CN110077046A - 一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法 - Google Patents

一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法 Download PDF

Info

Publication number
CN110077046A
CN110077046A CN201910326688.5A CN201910326688A CN110077046A CN 110077046 A CN110077046 A CN 110077046A CN 201910326688 A CN201910326688 A CN 201910326688A CN 110077046 A CN110077046 A CN 110077046A
Authority
CN
China
Prior art keywords
magnetorheological
interlayer
shell
cylindrical shell
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910326688.5A
Other languages
English (en)
Other versions
CN110077046B (zh
Inventor
李晖
王寅晖
李则霖
刘洋
王文煜
王东升
闻邦椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910326688.5A priority Critical patent/CN110077046B/zh
Publication of CN110077046A publication Critical patent/CN110077046A/zh
Application granted granted Critical
Publication of CN110077046B publication Critical patent/CN110077046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明公开一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法,设有外圆柱壳、内圆柱壳,在外圆柱壳与内圆柱壳之间设有复合材料波纹夹层,所述复合材料波纹夹层为由多个梯形折线所组成的环状,梯形折线的上底和/或下底均沿内圆柱壳的轴向设置磁流变阻尼材料单元,在内圆柱壳圆周中埋入多个自供电单元;在外圆柱壳中埋入MEMS振动传感器和集成逻辑电路;发明的优点是:内圆柱壳采集振动能并转化为电能进行存储;外圆柱壳通过埋入的MEMS振动传感器和集成逻辑电路感知并检测结构振动的强弱;磁流变阻尼材料单元发挥阻尼缓冲作用,最终可以实现整体复合材料圆柱壳结构阻尼性能的自调节无级主动控制。

Description

一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法
技术领域
本发明属于机械领域,具体说是一种波纹夹层圆柱壳,更具体说是一种复合材料波纹夹层圆柱壳及制造方法。
背景技术
纤维增强复合材料具有比强度高、比模量高、耐腐蚀性好、温度稳定性好等一系列优点,广泛应用于航空、航天、机械、船舶、体育器械、电气设备、医学、兵器工业与化学工业等领域。工程实际中存在大量通过该类型材料制成的典型薄壳结构件,如航空发动机的复合材料机匣、海底深潜器用的复合材料耐压圆柱壳、液体火箭发动机燃烧室采用的耐高温复合材料壳体等。随着它们的结构越来越复杂、工作环境越来越苛刻,其振动响应问题也越来越突出,由于振动响应超标而引发的碰撞、摩擦等问题也越来越受到人们的关注。
磁流变液是一种新型智能流体材料,在外加磁场作用时,具有阻尼无极可调、能耗低等突出优点。磁流变弹性体是磁流变液的固体模拟,克服了其易沉降、稳定性差的缺点,是一种集磁流变液和弹性体于一体的一种新型智能材料。长期以来,人们对磁流变液、磁流变弹性体等进行了大量研究,并取得了阶段性的研究成果,目前已被广泛应用于振动控制领域。例如,哈尔滨工业大学欧进萍院士等将磁流变阻尼器成功应用于渤海JZ20-2MUQ平台结构的减振;香港理工大学段元峰等将所设计的磁流变阻尼器应用于索承结构中斜拉索的减振;Sharkman研制了使用磁流变液的剪切式旋转阻尼器(吸振器)并将其应用于汽车悬架阻尼主动控制系统实现减振;YALCINTAS等基于能量法研究了磁流变液芯层与弹性材料所组成的自适应磁流变液夹层简支梁的动力特性,并对不同外加磁场作用下的简直夹层梁进行了实验测试。然而,将磁流变材料应用于复合材料及其层合结构的振动主动控制领域的研究还不多见。
在复合材料波纹夹层圆柱壳结构中,目前,还没有出现将磁流变液这种阻尼可控材料加入到波纹夹层结构中的设计。例如,如专利CN201710354091.2和专利CN201510172294.0,分别使用了不同的构想,设计了相关模具,其能成功制备金属波纹夹层圆柱壳和复合材料波纹夹层圆柱壳,但波纹圆柱壳的结构简单,功能单一,而未实现对阻尼性能的主动控制。
已发表的文章:1.K.Wang,S.Luo,Y.Wu,X.F.He,F.Zhao,J.P.Wang*,K.L.Jiang,and S.S.Fan,"Super-aligned carbon nanotube films as current collectors forlightweight and flexible lithium ion batteries",Adv.Funct.Mater.,23,846-853(cover picture),(2013);
2.Y.Wu,H.C.Wu,S.Luo,K.Wang,F.Zhao,Y.Wei,P.Liu,K.L.Jiang,J.P.Wang*,andS.S.Fan,"Entrapping electrode materials within ultrathin carbon nanotubenetwork for flexible thin film lithium ion batteries",RSC Advances,4,20010-20016,(2014);3.K.Wang,Y.Wu,H.C.Wu,Y.F.Luo,D.T.Wang,K.L.Jiang,Q.Q.Li,Y.D.Li,S.S.Fan,and J.P.Wang*,"Super-aligned carbon nanotube films with a thin metalcoating as highly conductive and ultralight current collectors for lithium-ion batteries",J.Power Sources,351,160-168,(2017);4.K.B.Kong,L.J.Yan,Y.F.Luo,D.T.Wang,K.L.Jiang,Q.Q.Li,S.S.Fan,and J.P.Wang*,"Ultrathin MnO2/grapheneoxide/carbon nanotube interlayer as efficient polysulfide-trapping shield forhigh-performance Li-S batteries",Adv.Funct.Mater.,27,1606663,(2017);记录了以下内容:基于碳纳米管薄膜的柔性储能器件研究了超顺排碳纳米管薄膜的力学、电学和化学特性,提出以碳纳米管薄膜作为新型超轻超薄集流体和中间层,构筑具有优异的循环稳定性、机械稳定性、倍率性能、和高能量密度的柔性储能器件。在国际上首次提出用连续的超顺排碳纳米管薄膜作为一种新型的锂离子电池集流体,具有高柔性、低密度、高化学稳定性和机械耐久性等优点。使用碳纳米管薄膜集流体,不仅可以显著减少电池的总重量,同时碳纳米管薄膜的多孔结构也有利于电极浆料的浸润和渗透,增大电极层和集流体之间的接触面积,提高结构稳定性,降低界面电阻。使用碳纳米管薄膜集流体的石墨电极可以获得更好的循环稳定性和倍率性能以及更高的能量密度。碳纳米管薄膜集流体展现出柔性,超轻,浸润性好的优点一种用于锂离子电池的柔性薄膜电极的新颖设计。从垂直碳纳米管阵列中拉出有序的超顺排碳纳米管薄膜作为电极活性材料的柔性骨架和电子通路,通过喷涂方法将电极活性物质引入。与通过传统浆料浇铸方法制备的电极相比,以这种方式制造的电极展现更好的柔性。制备出的全电池由磷酸铁锂正极和钛酸锂负极组成,在0.2mAh cm-2下具有高面容量,1.82V的稳定输出电压。在180度的弯曲条件下仍具有出色的可逆容量。该项研究对柔性便携电子设备的进一步发展有重要意义。锂硫电池碳纳米管基功能型中间层。利用碳纳米管薄膜作为结构骨架,负载氧化锰纳米颗粒和氧化石墨烯薄片,逐层构筑了应用在锂硫电池中的超轻超薄的氧化锰/氧化石墨烯/碳纳米管功能型中间层。该中间层结构一方面可以利用碳纳米管薄膜和氧化石墨烯形成的堆叠结构对多硫化物进行物理阻挡,另一方面氧化锰和氧化石墨烯中的含氧基团对多硫化物形成化学吸附并促进其转化,对多硫化物的“穿梭效应”具有明显的抑制作用,避免了活性物质的流失,进一步提高了硫复合电极的循环和倍率性能,同时可以有效地抑制电极中的自放电现象。
阻尼作为复合材料及其结构动力学性能的一项重要指标,在振动、冲击、噪声控制中的地位十分重要。若能够将可主动控制的磁流变阻尼材料填充到复合材料圆柱壳的波纹夹层中去,且实现对波纹夹层的批量化生产和制备,则可极大地提升复合材料圆柱壳系统的抗振性和稳定性。另外,如果可以将能量采集、能量存储和振动感知的功能也集成到层合圆柱圆柱壳中,这对于多功能、智能复合材料圆柱壳的生产、制造及创新性研究具有十分重要的意义。
发明内容
为解决上述技术问题,本发明提供一种了自供电且振动感知的磁流变夹层波纹圆柱壳及制造方法。该复合材料圆柱壳具有高集成化、多模块化和多功能特征,可实现自供电且能自动感知振动,同时还可无级主动控制磁流变夹层的阻尼性能,并实现整个复合材料圆柱壳振动控制的最终目的。具体技术方案如下:
一种自供电且振动感知的磁流变夹层波纹圆柱壳,设有外圆柱壳、内圆柱壳,在外圆柱壳与内圆柱壳之间设有复合材料波纹夹层,所述复合材料波纹夹层为由多个梯形折线所组成的环状,梯形折线的上底胶粘在内圆柱壳的外圆上,梯形折线的下底胶粘在外圆柱壳的内圆上;梯形折线的上底和/或下底均沿内圆柱壳的轴向设置磁流变阻尼材料单元,所述磁流变阻尼材料单元与复合材料波纹夹层复合为一体;
在内圆柱壳圆周中埋入多个自供电单元;在外圆柱壳中埋入MEMS振动传感器和集成逻辑电路,MEMS传感器在外圆柱壳材料中呈圆周对称排列,
所述自供电单元与集成逻辑电路的供电端连接,集成逻辑电路的输入端与MEMS传感器连接,MEMS传感器的控制端与磁流变阻尼材料单元连接。
所述的自供电单元为层状结构,包括压电陶瓷柔性层、碳纳米管薄膜层,这两层作为一组,其中压电陶瓷层的导线接头连接至碳纳米管的导线接头,每层之间填充绝缘塑料薄膜,构成自供电单元。
所述的MEMS振动传感器选用ADI公司的ADXL001或者MMA9559L型三轴加速度又或者其他同类型的具有体积小精度高的振动传感器。
所述的集成逻辑电路采用型号为MSP430F435单片机。
所述磁流变阻尼材料单元包括密封管,所述密封管内设有磁流变液,在密封管的圆周外侧还设有线圈,硬支撑管套接在设有线圈的密封管上。
每个所述的下底设有X个磁流变阻尼材料单元,每个所述的上底设有Y个磁流变阻尼材料单元,且X的数量要大于Y的数量。
所述复合材料波纹夹层根据不同的使用要求选用不同的材料作为波纹夹层。
本发明进一步公开了一种制备自供电且振动感知的磁流变夹层波纹圆柱壳的方法,步骤如下:
步骤1:制备磁流变阻尼材料单元,将磁流变液注入塑料中压成封闭管;然后在封闭管外缠绕铜线圈以提供大小可控的电磁场,线圈两端尽头各引出一根;最后在外层套上一根带有内涂覆绝缘层的铝合金支撑管以发挥防护及屏蔽作用,从而制成了电磁场大小可控的磁流变阻尼材料单元,并且将磁流变阻尼材料单元以标准件制备;
步骤2:制备自供电单元,按照压电陶瓷薄膜,绝缘塑料薄膜,碳纳米管薄膜层依次铺设,并且压电陶瓷的薄膜的导线连至碳纳米管薄膜,压实,然后在在外边包裹一层绝缘塑料薄膜,仅露出两根导线,得到自供电单元,同样的,自供电单元也可以标准件制备;
步骤3:制备埋入自供电单元的内圆柱壳,将模具预热至60℃,在模具上涂抹脱模剂,铺设碳纤维材料预浸料,将自供电单元置于多层预浸料中央位置,自供电单元呈圆周排列,仅露出两根导线,合上模具外壳并拧紧螺栓,放入热压罐中100℃保温150分钟后取出,得到已埋入自供电单元的内圆柱壳;
步骤4:制备埋入MEMS振动传感器和集成逻辑电路的外圆柱壳,将模具预热至60℃,在模具上涂抹脱模剂,铺设碳纤维材料预浸料,将MEMS振动传感器端口与已经编程的集成逻辑电路端口相连接并且置于多层预浸料中央位置,位于圆柱壳厚度中心,将集成逻辑电路置于多层预浸料的中央位置,靠近圆柱壳上端,仅在上端露出四根导线,分别是输入端口和输出端口,合上模具外壳并拧紧螺栓,放入热压罐中100℃保温150分钟后取出,得到已埋入MEMS振动传感器和集成逻辑电路的外圆柱壳;
步骤5:制作填充磁流变阻尼材料单元的复合材料波纹夹层,将模具预热至60℃,在波纹夹层模具的模具中柱上先安装好内侧条,涂上脱模剂,铺设复合材料预浸料,在内侧条的上端部和下端部及外侧条的中空部的处埋入上述步骤制作好的磁流变阻尼材料单元,再铺设复合材料预浸料,所述的预浸料将填充磁流变阻尼材料单元包裹在中心位置,用螺栓固定,安装好,再安装外侧条,外侧条用螺栓固定,最后两个安装外壳将包括内侧条、外侧条的模具中柱合夹在一起,用夹紧螺栓螺接在安装外壳上的吊耳上;
步骤6:将安装好的波纹夹层模具放入热压罐中,用100℃加热150分钟后,随炉冷却至室温后将模具拆开拆开外壳,拆开外侧条,由于步骤5模具上涂抹了脱模剂,轻敲便可脱模,得到已填充磁流变阻尼材料单元的复合材料波纹夹层;
步骤7:将每个磁流变阻尼材料单元的上下端导线分别通过导电铜线并联焊接起来汇聚成一根总成,即,正极一根,负极一根;
步骤8:将外圆柱壳、内圆柱壳与复合材料波纹夹层胶粘在一起,将内圆柱壳里的若干个自供电单元露出的正极和负极分别用铜线焊接在一起,将此自供电单元导线与外圆柱壳中的逻辑电路供电端连接,将逻辑电路的控制端与波纹夹层中的填充磁流变阻尼材料单元导线总成连接。
本发明的优点是:本发明的优点是:内圆柱壳采集振动能并转化为电能进行存储;外圆柱壳通过埋入的MEMS振动传感器和集成逻辑电路感知并检测结构振动的强弱;波纹夹层梯形斜面可用于吸收冲击力、提高刚性且作支撑结构;磁流变阻尼材料单元发挥阻尼缓冲作用,最终可以实现整体复合材料圆柱壳结构阻尼性能的自调节无级主动控制。
附图说明
图1为本发明的波纹夹层模具,其中1为模具中柱,2为波纹夹层外侧条,3为波纹夹层内侧条,4为模具外壳,21为外侧条中空部;
图2为本发明的填充磁流变阻尼材料单元,其中5为填充磁流变阻尼材料的支撑外壳,6为装有磁流变阻尼液体的塑料管,7为缠绕在磁流变阻尼液体塑料管外的导电线圈;
图3为本发明中的成品自供电且振动感知的磁流变夹层波纹圆柱壳(未表现MEMS传感器、集成逻辑电路和自供电单元),其中8为外圆柱壳,9为填充磁流变阻尼材料单元,10为复合材料波纹夹层,11为内圆柱壳;
图4为本发明中的自供电填充单元,12为绝缘塑料薄膜,13为压电陶瓷薄膜,14为碳纳米管薄膜;
图5为本发明的自供电且振动感知的磁流变夹层波纹圆柱壳,15为MEMS传感器,16为自供电单元,17为集成逻辑电路;
图6为图5的俯视图;
图7为各构件的电连接示意图;
图8为外侧条与模具中柱的位置示意图。
具体实施方式
下面结合附图具体说明本发明,如图所示,本发明的自供电且振动感知的磁流变夹层波纹圆柱壳设有外圆柱壳、内圆柱壳,在外圆柱壳与内圆柱壳之间设有复合材料波纹夹层,所述复合材料波纹夹层为由多个梯形折线所组成的环状,梯形折线的上底胶粘在内圆柱壳的外圆上,梯形折线的下底胶粘在外圆柱壳的内圆上;梯形折线的上底和/或下底均沿内圆柱壳的轴向设置磁流变阻尼材料单元,所述磁流变阻尼材料单元与复合材料波纹夹层复合为一体;
在内圆柱壳圆周中埋入多个自供电单元;在外圆柱壳中埋入MEMS振动传感器和集成逻辑电路,MEMS传感器在外圆柱壳材料中呈圆周对称排列,
所述自供电单元与集成逻辑电路的供电端连接,集成逻辑电路的输入端与MEMS传感器连接,MEMS传感器的控制端与磁流变阻尼材料单元连接;
所述的自供电单元为层状结构,包括压电陶瓷柔性层、碳纳米管薄膜层,这两层作为一组,其中压电陶瓷层的导线接头连接至碳纳米管的导线接头,每层之间填充绝缘塑料薄膜,构成自供电单元。
所述的MEMS振动传感器选用ADI公司的ADXL001或者MMA9559L型三轴加速度又或者其他同类型的具有体积小精度高的振动传感器。
所述的集成逻辑电路采用型号为MSP430F435单片机。
所述磁流变阻尼材料单元包括密封管,所述密封管内设有磁流变液,在密封管的圆周外侧还设有线圈,硬支撑管套接在设有线圈的密封管上。
每个所述的下底设有X个磁流变阻尼材料单元,每个所述的上底设有Y个磁流变阻尼材料单元,且X的数量要大于Y的数量。
所述复合材料波纹夹层根据不同的使用要求选用不同的材料作为波纹夹层。
所述的自供电单元为层状结构,包括有压电陶瓷柔性层,碳纳米管薄膜层,这两层作为一组,其中压电陶瓷层的导线接头连接至碳纳米管的导线接头,根据需要可设置若干组,每层之间填充绝缘塑料薄膜,构成自供电单元,整个自供电单元用绝缘塑料薄膜包裹,仅让若干组汇成的总导线露出。所述的压电陶瓷柔性层作用在于收集振动的能量并转化为电能,所述的碳纳米管薄膜层的作用在于将压电陶瓷柔性层所产生的电能进行储存,其10%-20%的电能用来给外圆柱壳里的MEMS传感器和CPU供电,剩余电能主要给填充在波纹夹层中的填充磁流变阻尼单元供电。
所述的碳纳米管薄膜是一种新型超轻超薄集流体和中间层,具有优异的循环稳定性、机械稳定性、倍率性能、和高能量密度的柔性储能器件。
所述磁流变阻尼材料单元包括密封管,所述密封管内设有磁流变液,在密封管的圆周外侧还设有线圈,硬支撑管套接在设有线圈的密封管上。
每个所述的下底设有X个磁流变阻尼材料单元,每个所述的上底设有Y个磁流变阻尼材料单元,且X的数量要大于Y的数量,由于外圆柱壳比内圆柱壳的面积更大,且较多的X数量易于发挥多个磁流变阻尼材料单元的阻尼控制效果。
所述复合材料波纹夹层根据不同的使用要求选用不同的材料作为波纹夹层,例如碳纤维波纹夹层、玻璃纤维波纹夹层、芳纶纤维波纹夹层。
本发明进一步公开了一种自供电且振动感知的磁流变夹层波纹圆柱壳及制造方法,包括以下步骤:
步骤1:制备磁流变阻尼材料单元,将磁流变液注入塑料中压成封闭管;然后在封闭管外缠绕铜线圈以提供大小可控的电磁场,线圈两端尽头各引出一根;最后在外层套上一根带有内涂覆绝缘层的铝合金支撑管以发挥防护及屏蔽作用,从而制成了电磁场大小可控的磁流变阻尼材料单元,并且将磁流变阻尼材料单元以标准件制备;
步骤2:制备自供电单元,按照压电陶瓷薄膜,绝缘塑料薄膜,碳纳米管薄膜层依次铺设,并且压电陶瓷的薄膜的导线连至碳纳米管薄膜,压实,然后在在外边包裹一层绝缘塑料薄膜,仅露出两根导线,得到自供电单元,同样的,自供电单元也可以标准件制备。
步骤3:制备埋入自供电单元的内圆柱壳,将模具预热至60℃,在模具上涂抹脱模剂,铺设碳纤维材料预浸料,将自供电单元置于多层预浸料中央位置,自供电单元呈圆周排列,下图中展示了16个,还可以是其他数量的自供电单元,可根据需要设置,如12个、20个等等,仅露出两根导线,合上模具外壳并拧紧螺栓,放入热压罐中100℃保温150分钟后取出,得到已埋入自供电单元的内圆柱壳。
步骤4:制备埋入MEMS振动传感器和集成逻辑电路的外圆柱壳,将模具预热至60℃,在模具上涂抹脱模剂,铺设碳纤维材料预浸料,将12个或其他数量,如16个、20个等等的MEMS振动传感器端口与已经编程的集成逻辑电路端口相连接并且置于多层预浸料中央位置,位于圆柱壳厚度中心,将集成逻辑电路置于多层预浸料的中央位置,靠近圆柱壳上端,仅在上端露出四根导线,分别时输入端口和输出端口,合上模具外壳并拧紧螺栓,放入热压罐中100℃保温150分钟后取出,得到已埋入MEMS振动传感器和集成逻辑电路的外圆柱壳。
步骤5:制作填充磁流变阻尼材料单元的复合材料波纹夹层,将模具预热至60℃,在波纹夹层模具的模具中柱上先安装好内侧条,涂上脱模剂,铺设复合材料预浸料,在内侧条的上端部和下端部间及外侧条的中空部埋入上述步骤制作好的磁流变阻尼材料单元,再铺设复合材料预浸料,所述的预浸料将填充磁流变阻尼材料单元包裹在中心位置,用螺栓固定,安装好,再安装外侧条,外侧条用螺栓固定,最后两个安装外壳将包括内侧条、外侧条的模具中柱合夹在一起,用夹紧螺栓螺接在安装外壳上的吊耳上;
步骤6:将安装好的波纹夹层模具放入热压罐中,用100℃加热150分钟后,随炉冷却至室温后将模具拆开拆开外壳,拆开外侧条,由于步骤5模具上涂抹了脱模剂,轻敲便可脱模,得到已填充磁流变阻尼材料单元的复合材料波纹夹层;
步骤7:将每个磁流变阻尼材料单元的上下端导线分别通过导电铜线并联焊接起来汇聚成一根总成,即,正极一根,负极一根。
步骤8:将外圆柱壳、内圆柱壳与复合材料波纹夹层胶粘在一起,将内圆柱壳里的若干个自供电单元露出的正极和负极分别用铜线焊接在一起,将此自供电单元导线与外圆柱壳中的逻辑电路输入端口连接,将逻辑电路的输出端口与波纹夹层中的填充磁流变阻尼材料单元导线总成连接。
生效原理:当整体圆柱壳结构受到振动时,内圆柱壳里的压电陶瓷薄膜将机械振动的动能转化为电能,首先将大部分电能在碳纳米薄膜管薄膜层储存起来,当储备的电能足够时,首先电能从集成逻辑电路输入端口进入,若12个MEMS传感器检测的时域信号的平均峰峰值Save=(S1+S2…+S12)/12高于某一设定值S0,即Save>S0,则集成逻辑电路的输出端口接通向波纹夹层结构中的填充变阻尼单元供电,形成电磁场,进而达到主动控制并增大磁流变夹层阻尼的作用,直到Save≤S0,则停止供电。重复上述步骤,便实现了整个复合材料圆柱壳振动主动控制的目的。

Claims (8)

1.一种自供电且振动感知的磁流变夹层波纹圆柱壳,其特征在于:设有外圆柱壳、内圆柱壳,在外圆柱壳与内圆柱壳之间设有复合材料波纹夹层,所述复合材料波纹夹层为由多个梯形折线所组成的环状,梯形折线的上底胶粘在内圆柱壳的外圆上,梯形折线的下底胶粘在外圆柱壳的内圆上;梯形折线的上底和/或下底均沿内圆柱壳的轴向设置磁流变阻尼材料单元,所述磁流变阻尼材料单元与复合材料波纹夹层复合为一体;
在内圆柱壳圆周中埋入多个自供电单元;在外圆柱壳中埋入MEMS振动传感器和集成逻辑电路,MEMS传感器在外圆柱壳材料中呈圆周对称排列,
所述自供电单元与集成逻辑电路的供电端连接,集成逻辑电路的输入端与MEMS传感器连接,MEMS传感器的控制端与磁流变阻尼材料单元连接。
2.根据权利要求1所述的自供电且振动感知的磁流变夹层波纹圆柱壳,其特征在于:所述的自供电单元为层状结构,包括压电陶瓷柔性层、碳纳米管薄膜层,这两层作为一组,其中压电陶瓷层的导线接头连接至碳纳米管的导线接头,每层之间填充绝缘塑料薄膜,构成自供电单元。
3.根据权利要求1所述的自供电且振动感知的磁流变夹层波纹圆柱壳,其特征在于:所述的MEMS振动传感器选用ADI公司的ADXL001或者MMA9559L型三轴加速度又或者其他同类型的具有体积小精度高的振动传感器。
4.根据权利要求1所述的自供电且振动感知的磁流变夹层波纹圆柱壳,其特征在于:所述的集成逻辑电路采用型号为MSP430F435单片机。
5.根据权利要求1所述的自供电且振动感知的磁流变夹层波纹圆柱壳,其特征在于:所述磁流变阻尼材料单元包括密封管,所述密封管内设有磁流变液,在密封管的圆周外侧还设有线圈,硬支撑管套接在设有线圈的密封管上。
6.根据权利要求1所述的自供电且振动感知的磁流变夹层波纹圆柱壳,其特征在于:每个所述的下底设有X个磁流变阻尼材料单元,每个所述的上底设有Y个磁流变阻尼材料单元,且X的数量要大于Y的数量。
7.根据权利要求1所述的自供电且振动感知的磁流变夹层波纹圆柱壳,其特征在于:所述复合材料波纹夹层根据不同的使用要求选用不同的材料作为波纹夹层。
8.一种制备自供电且振动感知的磁流变夹层波纹圆柱壳的方法,其特征在于步骤如下:
步骤1:制备磁流变阻尼材料单元,将磁流变液注入塑料中压成封闭管;然后在封闭管外缠绕铜线圈以提供大小可控的电磁场,线圈两端尽头各引出一根;最后在外层套上一根带有内涂覆绝缘层的铝合金支撑管以发挥防护及屏蔽作用,从而制成了电磁场大小可控的磁流变阻尼材料单元,并且将磁流变阻尼材料单元以标准件制备;
步骤2:制备自供电单元,按照压电陶瓷薄膜,绝缘塑料薄膜,碳纳米管薄膜层依次铺设,并且压电陶瓷的薄膜的导线连至碳纳米管薄膜,压实,然后在在外边包裹一层绝缘塑料薄膜,仅露出两根导线,得到自供电单元,同样的,自供电单元也可以标准件制备;
步骤3:制备埋入自供电单元的内圆柱壳,将模具预热至60℃,在模具上涂抹脱模剂,铺设碳纤维材料预浸料,将自供电单元置于多层预浸料中央位置,自供电单元呈圆周排列,仅露出两根导线,合上模具外壳并拧紧螺栓,放入热压罐中100℃保温150分钟后取出,得到已埋入自供电单元的内圆柱壳;
步骤4:制备埋入MEMS振动传感器和集成逻辑电路的外圆柱壳,将模具预热至60℃,在模具上涂抹脱模剂,铺设碳纤维材料预浸料,将MEMS振动传感器端口与已经编程的集成逻辑电路端口相连接并且置于多层预浸料中央位置,位于圆柱壳厚度中心,将集成逻辑电路置于多层预浸料的中央位置,靠近圆柱壳上端,仅在上端露出四根导线,分别是输入端口和输出端口,合上模具外壳并拧紧螺栓,放入热压罐中100℃保温150分钟后取出,得到已埋入MEMS振动传感器和集成逻辑电路的外圆柱壳;
步骤5:制作填充磁流变阻尼材料单元的复合材料波纹夹层,将模具预热至60℃,在波纹夹层模具的模具中柱上先安装好内侧条,涂上脱模剂,铺设复合材料预浸料,在内侧条的上端部和下端部及外侧条的中空部的处埋入上述步骤制作好的磁流变阻尼材料单元,再铺设复合材料预浸料,所述的预浸料将填充磁流变阻尼材料单元包裹在中心位置,用螺栓固定,安装好,再安装外侧条,外侧条用螺栓固定,最后两个安装外壳将包括内侧条、外侧条的模具中柱合夹在一起,用夹紧螺栓螺接在安装外壳上的吊耳上;
步骤6:将安装好的波纹夹层模具放入热压罐中,用100℃加热150分钟后,随炉冷却至室温后将模具拆开拆开外壳,拆开外侧条,由于步骤5模具上涂抹了脱模剂,轻敲便可脱模,得到已填充磁流变阻尼材料单元的复合材料波纹夹层;
步骤7:将每个磁流变阻尼材料单元的上下端导线分别通过导电铜线并联焊接起来汇聚成一根总成,即,正极一根,负极一根;
步骤8:将外圆柱壳、内圆柱壳与复合材料波纹夹层胶粘在一起,将内圆柱壳里的若干个自供电单元露出的正极和负极分别用铜线焊接在一起,将此自供电单元导线与外圆柱壳中的逻辑电路供电端连接,将逻辑电路的控制端与波纹夹层中的填充磁流变阻尼材料单元导线总成连接。
CN201910326688.5A 2019-04-23 2019-04-23 一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法 Active CN110077046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910326688.5A CN110077046B (zh) 2019-04-23 2019-04-23 一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910326688.5A CN110077046B (zh) 2019-04-23 2019-04-23 一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法

Publications (2)

Publication Number Publication Date
CN110077046A true CN110077046A (zh) 2019-08-02
CN110077046B CN110077046B (zh) 2020-12-18

Family

ID=67416132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910326688.5A Active CN110077046B (zh) 2019-04-23 2019-04-23 一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法

Country Status (1)

Country Link
CN (1) CN110077046B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195642A (zh) * 2020-09-24 2021-01-08 苏州经结纬面料科技有限公司 一种针控调节设备及其使用方法
CN114776747B (zh) * 2022-03-15 2023-09-22 东北大学 用于抑制航空发动机滑油箱振动的复材双曲波纹夹芯结构及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138908A (ja) * 1999-11-12 2001-05-22 Showa Alum Corp 防音制振材
CN102418765A (zh) * 2011-11-03 2012-04-18 重庆大学 一种自感知自供电自适应控制磁流变减振系统
DE102010043333A1 (de) * 2010-11-03 2012-05-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flexibles Element
CN104723579A (zh) * 2015-04-13 2015-06-24 哈尔滨工业大学 一种全复合材料波纹夹层圆柱壳的组合模具
CN108471257A (zh) * 2018-04-24 2018-08-31 哈尔滨工业大学 一种压电振动能量收集结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138908A (ja) * 1999-11-12 2001-05-22 Showa Alum Corp 防音制振材
DE102010043333A1 (de) * 2010-11-03 2012-05-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Flexibles Element
CN102418765A (zh) * 2011-11-03 2012-04-18 重庆大学 一种自感知自供电自适应控制磁流变减振系统
CN104723579A (zh) * 2015-04-13 2015-06-24 哈尔滨工业大学 一种全复合材料波纹夹层圆柱壳的组合模具
CN108471257A (zh) * 2018-04-24 2018-08-31 哈尔滨工业大学 一种压电振动能量收集结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195642A (zh) * 2020-09-24 2021-01-08 苏州经结纬面料科技有限公司 一种针控调节设备及其使用方法
CN114776747B (zh) * 2022-03-15 2023-09-22 东北大学 用于抑制航空发动机滑油箱振动的复材双曲波纹夹芯结构及其应用

Also Published As

Publication number Publication date
CN110077046B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Moyer et al. Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats
Mackanic et al. Stretchable electrochemical energy storage devices
Galos et al. Energy storage structural composites with integrated lithium‐ion batteries: a review
CN105810867B (zh) 固态聚合物锂电池组及其制备方法
Koyama et al. Harnessing the actuation potential of solid‐state intercalation compounds
US20090047453A1 (en) Nano-enhanced smart panel
Sun et al. Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/solid electrolyte supercapacitor interleaves
Johannisson et al. Shape-morphing carbon fiber composite using electrochemical actuation
CN110077046A (zh) 一种自供电且振动感知的磁流变夹层波纹圆柱壳及制备方法
CN203707250U (zh) 锂电池
CN102881463A (zh) 一种纤维状超级电容器及其制备方法
Li et al. Stretchable energy storage devices based on carbon materials
US11661997B2 (en) Flywheel energy storage device
CN107994149A (zh) 混合结构电池包
CN110065273A (zh) 一种填充磁流变阻尼复合材料的夹层波纹圆柱壳及其制造方法
CN113619232B (zh) 一种结构功能一体化超电复合材料及其制备方法
CN112751073A (zh) 结构一体化电池及其制备方法、带电池的设备
Zheng et al. Integrated nanospheres occupancy-removal and thermoforming into bulk piezoelectric and triboelectric hybrid nanogenerators with inverse opal nanostructure
CN202231097U (zh) 一种高倍率锂离子电池及其复合极片
EP3569403A1 (en) Multifunctional composite material
CN104752643B (zh) 铅蓄电池
CN109103370B (zh) 一种轻量化电动汽车电池箱
CN203537267U (zh) 基于高频摩擦发电机的风力发电装置
Pattarakunnan et al. A review of energy storage composite structures with embedded lithium-ion batteries
Juntao et al. Experimental evaluation of energy efficiency and structural efficiency of ultra-thin carbon fiber composite structural battery tube

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant