CN110085434A - 螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法及应用 - Google Patents

螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法及应用 Download PDF

Info

Publication number
CN110085434A
CN110085434A CN201910283855.2A CN201910283855A CN110085434A CN 110085434 A CN110085434 A CN 110085434A CN 201910283855 A CN201910283855 A CN 201910283855A CN 110085434 A CN110085434 A CN 110085434A
Authority
CN
China
Prior art keywords
graphene
nitrogen
composite membrane
helical form
nanometer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910283855.2A
Other languages
English (en)
Inventor
佟浩
卢亮
金凤巧
孟晴
李婷婷
刘江
张校刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910283855.2A priority Critical patent/CN110085434A/zh
Publication of CN110085434A publication Critical patent/CN110085434A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种经水热反应制备的长寿命可弯曲自支撑的柔性Ni(OH)2/氮掺杂石墨烯/碳管纳米复合膜电极的方法,包括将多孔石墨烯分散液与碳纳米管混合抽滤制备石墨烯膜;(b)加入氨水反应获得掺氮石墨烯/碳纳米管混合物膜;(c)加入无水乙醇、六水合硝酸镍和尿素的混合溶液,100℃反应8h,冷却洗涤并干燥,即获得该纳米复合膜;该复合膜具有高面积比电容和极好的循环稳定性,并且具有很好的柔性,可弯曲到接近180°,可广泛作用作长循环寿命的电化学储能电极材料。

Description

螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法 及应用
技术领域
本发明属于电化学领域,特别是一螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法与应用。
背景技术
近年来,随着可穿戴和便携式电子设备的急速发展,如可弯曲手机、电子书、可折叠播放器、分散式传感器、人工智能皮肤和多媒体播放器,柔性的能源存储器件被寄予厚望作为这些电子设备的电源设备。柔性的超级电容器由于具有大功率传输、短充放电时间、长循环寿命和高安全性等特点,吸引了广泛的关注。相比于大部分能源存储设备,如超级电容器,他们通常具有笨重的体积和严格的使用条件,无法满足柔性电子设备所需的小体积、轻质量和柔性等条件,因此,开发新一代轻质、柔性的超级电容器是形势所趋。然而,开发柔性超级电容器最主要的挑战是设计柔性的电极并且具有高面积比电容和优异的机械性能,如弯曲、拉伸和轻质。此外,从实际应用角度而言,电极的制备还应该满足低成本、可大规模化生产和方法简单等要求。
迄今为止,不断有文献报道柔性的超级电容器以过渡金属氧化物/氢氧化物作为电极材料,通过快速可逆的法拉第反应实现更大的赝电容贡献。在这些材料中,Ni(OH)2具有高理论比电容(2082F/g)、低成本、高氧化还原活性、环境友好和高化学/热稳定性等优势,因而被认为是非常有潜力的一种赝电容材料。然而,Ni(OH)2固有的低导电性(10-5-10- 9S/cm)限制了其电化学性能的提升,为了解决这个问题,科研人员投入了大量的精力,其中一个有效的策略就是将Ni(OH)2与导电材料结合。例如,将Ni(OH)2的结构纳米花并与高导电的碳材料结合,包括石墨烯或碳管,可有效地提高了电荷和离子传输,且同时实现两种储能方式存储电荷。Wei等在石墨烯片上制备出层状的Ni(OH)2纳米花,实现1735F/g的高比电容。Wang等通过水热方法制备出形貌可控的层状介孔Ni(OH)2微球,在1A/g的电流密度下实现1087F/g的比电容。通过一步化学共沉积方法制备同轴生长的CNT/Ni(OH)2复合物,组装成非对称电容器实现35Wh/kg的能量密度。Cho等先制备出Ag修饰的石墨烯,再经微波加热生长出均匀的Ni(OH)2,该复合物的比电容达到1220F/g。此外,将Ni(OH)2制备成核壳结构的复合物,也能明显提升性能。如Ke等在氢化后的TiO2纳米棒上经学浴包覆了一层Ni(OH)2,电化学性能得到大幅提升。
以往报道的Ni(OH)2复合物制备成超级电容器的电极通常使用粘浆-涂覆技术,很显然这些电极具有差的柔韧性、更大的总质量和更高的成本,此外,添加的不导电粘结剂还会增大电极的内阻。因此,在导电的支撑体上直接沉积Ni(OH)2既能制备出柔性的电极,而且还能避免加入粘结剂,可谓一举两得。Xiong等使用泡沫镍作为支撑基底,通过常温化学氧化的方法制备出超薄Ni(OH)2纳米片,在1A/g的电流密度下实现1288F/g比电容,3000圈充放电循环后容量保持在75%。Ghosh等通过水热方法在碳布上生长Ni(OH)2,比电容只有789F/g,1500圈寿命测试后比电容没有衰减。Ma等先在石墨烯片上生长Ni(OH)2,再经抽滤结合到纤维素膜上制备成Ni(OH)2/石墨烯/纤维素膜,表现出高面积比电容(10.44F/cm2)和长循环稳定性(15000圈后电容保持率在93.6%),重量比电容却只有877F/g。这些自支撑的Ni(OH)2复合物无法实现电化学性能和柔性的共同提升,存在明显的不足,如较低的比电容、短的循环寿命、笨重的导电基底和差的倍率性能。
发明内容
针对上述问题,本申请通过真空抽滤、氨水还原得到了氮掺杂的石墨烯/碳管复合膜,再经水热反应制备了一种可弯曲自支撑螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜,具有较高的比电容和较长的循环寿命。
本发明是这样实现的:
一种螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法,具体如下:
(a)向100mL浓度为0.5mg/mL的氧化石墨烯中加入1.5g高锰酸钾,搅拌反应2h,然后加入250mL质量分数为36.5%的盐酸搅拌反应3h,再加入20mL质量分数为30%的过氧化氢搅拌反应3h,获得多孔石墨烯;上述多孔石墨烯制备步骤也可参见中国专利CN105225844A所公开的内容。
(b)将多孔石墨烯置于透析袋中,于蒸馏水中透析至石墨烯为中性(约8-12天),取出后超声分散1h,超声功率为20kHz,获得多孔石墨烯分散液;然后向多孔石墨烯分散液中加入碳纳米管,所加入碳纳米管与多孔石墨烯的质量比为1:5-15,继续超声2h后,抽滤获得石墨烯膜;上述多孔石墨烯的制备步骤也可参见中国专利CN105225844A所公开的内容。
(c)取抽滤获得的石墨烯膜置于常温下干燥48h,加入35mL浓度为25%的氨水,180℃反应24h,所得产物即为掺氮石墨烯/碳纳米管混合物膜;
上述氨水添加量达到浸没覆盖石墨烯膜即可,增加氨水添加量并不影响后续反应。
(d)依次称取0.29g六水合硝酸镍和0.24g尿素置于烧杯中,加入40mL无水甲醇(即无水甲醇中,六水合硝酸镍的终浓度为25mmolmL-1,尿素的终浓度为88mmolmL-1),磁力搅拌0.5h后,倒入聚四氟乙烯反应釜中,加入上述制备的掺氮石墨烯/碳纳米管混合物膜浸入于该溶液中后将反应釜放入烘箱,在100℃反应8h;然后自然冷却至室温后,用去离子水洗涤样品,最后60℃干燥12h。即获得自支撑螺旋状Ni(OH)2纳米片/石墨烯/碳管纳米复合膜;上述溶液填充量一般占反应釜的80%,溶液过多或过少会导致最后Ni(OH)2的生长量。
进一步,本发明步骤(b)中,所加入碳纳米管与多孔石墨烯的质量比为1:10。
依据本发明方法获得的复合材料,结构是以多孔掺氮石墨烯和碳纳米管为骨架,骨架上负载螺旋状Ni(OH)2纳米片。堆积和分开生长的纳米片不仅能够减小石墨烯和碳纳米管上的空面积,还能提升电极和电解液之间的实际接触面积,这样就能提高活性材料的使用率,螺旋状Ni(OH)2纳米片直接长在石墨烯和碳纳米管上,不但能在长时间的循环过程中保持形貌,还能减小了接触电阻,中空的纳米片不但能提高大量的孔体积来储存电解质,提高更多的活性位点来进行法拉第反应,而且能够缩短氢氧根离子扩散的距离,能导致更快的动力学,从而提高电性能。
碳纳米管的加入保证了电极有较好的导电性,且石墨烯的稳定性保证了该电极有良好的充放电循环稳定性,螺旋状Ni(OH)2纳米片为电极材料提供了较大的电容,使得其可用做超电容中的柔性电极,与现有技术相比:
(1)该复合材料有较好的柔韧性,如图1(a)所示,该材料可弯曲到接近180°,在弯曲成各种角度后电化学性能变化小。
(2)该复合材料的结构特点在于碳纳米管穿插在石墨烯层间,使得其不易重叠,同时,螺旋状Ni(OH)2纳米片的使得其有了大量的可进行法拉第氧还原的活性位点,从而提高了比电容,如图2(c)、(d)所示,其比电容值最高可高达2130F/g和2.88F/cm2的高面积比电容,相比较单纯的石墨烯,碳纳米管,以及大部分石墨烯和碳纳米管的复合材料都有显著的提高。
(3)该复合材料在作为电极材料时,具有优越的循环充放电性能,在循环了30000圈以后,如图3所示,其电容保持率在111.4%,比初始值高出了11.4%,表现出了极佳的循环稳定性。
附图说明
图1为实施例1中Ni(OH)2纳米片/石墨烯/碳管纳米复合膜表面的SEM图片(a,b);石墨烯/碳管纳米复合膜横截面的SEM图片(c,d)。
图2为实施例1中Ni(OH)2纳米片/石墨烯/碳管纳米复合膜的循环伏安(CV)曲线(a),恒电流充放电(GCD)曲线(b),重量比电容与电流密度的关系曲线(c),面积比电容与电流密度的关系曲线(d)。
图3为实施例1中Ni(OH)2纳米片/石墨烯/碳管纳米复合膜电极在三电极体系在电流密度为20Ag-1条件下的循环测试寿命曲线。
图4为实施例2中Ni(OH)2纳米片/石墨烯/碳管纳米复合膜的循环伏安(CV)曲线(a),恒电流充放电(GCD)曲线(b),重量比电容与电流密度的关系曲线(c),面积比电容与电流密度的关系曲线(d)。
图5为实施例3中Ni(OH)2纳米片/石墨烯/碳管纳米复合膜的循环伏安(CV)曲线(a),恒电流充放电(GCD)曲线(b),重量比电容与电流密度的关系曲线(c),面积比电容与电流密度的关系曲线(d)。
具体实施方式
实施例中原料来源:
以下实施例中,天然鳞片石墨购自美国AlfaAcsar公司;
透析袋购自Biosharp公司,27mm透析袋,MW:14000。
实施例1
(1)将3g天然鳞片石墨分散于70mL质量分数为98%的浓硫酸中,冰浴条件下加入0.1g硝酸钠降温,再加入9g高锰酸钾,保持温度低于20℃,以300-500rpm的速率搅拌反应1.5h;然后将反应物置于38-40℃的热水浴中,,以300-500rpm的速率搅拌反应30min;然后取出反应物,再次置于冰水浴中,向反应物中加入蒸馏水,静置至少2h,待溶液分层后,弃去上层清液之后离心(13000rpm)10min,取离心获得的深色溶液,超声(20kHz)10min;然后再次离心(4000rpm)10min,离心后获得的上层黄色透明液体即为氧化石墨烯;
上述氧化石墨烯制备步骤为本领域常规技术,如中国专利CN105225844A所公开的内容。
(2)调整步骤(1)获得的氧化石墨烯浓度为0.5mg/mL,取100mL氧化石墨烯于烧杯中,加入1.5g的高锰酸钾,以300-500rpm的速率搅拌反应2h,然后加入250mL质量分数为36.5%的浓盐酸,以300-500rpm搅拌反应3h,再加入20mL质量分数为30%的过氧化氢搅拌反应3h,获得多孔石墨烯;
上述多孔石墨烯制备步骤为本领域常规技术,如中国专利CN105225844A所公开的内容。
(3)将步骤(2)获得的多孔石墨烯装入透析袋中,置于蒸馏水中透析10天,使透析后的多孔石墨烯呈中性;取透析后的多孔石墨烯超声(20kHz)1h,获得多孔石墨烯分散液;然后向多孔石墨烯分散液中加入与多孔石墨烯质量比为1:10的碳纳米管,20kHz超声混合2h后,将溶液抽滤成膜。
(4)将抽滤获得的膜置于常温下干燥48h,然后加入35mL的浓度为25%的氨水于反应釜中,180℃温度下反应24h,所获得产物即为掺氮石墨烯、碳纳米管混合物膜。
(5)依次称取0.29g(25mmol/L)六水合硝酸镍和0.24g(88mmol/L)尿素置于烧杯中,加入40mL无水甲醇,获得混合溶液,磁力搅拌0.5h后,倒入聚四氟乙烯反应釜中,加入上述制备的掺氮石墨烯/碳纳米管混合物膜浸入于该溶液中后将反应釜放入烘箱,混合溶液的填充量为反应釜容积的80%;在100℃反应8h;自然冷却至室温后,用去离子水洗涤样品,然后60℃干燥12h;即获得自支撑螺旋状Ni(OH)2纳米片/石墨烯/碳管纳米复合膜。
本实施例获得的Ni(OH)2纳米片/石墨烯/碳管纳米复合膜表面的SEM图片如图1所示,图1中,a、b分别为4μm和2μm标尺下的Ni(OH)2纳米片/石墨烯/碳管纳米复合膜表面SEM图;c、d分别为石墨烯/碳管纳米复合膜横截面的SEM图片,由图1可以看出Ni(OH)2纳米片在复合膜表面自下而上螺旋状生长,呈卷曲的薄片状。复合膜呈现出多层结构,表明加入的碳管和氨水起到了分层作用,有利于电解液进入电极内部。
对本实施例获得的Ni(OH)2纳米片/石墨烯/碳管纳米复合膜进行电学性能检测,检测(检测方法可参见SHYue,HTong,LLu,WWTang,WLBai,andFQJin.J.Mater.Chem.A,2017,5(2),689-698.电化学测试部分)。检测结果如图2所示。图2中,(a)为循环伏安(CV)曲线,(b)为恒电流充放电(GCD)曲线,(c)为重量比电容与电流密度的关系曲线,(d)为面积比电容与电流密度的关系曲线。
由图2可见,本实施例获得的纳米复合膜质量比电容值最高可高达2130F/g,面积比电容可达2.88F/cm2,相比较单纯的石墨烯,碳纳米管,以及大部分石墨烯和碳纳米管的复合材料都有显著的提高。
将本实施例获得的Ni(OH)2纳米片/石墨烯/碳管纳米复合膜作为工作电极,在三电极体系下测试电流密度为20Ag-1条件下的循环测试寿命曲线(检测方法可参见SHYue,HTong,LLu,WWTang,WLBai,andFQJin.J.Mater.Chem.A,2017,5(2),689-698.电化学测试部分),检测结果如图3所示。可见,由图3说明该电极材料具有超长的循环寿命。
实施例2
(1)将3g天然鳞片石墨分散于70mL质量分数为98%的浓硫酸中,冰浴条件下加入0.1g硝酸钠降温,再加入9g高锰酸钾,保持温度低于20℃,以300-500rpm的速率搅拌反应1.5h;然后将反应物置于38-40℃的热水浴中,,以300-500rpm的速率搅拌反应30min;然后取出反应物,再次置于冰水浴中,向反应物中加入蒸馏水,静置至少2h,待溶液分层后,弃去上层清液之后离心(13000rpm)10min,取离心获得的深色溶液,超声(20kHz)10min;然后再次离心(4000rpm)10min,离心后获得的上层黄色透明液体即为氧化石墨烯;
(2)调整步骤(1)获得的氧化石墨烯浓度为0.5mg/mL,取100mL氧化石墨烯于烧杯中,加入1.5g的高锰酸钾,以300-500rpm的速率搅拌反应2h,然后加入250mL质量分数为36.5%的浓盐酸,以300-500rpm搅拌反应3h,再加入20mL质量分数为30%的过氧化氢搅拌反应3h,获得多孔石墨烯;
(3)将步骤(2)获得的多孔石墨烯装入透析袋中,置于蒸馏水中透析10天,取透析后的多孔石墨烯超声(20kHz)1h,然后加入与多孔石墨烯质量比为1:10的碳纳米管,20kHz超声混合2h后,将溶液抽滤成膜;
(4)将抽滤获得的膜置于常温下干燥48h,然后加入35mL的浓度为25%的氨水于反应釜中,180℃温度下反应24h,所获得产物即为掺氮石墨烯、碳纳米管混合物膜;
(5)依次称取0.29g(25mmol/L)六水合硝酸镍和0.24g(88mmol/L)尿素置于烧杯中,加入40mL无水甲醇,磁力搅拌0.5h后,倒入聚四氟乙烯反应釜中,加入上述制备的掺氮石墨烯/碳纳米管混合物膜浸入于该溶液中后将反应釜放入烘箱,在100℃反应4h。自然冷却至室温后,用去离子水洗涤样品,然后60℃干燥12h。即获得自支撑螺旋状Ni(OH)2纳米片/石墨烯/碳管纳米复合膜。
对本实施例获得的Ni(OH)2纳米片/石墨烯/碳管纳米复合膜进行电学性能检测,检测结果如图4所示,图4中,(a)为循环伏安(CV)曲线,(b)为恒电流充放电(GCD)曲线,(c)为重量比电容与电流密度的关系曲线,(d)为面积比电容与电流密度的关系曲线。由图4可见,与实施例1相比,本实施例水热反应时间减少,制备的Ni(OH)2纳米片/石墨烯/碳管纳米复合膜电化学性能降低。
实施例3
(1)将3g天然鳞片石墨分散于70mL质量分数为98%的浓硫酸中,冰浴条件下加入0.1g硝酸钠降温,再加入9g高锰酸钾,保持温度低于20℃,以300-500rpm的速率搅拌反应1.5h;然后将反应物置于38-40℃的热水浴中,,以300-500rpm的速率搅拌反应30min;然后取出反应物,再次置于冰水浴中,向反应物中加入蒸馏水,静置至少2h,待溶液分层后,弃去上层清液之后离心(13000rpm)10min,取离心获得的深色溶液,超声(20kHz)10min;然后再次离心(4000rpm)10min,离心后获得的上层黄色透明液体即为氧化石墨烯;
(2)调整步骤(1)获得的氧化石墨烯浓度为0.5mg/mL,取100mL氧化石墨烯于烧杯中,加入1.5g的高锰酸钾,以300-500rpm的速率搅拌反应2h,然后加入250mL质量分数为36.5%的浓盐酸,以300-500rpm搅拌反应3h,再加入20mL质量分数为30%的过氧化氢搅拌反应3h,获得多孔石墨烯;
(3)将步骤(2)获得的多孔石墨烯装入透析袋中,置于蒸馏水中透析10天,取透析后的多孔石墨烯超声(20kHz)1h,然后加入与多孔石墨烯质量比为1:10的碳纳米管,20kHz超声混合2h后,将溶液抽滤成膜;
(4)将抽滤获得的膜置于常温下干燥48h,然后加入35mL的浓度为25%的氨水于反应釜中,180℃温度下反应24h,所获得产物即为掺氮石墨烯、碳纳米管混合物膜;
(5)依次称取0.29g(25mmol/L)六水合硝酸镍和0.24g(88mmol/L)尿素置于烧杯中,加入40mL无水甲醇,磁力搅拌0.5h后,倒入聚四氟乙烯反应釜中,加入上述制备的掺氮石墨烯/碳纳米管混合物膜浸入于该溶液中后将反应釜放入烘箱,在100℃反应12h。自然冷却至室温后,用去离子水洗涤样品,然后60℃干燥12h。即获得自支撑螺旋状Ni(OH)2纳米片/石墨烯/碳管纳米复合膜。
对本实施例获得的Ni(OH)2纳米片/石墨烯/碳管纳米复合膜进行电学性能检测,检测结果如图5所示,图5中,(a)为循环伏安(CV)曲线,(b)为恒电流充放电(GCD)曲线,(c)为重量比电容与电流密度的关系曲线,(d)为面积比电容与电流密度的关系曲线。由图5可见,与实施例1相比,水热时间增长,Ni(OH)2纳米片/石墨烯/碳管纳米复合膜的电化学性能降低。

Claims (6)

1.一种螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法,其特征在于,具体步骤如下:
(a)将多孔石墨烯分散液与碳纳米管混合,超声后,抽滤获得石墨烯膜,常温下干燥;
(b)将步骤(a)获得的石墨烯膜浸没于氨水中,180℃反应24 h,获得掺氮石墨烯/碳纳米管混合物膜;
(c)将步骤(b)获得的掺氮石墨烯/碳纳米管混合物膜浸没于混合溶液中,100℃反应8h,冷却后,洗涤并干燥,即获得所述自支撑螺旋状Ni(OH)2纳米片/石墨烯/碳管纳米复合膜;所述混合溶液为无水乙醇中加入终浓度为25 mmol mL-1的六水合硝酸镍和终浓度为88mmol mL-1的尿素。
2.根据权利要求1所述螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法,其特征在于,所述碳纳米管与多孔石墨烯的质量比为1:10。
3.根据权利要求2所述螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法,其特征在于,步骤(c)所述干燥是指60℃干燥12 h。
4.根据权利要求2所述螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法,其特征在于,步骤(a)所述多孔石墨烯分散液是这样获得的:将多孔石墨烯置于透析袋中,于蒸馏水中透析至石墨烯为中性,取出后超声分散1h。
5.根据权利要求2所述螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法,其特征在于,步骤(a)所述氨水的浓度为25%。
6.如权利要求1-5任一制备方法获得的螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜在作为柔性电极中的应用。
CN201910283855.2A 2019-04-10 2019-04-10 螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法及应用 Pending CN110085434A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283855.2A CN110085434A (zh) 2019-04-10 2019-04-10 螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283855.2A CN110085434A (zh) 2019-04-10 2019-04-10 螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN110085434A true CN110085434A (zh) 2019-08-02

Family

ID=67414604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283855.2A Pending CN110085434A (zh) 2019-04-10 2019-04-10 螺旋状Ni(OH)2纳米片/氮掺杂石墨烯/碳管复合膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN110085434A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260559A (zh) * 2022-07-25 2022-11-01 电子科技大学长三角研究院(湖州) 一种基于石墨烯原位生长螺旋碳纤维的柔性力学传感器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387268A (zh) * 2013-07-30 2013-11-13 浙江大学 一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍
CN104891580A (zh) * 2015-05-05 2015-09-09 北京科技大学 一种氢氧化镍超薄纳米片组装体的制备方法
CN105225844A (zh) * 2015-09-09 2016-01-06 南京航空航天大学 氮掺杂石墨烯/ 氮掺杂碳纳米管/钴酸锌复合材料的制备方法与应用
CN106024424A (zh) * 2016-07-01 2016-10-12 东华大学 一种氢氧化镍/石墨烯卷-碳纳米管复合碳气凝胶及其制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387268A (zh) * 2013-07-30 2013-11-13 浙江大学 一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍
CN104891580A (zh) * 2015-05-05 2015-09-09 北京科技大学 一种氢氧化镍超薄纳米片组装体的制备方法
CN105225844A (zh) * 2015-09-09 2016-01-06 南京航空航天大学 氮掺杂石墨烯/ 氮掺杂碳纳米管/钴酸锌复合材料的制备方法与应用
CN106024424A (zh) * 2016-07-01 2016-10-12 东华大学 一种氢氧化镍/石墨烯卷-碳纳米管复合碳气凝胶及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIHE ZHANG等: "One-pot synthesis of Ni(OH)2 flakes embeded in highly-conductive carbon nanotube/graphene hybrid framework as high performance electrodes for supercapacitors", 《MATERIALS LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260559A (zh) * 2022-07-25 2022-11-01 电子科技大学长三角研究院(湖州) 一种基于石墨烯原位生长螺旋碳纤维的柔性力学传感器及其制备方法
CN115260559B (zh) * 2022-07-25 2023-06-27 电子科技大学长三角研究院(湖州) 一种基于石墨烯原位生长螺旋碳纤维的柔性力学传感器及其制备方法

Similar Documents

Publication Publication Date Title
Fu et al. Ternary NiCeCo-layered double hydroxides grown on CuBr2@ ZIF-67 nanowire arrays for high-performance supercapacitors
Xu et al. Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor
Acharya et al. Modish designation of hollow-tubular rGO–NiMoO4@ Ni–Co–S hybrid core–shell electrodes with multichannel superconductive pathways for high-performance asymmetric supercapacitors
Fan et al. Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor
Kong et al. Three-dimensional NiCo2O4@ polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor
Zhou et al. Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors
Lu et al. Direct access to NiCo-LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity
Li et al. Hierarchical interpenetrating rHGO-decorated NiCo2O4 nanowires architectures for high-performance supercapacitors
CN104021948B (zh) 纳米纤维状三维氢氧化镍/碳纳米管复合材料及其制备方法和应用
Park et al. Large-area and 3D polyaniline nanoweb film for flexible supercapacitors with high rate capability and long cycle life
CN106298263B (zh) 一种铋/炭超级电容电池及其制备方法
Xiao et al. Constructing nickel cobaltate@ nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors
CN106252616A (zh) 一种硒化镍/中空碳纤维复合材料及其制备方法
CN104876282A (zh) 用作超级电容器电极的CoSx纳米材料及其制备方法
Chen et al. Wood-derived scaffolds decorating with nickel cobalt phosphate nanosheets and carbon nanotubes used as monolithic electrodes for assembling high-performance asymmetric supercapacitor
Tao et al. Boosting supercapacitive performance of flexible carbon via surface engineering
CN106971860A (zh) 一种MnO2@石墨烯纤维超级电容器电极材料的制备方法
Jia et al. An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors
Huang et al. Bimetallic organic framework in situ fabrication nanoflower-like cobalt nickel sulfide and ultrathin layered double hydroxide arrays for high-efficient asymmetric hybrid supercapacitor
CN110085453A (zh) 碳纳米管泡沫负载核壳型Ni-Co LDH@Ni-Mn LDH的制备方法及应用
Wang et al. Hierarchical core-shell polypyrrole@ NiCo layered double hydroxide arrays grown on stainless steel yarn with high flexibility for 1D symmetric yarn-shaped supercapacitors
Abuali et al. Investigation of electrochemical performance of a new nanocomposite: CuCo2S4/Polyaniline on carbon cloth
Wang et al. Polyhedron-core/double-shell CuO@ C@ MnO2 decorated nickel foam for high performance all-solid-state supercapacitors
Deka et al. Effect of electrolytic cations on a 3D Cd-MOF for supercapacitive electrodes
Jiang et al. Free-standing Co (OH) 2/prussian blue analogue nanostructured electrodes for flexible Na-ion supercapacitors with an ultrawide potential window

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802

RJ01 Rejection of invention patent application after publication