CN110079765A - 制备多晶陶瓷膜的方法 - Google Patents

制备多晶陶瓷膜的方法 Download PDF

Info

Publication number
CN110079765A
CN110079765A CN201910159284.1A CN201910159284A CN110079765A CN 110079765 A CN110079765 A CN 110079765A CN 201910159284 A CN201910159284 A CN 201910159284A CN 110079765 A CN110079765 A CN 110079765A
Authority
CN
China
Prior art keywords
particle
thickness
predetermined layer
partition
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910159284.1A
Other languages
English (en)
Other versions
CN110079765B (zh
Inventor
M.施雷特
W.维尔兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baioman Western Europe Co.,Ltd.
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN110079765A publication Critical patent/CN110079765A/zh
Application granted granted Critical
Publication of CN110079765B publication Critical patent/CN110079765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0068Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及制备多晶陶瓷膜的方法。具体地,本发明涉及在基材(10)的表面(12)上制备多晶陶瓷膜的方法,其中在表面(12)上导入粒子流并且通过所述粒子在表面(12)上的沉积而形成所述陶瓷膜,其中借助隔板沿着优选方向在表面(12)上导入所述粒子流直到达到第一预定层厚度,该优选方向与表面(12)的平面法线形成了预定的入射角。根据本发明,在达到预定的层厚度之后,将所述隔板从粒子流中移除,并且在表面(12)上导入另外的粒子直到达到第二预定层厚度。

Description

制备多晶陶瓷膜的方法
本专利申请是申请日为2013年6月18日、申请号为201380034791.3、同题的专利申请的分案申请。
技术领域
本发明涉及在基材的表面上制备多晶陶瓷膜的方法。
背景技术
在生物传感器领域,越来越多地使用薄膜体声波谐振器(FBAR);当特定连接到检测物质时,它能在其表面上获取其共振频率的变化。其中,它是指在相应基材(例如硅晶片)上施加的压电晶体层。
因为生物分子的检测通常在液体中进行,所以需要特别高的共振品质和敏感度。为此必须在声学剪切模式中激发谐振器。
为了实现这样的激发,需要使极性晶轴相对于激发场倾斜(Verkippung)。在经典的谐振器结构(其中压电体包裹在两个电极层之间)的情况下,所述极性轴必须具有电极平面中的组分。
当使用ZnO作为介电体时,在倾斜大约40°和大约90°的情况下激发纯粹的剪切波(N.F. Foster等人, Cadmium Sulfide and Zinc Oxide Thin-Film Transducers, IEEETransactions on sonics and ultrasonics, Vol. SU-15, No.1, 1968年1月)。相对小的倾斜(例如15°)也足够获得起作用的剪切模式谐振器。
为了达到极性轴的这种倾斜,DE 10 2005 014 160 A1描述了一种方法,其中通过反应性溅射沉积压电体。在此借助隔板(Blende)调节粒子的优选入射方向,该入射方向与基材表面的平面法线形成了所需的角度,从而在基材表面上沉积陶瓷。
已知方法的缺点在于,材料流的主要部分沉积在隔板上而不是沉积在基材上。这导致低的沉积速率,并且使得所述装置在不多次的沉积过程之后就需要清洁和重新调整。这样会消耗很多时间和费用。使用隔板系统还会导致低的沉积结果的可重复性,特别是在层均匀性方面。
发明内容
因此,本发明的目的在于提供根据权利要求1的前序部分的方法,该方法可以快速地、低成本地和很好可重复性地制造具有倾斜的极性轴的陶瓷膜。
该目的通过具有权利要求1的特征的方法而实现。
对于在基材的表面上制备多晶陶瓷膜的这种方法,在表面上导入粒子的粒子流并且通过所述粒子在表面上的沉积而形成所述陶瓷膜。在此,借助隔板沿着优选方向在表面上导入所述粒子流直到达到第一预定层厚度,该优选方向与表面的平面法线形成了预定的入射角。
根据本发明,在达到预定的层厚度之后,将所述隔板从粒子流中移除,并且在表面上导入另外的粒子直到达到第二预定层厚度。
换言之,所述隔板只是用于产生陶瓷材料的晶种层,即具有所述第一预定层厚度的层,其具有所需的轴取向。在形成该晶种层之后,可以不用借助隔板继续进行沉积,因为晶种层的晶体在不定向的材料施加时也会沿着已经预定的优选取向继续生长。
这样可以在产生晶种层之后实现明显更高的沉积速率。此外,在产生晶种层之后不使用隔板可以在基材上沉积明显更多的所使用的陶瓷材料,并且通过在隔板上捕获的材料减少了装置的污染。这提高了装置的使用寿命并且降低了维护消耗和费用。
此外已经发现,借助本发明的方法可以更有效地产生明显更均匀的层。特别是改善了层厚度均匀性,从而使制成的谐振器具有明显更好规定的共振频率,并且因此在用作生物传感器时也具有提高的敏感度。
一方面,所述在表面上导入的粒子可以是所需陶瓷本身的粒子;另一方面,可以例如通过反应性溅射沉积金属粒子,该金属粒子在表面上才与反应性气体形成所需的陶瓷。
优选地,所述预定的入射角选自0-90°的范围和特别是选自10-30°的范围。由此确保可以进行充分的剪切激发。
另外有利的是所述第一预定层厚度(即晶种层的厚度)为50-150 nm和优选100nm。由此确保在接下来不定向施加时也可以在通过晶种层预定的优选取向中进行可重复性的层生长。
总的层厚度(即所述第二预定层厚度)优选为450-600 nm和优选540 nm。在这个范围内可以形成具有所需共振频率(100 MHz至10 GHz)的谐振器。
在此优选地使用由ZnO和/或AlN或者相应的金属构成的粒子作为所述粒子。它们是低成本的材料,这些材料具有所需的压电性能并且可以通过常规的施涂方法,例如通过溅射或反应性溅射施加。
附图说明
下面借助附图进一步说明本发明及其具体实施方式。唯一的附图示意了具有多个测量点的基材晶片,这些测量点用于检测借助本发明的方法的具体实施例施加的层的质量。
具体实施方式
为了制造薄膜体声波谐振器(FBAR),在基材(例如硅晶片10)上制备由压电陶瓷(例如ZnO)构成的包裹在两个平面电极之间的层。其中层的施加通过本身已知的沉积方法进行,例如溅射。
为了实现所需的谐振器性能,特别是为了实现剪切模式的激发,必须使压电材料的极性轴与基材的平面法线形成一个角度。为此,首先产生约100 nm厚度的晶种层。在晶种层的沉积过程中,在待沉积的粒子的源和基材表面12之间安装隔板系统,该系统形成一定的入射角,从而使粒子在优选的取向(具有以所需方式倾斜的极性轴)中沉积在基材表面12上。
只要达到所需的晶种层厚度,就可以移除隔板系统并且以不定向的方式继续沉积。基于在晶种层中已经产生的轴取向,层的进一步生长同样定向进行,从而总的来说实现了极性轴所需的倾斜。继续该过程直到达到约540 nm的总层厚度。
在产生晶种层的过程中,可以达到约4 nm/min的沉积速率,在移除隔板系统之后可以将沉积速率提高到最多40 nm/min。相比于现有技术已知的在整个沉积过程中使用隔板系统的方法,由此实现了明显更快的工艺进程。
为了检测所产生的层的质量,在附图所示的6”-晶片的多个测量点14分析所述层的样品,并且与由现有技术已知的方法制造的晶片的样品比较。
如从表中获知的,使用本发明的方法的具体实施例产生明显更均匀的层。层厚度的控制(由层厚度标准化的标准偏差测量)从10.3%提高到3%,同时可以将工艺时间由132分钟缩短为34分钟。剪切耦合系数基本没有受影响。
此外,所述隔板在粒子流中明显更短的停留时间也减少了隔板的污染,并且因此需要更少的清洁和调整消耗。
本发明的具体实施例 现有技术
平均层厚度 [nm] 550 530
σ (层厚度)/层厚度 [%] 3.0 10.3
剪切耦合系数 [%] 11 12
工艺时间 [min] 34 132
隔板的停留时间比例 [%] 17 100
表:比较了根据现有技术和根据本发明的具体实施例而产生的层的基本工艺性能和层性能。
总之,本发明提供了可以快速地、低成本地和更有效地制造具有预定的轴倾斜的压电陶瓷层的方法。

Claims (9)

1.在基材(10)的表面(12)上制备多晶陶瓷膜的方法,其中在表面(12)上导入粒子流并且通过所述粒子在表面(12)上的沉积而形成所述陶瓷膜,其中借助隔板沿着优选方向在表面(12)上导入所述粒子流直到达到第一预定层厚度,该优选方向与表面(12)的平面法线形成了预定的入射角,
其特征在于,
在达到预定的层厚度之后,将所述隔板从粒子流中移除,并且在表面(12)上不定向地导入另外的粒子直到达到第二预定层厚度。
2.权利要求1的方法,其特征在于,所述预定入射角选自0-90°的范围。
3.权利要求1的方法,其特征在于,所述预定入射角选自10-30°的范围。
4.权利要求1或2的方法,其特征在于,所述第一预定层厚度为50至150 nm。
5.权利要求1或2的方法,其特征在于,所述第一预定层厚度为100 nm。
6.权利要求1或2的方法,其特征在于,所述第二预定层厚度为450至600 nm。
7.权利要求1或2的方法,其特征在于,所述第二预定层厚度为540 nm。
8.权利要求1或2的方法,其特征在于,使用由ZnO和/或AlN构成的粒子作为所述粒子。
9.权利要求1或2的方法,其特征在于,所述粒子流通过溅射提供。
CN201910159284.1A 2012-06-29 2013-06-18 制备多晶陶瓷膜的方法 Active CN110079765B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012211314.2 2012-06-29
DE102012211314.2A DE102012211314A1 (de) 2012-06-29 2012-06-29 Verfahren zum Herstellen eines polykristallinen Keramikfilms
CN201380034791.3A CN104379795A (zh) 2012-06-29 2013-06-18 制备多晶陶瓷膜的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380034791.3A Division CN104379795A (zh) 2012-06-29 2013-06-18 制备多晶陶瓷膜的方法

Publications (2)

Publication Number Publication Date
CN110079765A true CN110079765A (zh) 2019-08-02
CN110079765B CN110079765B (zh) 2021-08-17

Family

ID=48652075

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380034791.3A Pending CN104379795A (zh) 2012-06-29 2013-06-18 制备多晶陶瓷膜的方法
CN201910159284.1A Active CN110079765B (zh) 2012-06-29 2013-06-18 制备多晶陶瓷膜的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201380034791.3A Pending CN104379795A (zh) 2012-06-29 2013-06-18 制备多晶陶瓷膜的方法

Country Status (5)

Country Link
US (1) US10553780B2 (zh)
EP (1) EP2850219B1 (zh)
CN (2) CN104379795A (zh)
DE (1) DE102012211314A1 (zh)
WO (1) WO2014001146A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067797A1 (de) * 2003-01-30 2004-08-12 Siemens Aktiengesellschaft Anordnung aus einem zinkoxidfilm auf einem substrat, verfahren zum herstellen der anordnung und verwendung der anordnung
CN1736493A (zh) * 2005-08-11 2006-02-22 上海交通大学 TiO2-HA生物医用纳米结构薄膜的制备方法
JP2006190720A (ja) * 2004-12-28 2006-07-20 National Institute Of Advanced Industrial & Technology 圧電素子
WO2006101450A1 (en) * 2005-03-23 2006-09-28 Radi Medical Systems Ab Piezoelectric thin film resonator
WO2007085549A2 (de) * 2006-01-26 2007-08-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zum herstellen eines polykristallinen keramikfilms auf einem substrat, kondensatorstruktur mit dem keramikfilm und verwendung der kondensatorstruktur
JP2011006777A (ja) * 2009-05-22 2011-01-13 Hirotaka Tanabe セラミックス被覆材の製造方法
US20110045209A1 (en) * 2008-05-01 2011-02-24 Maxim Seleznev Continuous or discrete metallization layer on a ceramic substrate
CN102279210A (zh) * 2011-07-29 2011-12-14 吉林大学 纳米纤维和粒子粘附层的双敏感层气体传感器及制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171412A (en) * 1991-08-23 1992-12-15 Applied Materials, Inc. Material deposition method for integrated circuit manufacturing
US5885425A (en) * 1995-06-06 1999-03-23 International Business Machines Corporation Method for selective material deposition on one side of raised or recessed features
JP3182399B2 (ja) * 1997-09-17 2001-07-03 株式会社東芝 軟磁性合金膜とその製造方法、磁気ヘッド、および磁気ディスク
US6362097B1 (en) * 1998-07-14 2002-03-26 Applied Komatsu Technlology, Inc. Collimated sputtering of semiconductor and other films
DE102005014160A1 (de) 2005-03-29 2006-10-12 Siemens Ag Verfahren zum Herstellen eines polykristallinen Keramikfilms auf einem Substrat, Kondensatorstruktur mit dem Keramikfilm und Verwendung der Kondensatorstruktur
JP5173512B2 (ja) * 2008-03-25 2013-04-03 財団法人神奈川科学技術アカデミー 導電体およびその製造方法
CN102083743A (zh) * 2008-05-06 2011-06-01 Kyma技术有限公司 Ⅲ族氮化物模板和与之相关的异质结构、器件及它们的制造方法
DE102009050234A1 (de) * 2009-10-21 2011-05-05 Von Ardenne Anlagentechnik Gmbh Verfahren zur Beschichtung eines Substrats mit einer TCO-Schicht und Dünnschichtsolarzelle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067797A1 (de) * 2003-01-30 2004-08-12 Siemens Aktiengesellschaft Anordnung aus einem zinkoxidfilm auf einem substrat, verfahren zum herstellen der anordnung und verwendung der anordnung
JP2006190720A (ja) * 2004-12-28 2006-07-20 National Institute Of Advanced Industrial & Technology 圧電素子
WO2006101450A1 (en) * 2005-03-23 2006-09-28 Radi Medical Systems Ab Piezoelectric thin film resonator
US20080197750A1 (en) * 2005-03-23 2008-08-21 Radi Medical Systems Ab Piezoelectric Thin Film Resonator
CN1736493A (zh) * 2005-08-11 2006-02-22 上海交通大学 TiO2-HA生物医用纳米结构薄膜的制备方法
WO2007085549A2 (de) * 2006-01-26 2007-08-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zum herstellen eines polykristallinen keramikfilms auf einem substrat, kondensatorstruktur mit dem keramikfilm und verwendung der kondensatorstruktur
US20110045209A1 (en) * 2008-05-01 2011-02-24 Maxim Seleznev Continuous or discrete metallization layer on a ceramic substrate
JP2011006777A (ja) * 2009-05-22 2011-01-13 Hirotaka Tanabe セラミックス被覆材の製造方法
CN102279210A (zh) * 2011-07-29 2011-12-14 吉林大学 纳米纤维和粒子粘附层的双敏感层气体传感器及制备方法

Also Published As

Publication number Publication date
CN104379795A (zh) 2015-02-25
WO2014001146A1 (de) 2014-01-03
EP2850219B1 (de) 2018-06-06
US20150136586A1 (en) 2015-05-21
EP2850219A1 (de) 2015-03-25
US10553780B2 (en) 2020-02-04
DE102012211314A1 (de) 2014-02-20
CN110079765B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Bjurstrom et al. Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators
Mertin et al. Piezoelectric and structural properties of c-axis textured aluminium scandium nitride thin films up to high scandium content
Water et al. Physical and structural properties of ZnO sputtered films
Molarius et al. Piezoelectric ZnO films by rf sputtering
DeMiguel-Ramos et al. Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator
Fu et al. Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments
Barth et al. Sputter deposition of stress-controlled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications
CN110632171B (zh) 传感器、形成传感器的方法和装置
Chen et al. The liquid sensor using thin film bulk acoustic resonator with c-axis tilted AlN films
Lee et al. Detection of carcinoembryonic antigen using AlN FBAR
US7951272B2 (en) Thin film producing method
US8203255B2 (en) Piezoelectric sensor arrangement comprising a thin layer shear wave resonator based on epitactically grown piezoelectric layers
Chen et al. Multifunctional ZnO-based thin-film bulk acoustic resonator for biosensors
García-Gancedo et al. Direct comparison of the gravimetric responsivities of ZnO-based FBARs and SMRs
Sharma et al. Development and characterization of confocal sputtered piezoelectric zinc oxide thin film
Iriarte et al. Effect of substrate–target distance and sputtering pressure in the synthesis of AlN thin films
Clement et al. On the effectiveness of lateral excitation of shear modes in AlN layered resonators
DeMiguel-Ramos et al. Induced surface roughness to promote the growth of tilted-AlN films for shear mode resonators
Garcia-Gancedo et al. ZnO-based FBAR resonators with carbon nanotube electrodes
US9725752B2 (en) Resonator and process for performing biological assay
CN110079765A (zh) 制备多晶陶瓷膜的方法
Garcia-Gancedo et al. Ultrafast sputtered ZnO thin films with high k T for acoustic wave device applications
Bjurstrom et al. Synthesis of textured thin piezoelectric A1N films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators
Baron et al. Temperature compensated radio-frequency harmonic bulk acoustic resonators pressure sensors
DeMiguel-Ramos et al. Influence of the electrical extensions in AlN-BAW resonators for in-liquid biosensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210817

Address after: Tampere

Patentee after: Baioman Western Europe Co.,Ltd.

Address before: Munich, Germany

Patentee before: SIEMENS AG