法、装置、燃料电池控制器、可读存储介质和燃料电池车辆,属于燃料电池技术领域,方法包括先基于模型前馈控制方法,控制电子节气门的开度,即控制电堆入口的空气压力;然后通过PID控制方法,对电子节气门的开度进行修正,即修正电堆入口的空气压力。在基于模型前馈控制方法控制电堆入口的空气压力时,会将空气流量考虑进来,降低空气流量对空气压力调节的干扰。因此,本发明基于模型前馈控制和PID控制结合方法,既保证了空气压力调节的响应性,又保证了调节的精度,控制效果较好。进而提高了燃料电池电力输出响应性和使用寿命。

Description

燃料电池的电堆入口空气压力调节方法及相关装置
技术领域
本发明涉及燃料电池技术领域,更具体地说,涉及一种燃料电池的电堆入口空气压力调节方法、装置、燃料电池控制器、可读存储介质和燃料电池车辆。
背景技术
燃料电池是一种把燃料所具有的化学能转换成电能的化学装置。燃料电池用燃料和氧气作为原料,没有机械传动部件,故没有噪声污染,排放出的有害气体极少。因此,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。
图1示出了燃料电池空气支路结构图。燃料电池发电需要电堆入口具有足够的空气流量和特定的空气压力。通过电动空压机来调节电堆入口的空气流量;通过电子节气门来调节电堆入口的空气压力。目前空气流量和空气压力调节方式均是通过PID控制,但是,无论电动空压机还是电子节气门的调节,均会影响到电堆入口的空气压力和空气流量。因此,通过电子节气门的PID控制方式,调节电堆入口的空气压力,很难达到空气压力的稳定。
为了消除电堆入口的空气压力调节过程中,空气流量带来的干扰,PID控制必须要设计多组P和I参数来满足多条件多工况的控制,这样导致标定工作量较大。因此,现在亟需一种新的电堆入口空气压力调节方法,以提高压力控制稳定性。
发明内容
有鉴于此,本发明提出一种燃料电池的电堆入口空气压力调节方法、装置、燃料电池控制器、可读存储介质和燃料电池车辆,欲实现提高电堆入口空气压力控制稳定性的目的。
为了实现上述目的,现提出的方案如下:
一种燃料电池的电堆入口空气压力调节方法,包括:
根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度;
将包含所述目标开度的第一调节指令发送至所述电子节气门的控制器;
将所述设定空气压力与所述电堆入口的实际空气压力的差值,作为PID控制模块的输入,得到开度修正值;
将包含所述开度修正值的第二调节指令发送至所述电子节气门的控制器。
可选的,所述根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度的步骤,包括:
根据电堆入口的实际空气流量、电堆阴极通道内温度和湿度,计算得到电子节气门的入口空气流量;
对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量;
将所述标准状态空气流量减去所述电子节气门的漏气流量,得到通过空气流量;
将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
根据所述后前压比、所述通过空气流量、以及预先标定得到的电子节气门后前压比、空气流量和开度的对应关系,匹配得到所述电子节气门的目标开度。
可选的,所述对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量的步骤,具体包括:
将所述电子节气门入口的实际温度除以标准温度然后开方,得到温度修正系数;
将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
将所述后前压比除以标准后前压比然后开方,得到压力修正系数;
将电子节气门入口的实际空气流量除以所述温度修正系数和所述压力修正系数的乘积,得到标准状态空气流量。
一种燃料电池的电堆入口空气压力调节装置,包括:
目标开度计算单元,用于根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度;
第一调节单元,用于将包含所述目标开度的第一调节指令发送至所述电子节气门的控制器;
开度修正单元,用于将所述设定空气压力与所述电堆入口的实际空气压力的差值,作为PID控制模块的输入,得到开度修正值;
第二调节单元,用于将包含所述开度修正值的第二调节指令发送至所述电子节气门的控制器。
可选的,所述目标开度计算单元,包括:
入口空气流量计算子单元,用于根据电堆入口的实际空气流量、电堆阴极通道内温度和湿度,计算得到电子节气门的入口空气流量;
空气流量修正子单元,用于对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量;
通过空气流量计算子单元,用于将所述标准状态空气流量减去所述电子节气门的漏气流量,得到通过空气流量;
入口空气压力计算子单元,用于将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
后前压比计算子单元,用于将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
目标开度匹配子单元,用于根据所述后前压比、所述通过空气流量、以及预先标定得到的电子节气门后前压比、空气流量和开度的对应关系,匹配得到所述电子节气门的目标开度。
可选的,所述空气流量修正子单元,具体包括:
温度修正系数计算模块,用于将所述电子节气门入口的实际温度除以标准温度然后开方,得到温度修正系数;
入口空气压力计算模块,用于将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
后前压比计算模块,用于将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
压力修正系数模块,用于将所述后前压比除以标准后前压比然后开方,得到压力修正系数;
标准状态空气流量计算模块,用于将电子节气门入口的实际空气流量除以所述温度修正系数和所述压力修正系数的乘积,得到标准状态空气流量。
一种可读存储介质,其上存储有程序,所述程序被处理器执行时,实现上述任意一种燃料电池的电堆入口空气压力调节方法的各个步骤。
一种燃料电池控制器,包括存储器和处理器,其特征在于,
所述存储器,用于存储程序;
所述处理器,用于执行所述程序,实现上述任意一种燃料电池的电堆入口空气压力调节方法的各个步骤。
一种车辆,包括燃料电池和上述燃料电池控制器。
与现有技术相比,本发明的技术方案具有以下优点:
上述技术方案提供的一种燃料电池的电堆入口压力调节方法,先基于模型前馈控制方法,控制电子节气门的开度,即控制电堆入口的空气压力;然后通过PID控制方法,对电子节气门的开度进行修正,即修正电堆入口的空气压力。在基于模型前馈控制方法控制电堆入口的空气压力时,会将空气流量考虑进来,降低空气流量对空气压力调节的干扰。因此,本发明基于模型前馈控制和PID控制结合方法,既保证了空气压力调节的响应性,又保证了调节的精度,控制效果较好。进而提高了燃料电池电力输出响应性和使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为燃料电池空气支路结构图;
图2为本发明实施例提供的一种燃料电池的电堆入口空气压力调节方法的流程图;
图3为本发明实施例提供的模型前馈控制方法的流程图;
图4为本发明实施例提供的一种燃料电池的电堆入口空气压力调节装置的逻辑结构示意图;
图5为本发明实施例提供的燃料电池控制器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例提供了一种燃料电池的电堆入口空气压力调节方法,参见图2,该方法包括:
S11:根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度。
电堆是燃料电池的反应核心,由多个单体电池以串联方式层叠组合而成。电堆入口的实际空气流量获取,可以通过在电堆入口设置质量流量计进行实时采集得到。也可以根据电动空压机上游的质量流量计采集的数据转换得到,具体的,可以将质量流量计采集的空气流量减去其所在位置与电堆入口之前泄漏的空气流量,得到电堆入口的实际空气流量。
电堆入口的设定空气压力,就是需要调节到的目标空气压力。在通过调节电子节气门控制电堆入口的空气压力时,将电堆入口的实际空气流量考虑进来,降低了空气流量对空气压力调节的干扰。
S12:将包含电子节气门的目标开度的第一调节指令发送至电子节气门的控制器。
电子节气门的控制器在接收到第一调节指令后,将电子节气门的开度调节到目标开度。调节电子节气门的开度,可以间接控制电堆入口的空气压力。
S13:将电堆入口的设定空气压力与实际空气压力的差值,作为PID控制模块的输入,得到开度修正值。
在调节电子节气门的开度为目标开度后。通过PID控制模块对电堆入口的空气压力进行微调,保证了空气压力控制的精度。PID控制模块根据电堆入口的设定空气压力与实际空气压力的差值大小,决定开度修正值的大小,并根据设定空气压力与实际空气压力的大小,决定对电子节气门的开度是增大还是减小。具体的,在实际空气压力大于设定空气压力时,确定将电子节气门的开度增大;在实际空气压力小于设定空气压力时,确定将电子节气门的开度减小。
在本实施例中,通过压力传感器采集电堆入口的实际空气压力。
S14:将包含开度修正值的第二调节指令发送至电子节气门的控制器。
电子节气门的控制器在接收到第二调节指令后,根据开度修正值对电子节气门的开度进行修正,保证了空气压力控制的精度。
本实施例提供的燃料电池的电堆入口压力调节方法,通过模型前馈控制和PID控制相结合,既保证了空气压力调节的响应性,又保证了调节的精度,控制效果较好。进而提高了燃料电池电力输出响应性和使用寿命。
参见图3,根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度的过程,即模型前馈控制方法,具体包括步骤:
S111:根据电堆入口的实际空气流量、电堆阴极通道内温度和湿度,计算得到电子节气门的入口空气流量。
电堆阴极通道内温度和湿度会影响阴极反应效率,因此,直接关系到阴极通道内消耗的空气流量。预先通过实验方式,得到不同温度和湿度下,通过阴极通道后空气流量的变化量。在本实施例中将电堆入口的温、压、湿一体传感器采集的温度和湿度,作为电堆阴极通道内温度和湿度,匹配得到对应的空气流量变化量,然后将电堆入口的实际空气流量加上空气流量的变化量,得到电子节气门的入口空气流量。
需要说明的是,在电堆阴极会消耗氧气,且生成水蒸气,生成的水蒸气不一定比消耗的氧气少,因此,空气流量变化量可能是正值也可能是负值。空气流量变化量。
S112:对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量。
具体的,将电子节气门入口的实际温度除以标准温度然后开方,得到温度修正系数。电子节气门后前压比、空气流量和开度的对应关系,是在标准温度和标准压力下进行标定得到,具体的,在控制空气压力和温度不变情况下,将电子节气门后前压比和电子节气门的开度作为自变量,将流经电子节气门的空气流量作为因变量,得到电子节气门后前压比、空气流量和开度的对应关系。
将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力。在本实施例中,通过预先试验的方法,得到电堆入口的不同空气压力与电堆中压力损失值的对应关系;在空气压力调节过程中,匹配得到与电堆入口的设定空气压力对应的压力损失值,进而计算得到节气门的入口空气压力。
将电子节气门出口的实际空气压力除以电子节气门入口的实际空气压力,得到后前压比。电子节气门出口的实际空气压力,就是环境压力。通过车辆的环境压力传感器可以采集到环境压力。
将后前压比除以标准后前压比然后开方,得到压力修正系数。标准后前压比,就是空气支路内标准压力除以标准环境压力的比值。
将电子节气门入口的实际空气流量除以温度修正系数和压力修正系数的乘积,得到标准状态空气流量。
S113:将标准状态空气流量减去电子节气门的漏气流量,得到通过空气流量。
通过实验方式,记录在不同标准状态空气流量经过电子节气门时,电子节气门的漏气流量,并建立两者之间的对应关系;在压力调节过程中,匹配得到与标准状态空气流量对应的电子节气门的漏气流量,进而计算得到通过空气流量。
S114:根据电子节气门的后前压比,通过空气流量,以及预先标定得到的电子节气门后前压比、空气流量和开度的对应关系,匹配得到电子节气门的目标开度。
预先标定电子节气门后前压比、空气流量和开度的对应关系时,是保证电堆入口的空气压力和温度保持不变得到的。标定过程就是通过实验方式,得到参数之间对应关系的过程。在调节空气压力过程中,匹配得到与电子节气门的后前压比和通过空气流量对应的电子节气门开度,作为目标开度。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。
下述为本发明装置实施例,可以用于执行本发明方法实施例。对于本发明装置实施例中未披露的细节,请参照本发明方法实施例。
本实施例提供了一种燃料电池的电堆入口空气压力调节装置,参见图4,该装置可以包括目标开度计算单元41、第一调节单元42、开度修正单元43和第二调节单元44。其中,
目标开度计算单元41,用于根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度。
第一调节单元42,用于将包含目标开度的第一调节指令发送至电子节气门的控制器。电子节气门的控制器在接收到第一调节指令后,将电子节气门的开度调节到目标开度。
开度修正单元43,用于将电堆入口的设定空气压力与实际空气压力的差值,作为PID控制模块的输入,得到开度修正值。
第二调节单元44,用于将包含开度修正值的第二调节指令发送至电子节气门的控制。电子节气门的控制器在接收到第二调节指令后,根据开度修正值对电子节气门的开度进行修正,保证了空气压力控制的精度。
本实施例提供的燃料电池的电堆入口压力调节装置,通过模型前馈控制和PID控制相结合,既保证了空气压力调节的响应性,又保证了调节的精度,控制效果较好。进而提高了燃料电池电力输出响应性和使用寿命。
可选的,目标开度计算单元41,包括入口空气流量计算子单元、空气流量修正子单元、通过空气流量计算子单元、入口空气压力计算子单元、后前压比计算子单元和目标开度匹配子单元。其中,
入口空气流量计算子单元,用于根据电堆入口的实际空气流量、电堆阴极通道内温度和湿度,计算得到电子节气门的入口空气流量。
空气流量修正子单元,用于对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量。
通过空气流量计算子单元,用于将标准状态空气流量减去电子节气门的漏气流量,得到通过空气流量。
入口空气压力计算子单元,用于将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力。
后前压比计算子单元,用于将电子节气门出口的实际空气压力除以电子节气门入口的实际空气压力,得到后前压比。
目标开度匹配子单元,用于根据电子节气门的后前压比、通过空气流量、以及预先标定得到的电子节气门后前压比、空气流量和开度的对应关系,匹配得到电子节气门的目标开度。
空气流量修正子单元,具体包括温度修正系数计算模块、入口空气压力计算模块、后前压比计算模块、压力修正系数模块和标准状态空气流量计算模块。其中,
温度修正系数计算模块,用于将电子节气门入口的实际温度除以标准温度然后开方,得到温度修正系数。
入口空气压力计算模块,用于将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力。
后前压比计算模块,用于将电子节气门出口的实际空气压力除以电子节气门入口的实际空气压力,得到后前压比。
压力修正系数模块,用于将后前压比除以标准后前压比然后开方,得到压力修正系数。
标准状态空气流量计算模块,用于将电子节气门入口的实际空气流量除以温度修正系数和压力修正系数的乘积,得到标准状态空气流量。
本发明实施例提供的燃料电池的电堆入口空气压力调节装置可应用于燃料电池控制器。参见图5 ,为本发明燃料电池控制器的较佳实施例的示意图。燃料电池控制器的硬件结构可以包括:至少一个处理器51,至少一个通信接口52,至少一个存储器53和至少一个通信总线54;
在本发明实施例中,处理器51、通信接口52、存储器53、通信总线54的数量为至少一个,且处理器51、通信接口52、存储器53通过通信总线54完成相互间的通信;
处理器51在一些实施例中可以是一个CPU(Central Processing Unit,中央处理器),或者是ASIC(Application Specific Integrated Circuit,特定集成电路),或者是被配置成实施本发明实施例的一个或多个集成电路等。
通信接口52可以包括标准的有线接口、无线接口(如WI-FI接口)。通常用于在燃料电池控制器与其他电子设备或系统之间建立通信连接。
存储器53包括至少一种类型的可读存储介质。可读存储介质可以为如闪存、硬盘、多媒体卡、卡型存储器等NVM(non-volatile memory,非易失性存储器)。可读存储介质还可以是高速RAM(random access memory,随机存取存储器)存储器。可读存储介质在一些实施例中可以是数据校验设备的内部存储单元;在另一些实施例中,可读存储介质还可以是数据校验设备的外部存储设备。
其中,存储器53存储有计算机程序,处理器51可调用存储器53存储的计算机程序,所述计算机程序用于:
根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度;
将包含目标开度的第一调节指令发送至电子节气门的控制器;
将电堆入口的设定空气压力与实际空气压力的差值,作为PID控制模块的输入,得到开度修正值;
将包含开度修正值的第二调节指令发送至电子节气门的控制器。
所述程序的细化功能和扩展功能可参照上文描述。
本发明实施例还提供一种可读存储介质,该可读存储介质可存储有适于处理器执行的计算机程序,所述计算机程序用于:
根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度;
将包含目标开度的第一调节指令发送至电子节气门的控制器;
将电堆入口的设定空气压力与实际空气压力的差值,作为PID控制模块的输入,得到开度修正值;
将包含开度修正值的第二调节指令发送至电子节气门的控制器。
所述程序的细化功能和扩展功能可参照上文描述。
本实施例还提供一种车辆,包括燃料电池和上述燃料电池控制器。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对本发明所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种燃料电池的电堆入口空气压力调节方法,其特征在于,包括:
根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度;
将包含所述目标开度的第一调节指令发送至所述电子节气门的控制器;
将所述设定空气压力与所述电堆入口的实际空气压力的差值,作为PID控制模块的输入,得到开度修正值;
将包含所述开度修正值的第二调节指令发送至所述电子节气门的控制器;
所述根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度的步骤,包括:
根据电堆入口的实际空气流量、电堆阴极通道内温度和湿度,计算得到电子节气门的入口空气流量;
对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量;
将所述标准状态空气流量减去所述电子节气门的漏气流量,得到通过空气流量;
将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
根据所述后前压比、所述通过空气流量、以及预先标定得到的电子节气门后前压比、空气流量和开度的对应关系,匹配得到所述电子节气门的目标开度。
2.根据权利要求1所述的燃料电池的电堆入口空气压力调节方法,其特征在于,所述对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量的步骤,具体包括:
将所述电子节气门入口的实际温度除以标准温度然后开方,得到温度修正系数;
将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
将所述后前压比除以标准后前压比然后开方,得到压力修正系数;
将电子节气门入口的实际空气流量除以所述温度修正系数和所述压力修正系数的乘积,得到标准状态空气流量。
3.一种燃料电池的电堆入口空气压力调节装置,其特征在于,包括:
目标开度计算单元,用于根据电堆入口的实际空气流量和设定空气压力,确定电子节气门的目标开度;
第一调节单元,用于将包含所述目标开度的第一调节指令发送至所述电子节气门的控制器;
开度修正单元,用于将所述设定空气压力与所述电堆入口的实际空气压力的差值,作为PID控制模块的输入,得到开度修正值;
第二调节单元,用于将包含所述开度修正值的第二调节指令发送至所述电子节气门的控制器;
所述目标开度计算单元,包括:
入口空气流量计算子单元,用于根据电堆入口的实际空气流量、电堆阴极通道内温度和湿度,计算得到电子节气门的入口空气流量;
空气流量修正子单元,用于对电子节气门入口的实际空气流量进行温度修正和压力修正,得到标准状态空气流量;
通过空气流量计算子单元,用于将所述标准状态空气流量减去所述电子节气门的漏气流量,得到通过空气流量;
入口空气压力计算子单元,用于将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
后前压比计算子单元,用于将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
目标开度匹配子单元,用于根据所述后前压比、所述通过空气流量、以及预先标定得到的电子节气门后前压比、空气流量和开度的对应关系,匹配得到所述电子节气门的目标开度。
4.根据权利要求3所述的燃料电池的电堆入口空气压力调节装置,其特征在于,所述空气流量修正子单元,具体包括:
温度修正系数计算模块,用于将所述电子节气门入口的实际温度除以标准温度然后开方,得到温度修正系数;
入口空气压力计算模块,用于将电堆入口的设定空气压力减去空气流过电堆的压力损失值,得到电子节气门的入口空气压力;
后前压比计算模块,用于将所述电子节气门出口的实际空气压力除以所述电子节气门入口的实际空气压力,得到后前压比;
压力修正系数模块,用于将所述后前压比除以标准后前压比然后开方,得到压力修正系数;
标准状态空气流量计算模块,用于将电子节气门入口的实际空气流量除以所述温度修正系数和所述压力修正系数的乘积,得到标准状态空气流量。
5.一种可读存储介质,其上存储有程序,其特征在于,所述程序被处理器执行时,实现如权利要求1或2中所述燃料电池的电堆入口空气压力调节方法的各个步骤。
6.一种燃料电池控制器,包括存储器和处理器,其特征在于,
所述存储器,用于存储程序;
所述处理器,用于执行所述程序,实现如权利要求1或2中所述燃料电池的电堆入口空气压力调节方法的各个步骤。
7.一种车辆,其特征在于,包括燃料电池和如权利要求6所述燃料电池控制器。
CN201910576491.7A 2019-06-28 2019-06-28 燃料电池的电堆入口空气压力调节方法及相关装置 Active CN110085891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910576491.7A CN110085891B (zh) 2019-06-28 2019-06-28 燃料电池的电堆入口空气压力调节方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910576491.7A CN110085891B (zh) 2019-06-28 2019-06-28 燃料电池的电堆入口空气压力调节方法及相关装置

Publications (2)

Publication Number Publication Date
CN110085891A CN110085891A (zh) 2019-08-02
CN110085891B true CN110085891B (zh) 2019-10-22

Family

ID=67424503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910576491.7A Active CN110085891B (zh) 2019-06-28 2019-06-28 燃料电池的电堆入口空气压力调节方法及相关装置

Country Status (1)

Country Link
CN (1) CN110085891B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911721B (zh) * 2019-11-28 2022-11-25 东风汽车集团有限公司 一种燃料电池控制方法及燃料电池控制装置
CN111129550B (zh) * 2019-12-19 2021-02-02 深圳国氢新能源科技有限公司 燃料电池系统的pid控制方法
CN111082095B (zh) * 2019-12-30 2021-04-16 潍柴动力股份有限公司 冷却液流量控制方法、装置及存储介质
CN113611899A (zh) * 2021-08-03 2021-11-05 大连擎研科技有限公司 一种燃料电池系统空气压力的控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098873A (ja) * 2009-11-09 2011-05-19 Honda Motor Co Ltd 燃料電池システム
CN105609816A (zh) * 2014-11-13 2016-05-25 丰田自动车株式会社 阀控制装置及阀控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303444A (ja) * 2003-03-28 2004-10-28 Chino Corp 固体高分子型燃料電池の背圧制御装置
JP6330832B2 (ja) * 2016-03-04 2018-05-30 トヨタ自動車株式会社 燃料電池システム及びその制御方法
US10777831B2 (en) * 2017-11-28 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based cooling system control strategy/method
US10971748B2 (en) * 2017-12-08 2021-04-06 Toyota Motor Engineering & Manufacturing North America, Inc. Implementation of feedforward and feedback control in state mediator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098873A (ja) * 2009-11-09 2011-05-19 Honda Motor Co Ltd 燃料電池システム
CN105609816A (zh) * 2014-11-13 2016-05-25 丰田自动车株式会社 阀控制装置及阀控制方法

Also Published As

Publication number Publication date
CN110085891A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN110085891B (zh) 燃料电池的电堆入口空气压力调节方法及相关装置
CN110112437B (zh) 燃料电池的电堆入口空气流量调节方法及相关装置
US10141587B2 (en) Fuel cell system with cathode bypass valve and control method for fuel cell system
US9660280B2 (en) System and method of controlling fuel cell system using a drain-purge valve
CN102473942B (zh) 燃料电池的含水量控制方法以及燃料电池系统
US9620796B2 (en) Fuel cell system and control method therefor
CN100541892C (zh) 空气冷却式燃料电池系统
US20160308228A1 (en) Fuel cell system
KR101592709B1 (ko) 차량의 연료전지시스템 및 그 제어방법
US20160111741A1 (en) System and method for controlling voltage of fuel cell
JP6322712B2 (ja) 圧力調節方法
CN111613813B (zh) 一种燃料电池空气供给系统及其泄压控制方法
US9368814B2 (en) System and method for controlling fuel cell module
KR102564015B1 (ko) 연료전지 시스템 및 그의 제어방법
US10084196B2 (en) System and method for controlling fuel cell module
JP7038301B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
KR101966449B1 (ko) 연료전지 시스템의 공기 공급장치 및 에어 블로어 압력 조절방법
KR20150071739A (ko) 연료전지 습도 조절 시스템
US9318759B2 (en) Fuel cell assembly and method of control
KR101543121B1 (ko) 수소 퍼징 제어 장치 및 방법
CN112825365A (zh) 燃料电池系统的排气氢浓度控制装置和方法
JP5376585B2 (ja) 燃料電池システム
JP2004119139A (ja) 燃料電池システム
CN219286466U (zh) 燃料电池的空气增湿与温度调节系统及大功率发电设备
US20140186735A1 (en) Method of operating fuel cell system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant