CN110061788A - 通信设备以及由通信设备执行的方法 - Google Patents

通信设备以及由通信设备执行的方法 Download PDF

Info

Publication number
CN110061788A
CN110061788A CN201910260580.0A CN201910260580A CN110061788A CN 110061788 A CN110061788 A CN 110061788A CN 201910260580 A CN201910260580 A CN 201910260580A CN 110061788 A CN110061788 A CN 110061788A
Authority
CN
China
Prior art keywords
communication
upstream
communication channel
signal
communication equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910260580.0A
Other languages
English (en)
Other versions
CN110061788B (zh
Inventor
布鲁斯·柯里文
里奇·普罗丹
里奥·蒙特勒伊
托马斯·科尔策
雷·戈麦斯
乔纳森·敏
卢方
唐纳德·麦克穆尔林
凯文·米勒
彼得·坎吉安
马克·劳巴克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Broadcom Corp
Original Assignee
Avago Technologies General IP Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avago Technologies General IP Singapore Pte Ltd filed Critical Avago Technologies General IP Singapore Pte Ltd
Publication of CN110061788A publication Critical patent/CN110061788A/zh
Application granted granted Critical
Publication of CN110061788B publication Critical patent/CN110061788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/18Monitoring during normal operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6421Medium of transmission, e.g. fibre, cable, radio, satellite

Abstract

本揭露涉及通信设备以及由通信设备执行的方法。一种通信设备(例如,电缆调制解调器(CM))以及由通信设备执行的方法,通信设备包括数模转换器(DAC)和功率放大器(PA),产生经由通信接口传输至另一通信设备(例如,电缆调制解调器终端系统(CMTS))的信号。CM包括诊断分析器,诊断分析器基于与全带宽对应的全带样本捕获和/或子集(例如,窄带)样本捕获对信号进行采样,以产生(例如,CM与CMTS之间的上游(US)通信信道)全带和/或子集信号捕获。诊断分析器可被配置为基于任何期望的参数、条件、和/或触发产生信号的样本捕获。

Description

通信设备以及由通信设备执行的方法
分案申请的相关信息
本案是分案申请。该分案的母案是申请日为2015年7月28日、申请号为201510452288.0、发明名称为“通信设备以及由通信设备执行的方法”的发明专利申请案。
相关专利申请的交叉引用
本申请请求于2014年7月28日提交的题为“基于电缆的通信系统内的噪音定位”的美国临时申请号62/030,041、于2015年2月4日提交的题为“基于电缆的通信系统内的噪音定位”的美国临时申请号62/112,093、于2015年5月6日提交的题为“基于电缆的通信系统内的噪音定位”的美国临时申请号62/157,770的优先权、以及于2015年7月15日提交的题为“基于电缆的通信系统内的噪音定位”的美国申请号为14/800177的优先权。通过引用将所有申请的全部内容结合在此并且出于所有之目的构成美国实用型专利申请的一部分。
技术领域
本公开整体涉及通信系统,更具体地,涉及识别和表征通信系统内的各个部件的操作,其中包括该通信系统内产生的问题的来源。
背景技术
多年来,数据通信系统一直在持续不断的发展。该通信系统的主要目标是在各设备之间成功地传输信息。不幸的是,许多事件可能不利地影响在该系统内的传输信号,从而导致通信的裂化或者甚至完全失败。负面影响的实例包括由各种来源导致的干扰和噪音,其中包括其他通信、自然噪音和人为噪音、低质量链接、劣化的或者损坏的接口以及连接器等。
一些通信系统使用前向纠错(FEC)编码和/或错误检验和校正(ECC)编码来增加可靠性和在各设备之间传输的信息量。当传输过程中的信号发生一种或者多种错误时,接收器可采用FEC或者ECC编码来尝试检测和/或校正一种或者多种错误。
该发展领域中的持续和主要方向是不断地尝试在通信系统内实现给定的比特错误率(BER)或者符号错误率(SER)所需的低信噪比(SNR)。Shannon限制是对给定调制和码率的信道能力的理论约束。理想目标是尝试满足通信信道中的Shannon信道能力限制。Shannon限制可被视为具有特定SNR的通信信道中使用的每个单位带宽的数据速率(即,频谱效率),其中,通过任意低BER或者SER的通信信道的传输是可以实现的。
多年来,数据通信系统一直在持续不断的发展。有时,可能产生影响该通信系统内的各个部件中的一个或者多个的问题,因此,整体性能低于最佳状态。诸如设备故障、劣化的接口或者连接器等各种问题自身可能引起问题和/或允许外部噪音进入链路并且降低该通信系统内的通信的整体效力。
通常,由维修人员对客户抱怨服务质量差的一个或者多个位置执行维修请求,对该等问题执行诊断。此外,维修人员一次仅可分析一个给定的位置。对多用户通信系统内的多个位置执行分析需要大量的时间,并且这个过程可能非常费力并且成本密集。
发明内容
根据本发明的一个方面,提供一种通信设备,包括:诊断分析器,配置为:产生所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获;并且处理所述上游通信信道的所述样本捕获,以产生所述上游通信信道的频谱的样本或者所述上游通信信道的每个符号的集成功率的直方图中的至少一个;和通信接口,配置为将所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的至少一个传输至所述另一通信设备或者前摄网络维护(PNM)通信设备中的至少一个并且供其使用,以确定与所述上游通信信道的性能相关联的至少一个特性。
优选地,进一步包括:处理器,配置为产生第一信号;数模转换器(DAC),配置为处理所述第一信号,以产生第二信号;功率放大器(PA),耦接或者连接至所述数模转换器并且配置为处理所述第二信号,以产生第三信号;所述诊断分析器被配置为基于所述功率放大器的输出节点产生所述上游通信信道的所述样本捕获;并且所述通信接口被配置为将所述第三信号传输至所述另一通信设备。
优选地,所述诊断分析器被配置为:当所述通信接口将信号传输至所述另一通信设备时,产生所述上游通信信道的所述样本捕获;当所述通信接口不将任何信号传输至所述另一通信设备时,产生所述上游通信信道的另一样本捕获;并且处理所述上游通信信道的所述另一样本捕获,以产生所述上游通信信道的所述频谱的第一其他样本或者所述上游通信信道的另一频谱的第二其他样本。和所述通信接口配置为将所述上游通信信道的所述另一样本捕获、所述上游通信信道的所述频谱的所述第一其他样本、或者所述上游通信信道的所述另一频谱的所述第二其他样本中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的至少一个并且供其使用,以确定与所述上游通信信道的性能相关联的所述至少一个特性。
优选地,所述诊断分析器进一步被配置为:当所述通信接口将第二信号传输至所述另一通信设备时,从所述通信接口接收第一信号;并且基于使所述第一信号衰减或者从所述第一信号中消除至少一部分所述第二信号中的至少一个来处理所述第一信号,以产生所述上游通信信道的所述样本捕获。
优选地,所述诊断分析器被配置为处理所述上游通信信道的所述样本捕获,以产生对应于所述上游通信信道的所述样本捕获的局部处理信息;和所述通信接口配置为将对应于所述上游通信信道的所述样本捕获的所述局部处理信息传输至所述另一通信设备或者所述前摄网络维护通信设备中的至少一个并且供其使用,以完成所述局部处理信息的处理,从而产生对应于所述上游通信信道的所述样本捕获的完全处理信息并且基于所述完全处理信息确定与所述上游通信信道的性能相关联的至少另一个特性。
优选地,所述诊断分析器被配置为:产生所述上游通信信道的全带频谱的第一样本捕获;并且产生所述上游通信信道的所述全带频谱的子集的第二样本捕获;以及所述通信接口被配置为将所述第一样本捕获或者所述第二样本捕获中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的所述至少一个并且供其使用,以确定与所述上游通信信道的性能相关联的至少另一个特性。
优选地,所述诊断分析器进一步被配置为:基于至少一个触发条件产生所述上游通信信道的所述样本捕获,所述至少一个触发条件包括下列项中的至少一个:从所述另一通信设备接收的第一时间戳、从所述前摄网络维护通信设备接收的第二时间戳、能量阈值、功率阈值、从所述另一通信设备接收的第一控制信号、从所述前摄网络维护通信设备接收的第二控制信号、或者检测与所述上游通信信道相关联的猝发噪音事件或削波事件中的至少一个。
优选地,所述通信接口进一步被配置为:支持卫星通信系统、无线通信系统、有线通信系统、光纤通信系统、或者移动通信系统中的至少一种通信。
根据本发明的另一个方面,提供一种通信设备,包括:通信接口;和处理器,所述处理器或者所述通信接口中的至少一个被配置为:支持与另一通信设备的通信;接收以下各项中的至少一个:所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获、基于所述上游通信信道的所述样本捕获的所述上游通信信道的频谱的样本、或者所述上游通信信道的每个符号的集成功率的直方图,其中,所述另一通信设备包括诊断分析器,配置为产生所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图;并且处理所述上游通信信道的所述样本捕获、基于所述上游通信信道的所述样本捕获的所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的所述至少一个,以确定与所述另一通信设备和所述通信设备之间的所述上游通信信道的性能相关联的至少一个特性。
优选地,所述处理器或者所述通信接口中的所述至少一个进一步被配置为:从所述另一通信设备接收信号;基于从另一通信设备接收的所述信号产生另一样本捕获;接收所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的所述至少一个,其中,所述另一通信设备包括所述诊断分析器,配置为在所述另一通信设备将所述信号传输至所述通信设备时产生所述样本捕获;并且处理所述另一信号捕获和处理所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的所述至少一个,以确定与所述另一通信设备和所述通信设备之间的所述上游通信信道的性能相关联的所述至少一个特性。
优选地,所述处理器或者所述通信接口中的所述至少一个进一步被配置为:从另一通信设备接收信号;基于从另一通信设备接收的所述信号产生在所述另一通信设备与所述通信设备之间的所述上游通信信道的全带频谱的第一样本捕获;基于从另一通信设备接收的所述信号产生在所述另一通信设备与所述通信设备之间的所述上游通信信道的所述全带频谱的子集的第二样本捕获;并且处理所述样本捕获以及处理所述第一样本捕获或者所述第二样本捕获中的至少一个,以确定与所述另一通信设备和所述通信设备之间的所述上游通信信道的性能相关联的至少另一个特性。
优选地,进一步包括:电缆头端发射器或者电缆调制解调终端系统(CMTS),所述电缆头端发射器或者所述电缆调制解调终端系统(CMTS)包括前摄网络维护(PNM)功能模块,并且其中,所述另一通信设备是电缆调制解调器。
优选地,所述处理器或者所述通信接口中的所述至少一个进一步被配置为:支持卫星通信系统、无线通信系统、有线通信系统、光纤通信系统、或者移动通信系统中的至少一种通信。
根据本发明的另一个方面,提供一种由通信设备执行的方法,所述方法包括:产生所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获;处理所述上游通信信道的所述样本捕获,以产生所述上游通信信道的频谱的样本或者所述上游通信信道的每个符号的集成功率的直方图中的至少一个;并且经由所述通信设备的通信接口将以下各项中的至少一个传输至所述另一通信设备或者前摄网络维护(PNM)通信设备中的至少一个并且供其使用,以确定与所述上游通信信道的性能相关联的至少一个特性:所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图。
优选地,进一步包括:使用数模转换器(DAC)处理第一信号,以产生第二信号;使用功率放大器(PA)处理所述第二信号,以产生第三信号;基于所述功率放大器的输出节点产生所述上游通信信道的所述样本捕获;并且经由所述通信设备的所述通信接口将所述第三信号传输至所述另一通信设备。
优选地,进一步包括:当所述通信接口将信号传输至所述另一通信设备时,产生所述上游通信信道的所述样本捕获;当所述通信接口不将任何信号传输至所述另一通信设备时,产生所述上游通信信道的另一样本捕获;处理所述上游通信信道的所述另一样本捕获,以产生所述上游通信信道的所述频谱的第一其他样本或者所述上游通信信道的另一频谱的第二其他样本;并且经由所述通信设备的所述通信接口将所述上游通信信道的所述另一样本捕获、所述上游通信信道的所述频谱的所述第一其他样本、或者所述上游通信信道的所述另一频谱的所述第二其他样本中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的所述至少一个并且供供其使用,以确定与所述上游通信信道的性能相关联的所述至少一个特性。
优选地,进一步包括:当所述通信接口将第二信号传输至所述另一通信设备时,从所述通信接口接收第一信号;并且当产生所述上游通信信道的所述样本捕获时,基于使所述第一信号衰减或者从所述第一信号中消除至少一部分所述第二信号中的至少一个来处理所述第一信号。
优选地,进一步包括:处理所述上游通信信道的所述样本捕获,以产生对应于所述上游通信信道的所述样本捕获的局部处理信息;并且经由所述通信设备的所述通信接口将对应于所述上游通信信道的所述样本捕获的所述局部处理信息传输至所述另一通信设备或者所述前摄网络维护通信设备中的至少一个并且供其使用,以完成所述局部处理信息的处理,从而产生对应于所述上游通信信道的所述样本捕获的完全处理信息并且基于所述完全处理信息确定与所述上游通信信道的性能相关联的至少另一个特性。
优选地,进一步包括:产生所述上游通信信道的全带频谱的第一样本捕获;产生所述上游通信信道的所述全带频谱的子集的第二样本捕获;并且经由所述通信设备的所述通信接口将所述第一样本捕获或者所述第二样本捕获中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的所述至少一个并且供其使用,以确定与所述上游通信信道的性能相关联的至少另一个特性。
优选地,进一步包括:基于至少一个触发条件产生所述上游通信信道的所述样本捕获,所述至少一个触发条件包括下列项中的至少一个:从所述另一通信设备接收的第一时间戳、从所述前摄网络维护通信设备接收的第二时间戳、能量阈值、功率阈值、从所述另一通信设备接收的第一控制信号、从所述前摄网络维护通信设备接收的第二控制信号、或者检测与所述上游通信信道相关联的猝发噪音事件或者削波事件中的至少一个。
附图说明
图1A是示出了一个或者多个通信系统的实施方式的示图。
图1B是示出了一个或者多个通信系统的另一实施方式的示图。
图2A是示出了在一个或者多个通信系统内操作的通信设备(CD)的实施例的示图。
图2B是示出了在一个或者多个通信系统内操作的CD的另一实施例的示图。
图3A是示出了一个或者多个通信系统内的CD之间通信的实施例的示图。
图3B是示出了集成功率直方图生成功能模块的实施例的示图。
图4是示出了在CD内实现的信道器的实施例的示图。
图5A是示出了正交频分多路复用(OFDM)和/或正交频分多址访问(OFDMA)的实施例的示图。
图5B是示出了OFDM和/或OFDMA的另一实施例的示图。
图5C是示出了OFDM和/或OFDMA的另一实施例的示图。
图5D是示出了OFDM和/或OFDMA的另一实施例的示图。
图5E是示出了单载波(SC)信令的实施例的示图。
图6是示出了不同CD内的事件的同步的实施例的示图。
图7A是示出了在一种或者多种通信系统内操作的其他通信设备的另一实施例的示图。
图7B是示出了包括上游诊断分析器(UDA)的CD的实施例的示图。
图7C是示出了包括UDA的CD的实施例的示图。
图8是示出了由一种或者多种通信设备执行的方法的实施方式的示图。
图9A是示出了由一种或者多种通信设备执行的方法的另一实施方式的示图。
图9B是示出了由一种或者多种通信设备执行的方法的另一实施方式的示图。
具体实施方式
图1A是示出了一种或者多种通信系统的实施方式101的示图。一个或者多个网络段116为至少两个通信设备110与112(也被称之为示图中的特定位置处的CD)提供通信相互连接性。应注意,此处,可以整体使用术语‘设备’做出对通信设备的整体引用(例如,指代通信设备110时的设备110或者CD 110,或者指代通信设备110和112时的设备110和112、或者CD 110或CD 112)。总而言之,一种或者多种通信系统内包括任意期望数目的通信设备(例如,如由通信设备114所示)。
使用各种通信媒介中的任一种可以实现一个或者多个网络段116内的各种通信链路,各种通信媒介包括通信链路,实现为无线、有线、光学、卫星、微波、和/或其任一组合等通信链路。此外,在一些实例中,不同类型的通信链路可协作形成任意两种通信设备之间的连接路径。考虑一种可能实施例,设备110与设备112之间的通信路径可包括有线通信链路构成的一些段和光学通信链路构成的其他段。还应注意,设备110-114可以是包括固定设备、移动设备、便携式设备等各种类型的设备并且可支持包括数据、电话、电视、互联网、媒介、同步等多种服务或者服务流中的任一种的通信。
在操作的实施例中,设备110包括支持与其他设备112-114中的一个或者多个通信的通信接口。该通信可以是向其他设备112-114中的一个或多个发送或从其他设备112-114中的一个或者多个接收的双向通信、或者是从其他设备112-114中一个或者多个接收的单向通信(或者主要是单向通信)。
在操作的另一实施例中,设备110包括被实施为支持通信系统内的通信和与其他通信设备的通信的通信接口和处理器。例如,所述设备中的一个(诸如,设备110)包括协作地操作以便支持与系统内的其他设备中的的另一设备(诸如设备112)的通信的通信接口和处理器。处理器可操作为产生并且解译用于传输至其他设备以及(例如,经由通信接口)已经从其他设备接收的不同的信号、帧、包、符号等。
在操作的另一实施例中,设备110包括诊断分析器,诊断分析器被配置为在设备110与另一通信设备(例如,设备112或者设备114)之间产生上游(US)通信信道的样本捕获。诊断分析器还被配置为处理US通信信道的样本捕获,以产生US通信信道的频谱的样本和/或US通信信道的每个符号的集成功率直方图。设备110还包括通信接口,通信接口被配置为将US通信信道的样本捕获、US通信信道的频谱的样本、和/或US通信信道的每个直方图的集成功率符号传输至通信通信设备(例如,设备112或者设备114)和/或前摄网络维护(PNM)通信设备(例如,可以是设备112或者设备114),并且供另一通信设备(例如,设备112或者设备114)和/或前摄网络维护(PNM)通信设备(例如,可以是设备112或者设备114)使用,以确定与US通信信道的性能相关联的至少一种特性。在一些实施例中,应注意,设备110被配置为执行该样本捕获的分析、处理等的一些或者全部,以确定对应于US通信信道的信道性能。由设备110执行的分析的一些实施例可包括检查超出特定频率范围、信道、频段等的边界之外的任意频谱纹波,以及检查一个或者多个阈值以上的猝发噪音等。
在其他实施例中,应注意,设备110被配置为执行对应于US通信信道的信道性能的分析、处理等的一些或者一部分,以产生局部处理信息并且将局部处理信息传输至另一通信设备(例如,设备112或者设备114)和/或PNM通信设备(例如,可以是设备112或者设备114)并且供另一通信设备(例如,设备112或者设备114)和/或PNM通信设备(例如,可以是设备112或者设备114)使用,以完成局部处理信息的处理,从而确定与US通信信道的性能相关联的至少一种特性。
在操作的另一实施例中,设备110包括被配置为产生第一信号的处理器。设备110还包括数模转换器(DAC)和功率放大器(PA),数模转换器(DAC)被配置为处理第一信号,以产生第二信号,并且功率放大器(PA)耦接或者连接至DAC,且被配置为处理第二信号,以产生第三信号。在一些系统中,DAC具有不需要单独PA的足够功率(例如,高功率DAC)。在一些实施例中,PA是单独的物理组件、线路、组件等。在其他实施例中,PA被集成到同一设备(例如,集成电路或者片上系统(SOC))中作为一个或者多个主要处理电路。在包括DAC和PA的实施例中,设备110还包括诊断分析器,诊断分析器被配置为基于PA的输出节点在通信设备与另一通信设备之间产生上游(US)通信信道的频谱的样本捕获。在一些实施例中,诊断分析器被配置为产生US通信信道的样本或频谱和/或US通信信道的每符号的集成功率直方图,以用于在设备110与另一通信设备(例如,设备112或者设备114)之间进行比较。
设备110还包括被配置为将第三信号传输至另一通信设备的通信接口。通信接口还被配置为将样本捕获传输至其他通信设备和/或PNM通信设备并且供其他通信设备和/或PNM通信设备使用,以确定与US通信信道的性能相关联的至少一种特性。
在实现方式的实施例中,设备110包括数模转换器(DAC),数模转换器(DAC)被配置为处理由处理器产生的第一信号,以产生第二信号(例如,因此,第二信号是第一信号的模拟型式,其中,第一信号经历数模转换,以产生第二信号)。设备110还可包括功率放大器(PA),功率放大器(PA)被配置为处理第二信号,以产生第三信号(例如,使得第三信号是第二信号的放大型式)。
设备110包括诊断分析器,诊断分析器被选择性地配置为基于由处理器产生的控制信号而操作,控制信号命令和/或指示诊断分析器基于至少一个操作参数并且基于一种或者多种触发条件执行具体类型的样本捕获。选择的触发机制可以是掌控诊断分析器的效力的一个参数。控制信号可通过多种方式中的任一种被实现从而指示不同的命令和/或指令(例如,包括命令诊断分析器执行第一操作的第一值、以及命令诊断分析器执行第二操作的第二值)。
在包括诊断分析器的实现方式的另一实施例中,设备110包括被配置为对电缆上存在的感兴趣的信号进行采样的模数转换器(ADC)。感兴趣的信号可包括电缆上存在的噪音以及由设备110(例如,电缆调制解调器)传输的上游信号。设备110的诊断分析器被配置为对将用户连接至电缆系统的分支电缆(drop cable)上存在的信号进行检测、采样、处理等。源自分支电缆、接地体、和/或分接头板的噪音可在朝向头端以及返回至设备110的双方向上传播。如果诊断定位器定位在设备110中,则其定位有利于对该噪音进行采样。来自用户房屋内的噪音也是感兴趣的噪音。这种噪音可通过与房屋电气系统接地装置加固连接的信号分布分解器直接到达诊断分析器或者经由跨过分解器的两个端口的“跳变”到达诊断分析器,这两个端口可将设备110连接至分支电缆并且连接至用户房屋的其余设施。诊断分析器可连接至分解器的端口中的任一个(例如,诸如参考图7B和图7C描述的)。诊断分析器被配置为连接在任一点,在该点,诊断分析器具有最大量访问,以对噪音信号进行采样,从而提供关于噪音的更多信息。
此外,由设备110传输的上游信号的采样(例如,称为设备110Tx信号)是感兴趣的样本。设备110Tx信号提供关于设备110的操作的循环返回信息并且还提供可以与上游噪音相比较的参考。如上所述,一些模式操作为出于其有用性而捕获设备110Tx信号。其他模式操作为抑制设备110Tx信号,以将被分析的噪音屏蔽,或者抑制诊断分析器的动态范围。通过使用模拟或者数字技术消除设备110Tx信号、通过使用定向耦合器使设备110Tx信号衰减、减去设备110Tx信号、和/或通过在设备110不传输的时间段内进行采样而避免设备110Tx信号可以完成该抑制。因为传输设备110Tx信号的设备(即,设备110)已获知Tx信号,所以通过使用DAC产生已知Tx信号的模拟复制并且在UDA ADC的输入从信号中减去该Tx复制信号可以实现减去设备110Tx信号,从而产生剩余的Tx信号。此外,可以使用自适应滤波产生Tx复制信号,以使减法之后残存的剩余Tx信号最小化。甚至在其他实施例中,可以包括一个或者多个定向耦合器,以确保任何信号的有效隔离。例如,CD 110通过如上所述信号消除(例如,使用数字和/或模拟装置)使设备110Tx信号衰减、和/或使用为进入CD 110中的猝发噪音带来优势的定向耦合器和/或分解器而操作。
在一些实施例中,控制信号指示诊断分析器基于对应于设备110与另一通信设备(例如,设备112)之间的上游(US)通信信道的可使用频谱的宽带宽进行的样本捕获对第三信号进行采样,以产生全带宽(例如,“全带”)信号捕获。在其他实施例中,控制信号指示诊断分析器基于对应于设备110与另一通信设备(例如,设备112)之间的US通信信道的可使用频谱的全部的宽带宽进行的全带样本捕获对第三信号进行采样,以产生全带信号捕获。在其他实施例中,控制信号指示诊断分析器基于对应于设备110与另一通信设备(例如,设备112)之间的US通信信道的可使用频谱的子集进行的窄带宽(例如“窄带”)子集样本捕获对第三信号进行采样,以产生子集信号捕获。子集样本捕获的实施例可包括对应于设备110与另一通信设备(例如,设备112)之间的US通信信道的可使用频谱的子集带宽(例如,指定的一个或者多个窄带带宽)所进行的窄带样本捕获,以产生窄带样信号捕获。总之,关于多个不同模式的操作中的每个,诊断分析器执行模数转换器(ADC)的输入处存在的任何信号(包括噪音、干扰性、进入权等)和/或设备110Tx信号(例如,当设备110在样本捕获期间传输时)的样本捕获。
在可替代的实现方式中,由处理器产生的控制信号可替代地命令和/或指示诊断分析器执行其他类型的样本捕获。在又一可能的实现方式中,当控制信号命令和/或指示诊断分析器基于包括至少一种条件的触发(例如,一种或者条件的组合)对第三信号进行采样。
在一些实施例中,对从功率放大器(PA)输出的第三信号执行第三信号的采样(例如,全带样本捕获、窄带样本捕获、或者其他样本捕获)。诊断分析器基于一个或者多个参数并且基于由处理器提供的控制信号将从PA输出的信号分接并且进行采样。
设备110的通信接口被配置为将第三信号传输至其他通信设备(例如,设备112)并且还将全带信号捕获和/或窄带信号捕获传输至其他通信设备(例如,设备112)和/或PNM通信设备(例如,诸如设备114或者甚至设备112(如果被实现为包括PNM功能和能力)等另一设备)并且供其使用,以确定与US通信信道的性能相关联的至少一种特性。设备110自身可执行PNM服务器的功能。例如,设备110可执行信道性能分析的一部分或全部并且可将信号捕获、局部分析、或者全部分析的结果中的任一个发送至其他通信设备(例如,设备112)。
在另一实施例中,通信接口还被配置为从PNM通信设备(例如,设备114或者设备112)接收另一控制信号。该另一控制信号指定了用于使设备110内的诊断分析器对第三信号进行采样的至少一个参数,以产生全带信号捕获和/或窄带信号捕获。设备110的处理器被配置为基于从PNM通信设备(例如,设备114或者设备112)接收的另一控制信号产生控制信号。
在另一实施例中,PNM通信设备(例如,设备114)进一步被配置为从设备110接收全带信号捕获和/或窄带信号捕获。PNM通信设备(例如,设备114)还被配置为从设备112接收至少一个其他信号捕获,以使得该至少一个其他信号捕获基于经由设备110与设备112之间的US通信信道的传输之后在设备112处接收的第三信号。PNM通信设备(例如,设备114)进一步被配置为处理该至少一个其他信号捕获和全带信号捕获和/或窄带信号捕获,以确定与设备110和设备112之间的US通信信道的性能相关联的至少一种特性。
图1B是示出了一种或者多种通信系统的另一实施方式102的示图。电缆头端发射器130经由电缆网络段198将服务提供至机顶盒(STB)122。STB 122将输出提供至显示功能设备120。电缆头端发射器130可支持诸如音频、视频、本地访问信道等多种服务流中的任一种以及电缆系统的任何其他服务。例如,电缆头端发射器130可将媒介(例如,视频和/或音频)提供至显示功能设备。
电缆头端发射器130可提供电缆调制解调器终端系统(CMTS)140a的操作。例如,电缆头端发射器130可执行CMTS功能、或者独立于电缆头端发射器130实现CMTS(例如,如由参考标号140所示)、或者可在头端与其他电缆网络段(198,199)之间的远程分布架构中实现CMTS。CMTS 140经由电缆调制解调器(CM)网络段199可将网络服务(例如,互联网、其他网络访问等)提供至任意数目的电缆调制解调器(如CM 1,CM 2、以及至CM n所示。电缆网络段198和CM网络段199可以是一个或者多个共用网络的一部分。电缆调制解调器网络段199将电缆调制解调器1至电缆调制解调器n耦接至CMTS(如140或140a所示)。电缆系统(例如,电缆网络段198和/或CM网络段199)通常可被称之为电缆设备并且可至少部分被实现为混合光纤同轴(HFC)网络(例如,包括各种有线和/或光纤维通信段、光源、光或光电检测部件等)。猝发噪音、进入权(ingress)、干扰等、和/或其他有害效应可对电缆系统的多个各种部分中的任一个产生有害影响。
CMTS 140(或者140a)是与电缆调制解调器网络段199上的电缆调制解调器1-n交换数字信号的部件。每个电缆调制解调器均耦接至电缆调制解调器网络段199,并且电缆调制解调器网络段199中可包括多个元件。例如,电缆调制解调器网络段199中可包含路由器、分解器、耦合器、继电器、以及放大器。总而言之,下游信息可被视为从CMTS 140流至连接的电缆调制解调器(例如,CM 1、CM2等),并且上游信息可被视为从电缆调制解调器流至CMTS140。应注意,多个CMTS可被定位在远端或者甚至相对于更处中央的CMTS(例如,CMTS 140(或140a))而分布。
诸如前摄网络维护(PNM)通信设备(例如,PNM服务器)等另一通信设备112也在通信系统内被实现并且被配置为支持与通信系统中的各种其他通信设备中的任一种通信。PNM服务器向位于电缆设备的各个位置的通常与CM相关联的诊断分析器发送命令,并且PNM服务器获得并且分析从诊断分析器捕获的数据。
PNM服务器功能可承载在单独的物理位置中或者其可被分配在多个位置处。例如,CM或CMTS可进行PNM分析中的一些或者全部,以获得特定的测量。在进一步实施例中,CM可使用阈值或者其他标准来确定何时捕获或者处理数据。该阈值或者标准可适应的或者通过CM、CMTS、或者PNM服务器进行调整。在另一实施例中,CM可平均或者通过其他方式处理时间或者频谱捕获(例如,或者基于通信信道的样本进行的样本捕获产生时间或者频谱样本)。在操作实施例中,CM在CM与CMTS或PNM服务器之间产生通信信道的样本捕获。然后,CM处理通信信道的样本捕获,以产生通信信道的频谱的样本和/或通信信道的每个符号的集成功率直方图。
在操作实施例中,设备112(例如,PNM服务器)将至少一个控制信号传输至CM 1和CMTS 140(或140a)。该至少一个控制信号指定了至少一个参数用于使CM 1和CMTS 140(或140a)对经由CM 1与CMTS 140(或140a)之间的通信信道,由CM 1传输至CMTS 140(或140a)的信号进行采样。设备112(例如,PNM服务器)从CM 1接收第一信号捕获,以在经由CM 1与CMTS 140(或140a)之间的通信信道将信号传输至CMTS 140(或140a)之前通过基于该至少一个参数对信号进行采样而产生第一信号捕获。设备112(例如,PNM服务器)还从CMTS 140(或140a)接收第二信号捕获,以使得在通过CMTS 140(或140a)接收该信号之后,CMTS 140(或140a)通过基于该至少一个参数对信号进行采样而产生第二信号捕获。设备112(例如,PNM服务器)则确定与CM 1和CMTS 140(或140a)之间的通信信道的性能相关联的至少一种特性。
在另一实施例中,CM 1包括数模转换器(DAC),数模转换器(DAC)被配置为基于数字信号产生模拟信号或者连续时间信号(continuous-time signal),并且CM 1还包括功率放大器(PA),功率放大器(PA)被配置为处理模拟信号或者连续时间信号,以产生放大的模拟信号或者连续时间信号。CM 1还包括诊断分析器,诊断分析器被配置为基于与CM 1与CMTS 140(或140a)之间的上游(US)通信信道的可使用频谱的全带宽相对应的全带样本捕获而对从PA输出的放大模拟信号或者连续时间信号以及存在的任何噪音信号进行采样,以产生全带信号捕获。CM 1的诊断分析器还可被配置为基于对应于CM 1与CMTS 140(或140a)之间的US通信信道的可使用频谱的子集带宽的窄带样本捕获,对从PA输出的放大模拟信号或者连续时间信号以及存在的任何噪音信号进行采样,以产生窄带信号捕获。CM 1还包括通信接口,通信接口被配置为将放大的模拟信号或者连续时间信号传输至CMTS 140(或140a)并且还将全带信号捕获和/或窄带信号捕获传输至CMTS 140(或140a)或者设备112(例如,PNM服务器)且供CMTS 140(或140a)或者设备112(例如,PNM服务器)使用,以确定与CM 1和CMTS 140(或140a)之间的US通信信道的性能相关联的至少一种特性。同样,若干个CM和/或CMTS 140(或140a)可同时捕获波形(例如,多个CM和/或CMTS 140(或140a)可同时执行样本捕获)。PNM服务器可使用诸如互相关等技术将捕获相比较。PNM服务器可将与来自CM和CMTS的捕获相关联的频谱、振幅、到达时间、以及所有其他参数相比较并且可应用各种算法来分析这些测量。PNM服务器可利用该分析的结果来定位电缆设备中存在的噪音的来源或者识别不正确执行的CM或其他部件。
图2A是示出了在一种或者多种通信系统内运行的通信设备(CD)110的实施例201的示图。设备110包括通信接口220和处理器230。通信接口220包括发射器222和接收器224的功能模块从而支持与通信系统内的一种或者多种其他设备的通信的功能。设备110还可包括存储器240,存储器240存储包括由设备110产生的一个或者多个信号的信息、或者经由一个或多个通信信道从其他设备(例如,设备112)接收的信息。存储器240还可包括并且存储各种操作指令,以便由处理器230使用,处理器230是与消息和/或其他接收信号的处理以及包括此处描述的其他消息和/或其他信号的产生相关的处理器。存储器240还可存储包括可由设备110产生的一种或者多种类型的编码、一种或者多种类型的符号映射、各种调制编码方案的级联等信息、或者经由一个或多个通信信道从其他设备接收的信息。通信接口220支持与一个或者多个其他设备(例如,CD 112和/或其他通信设备)的通信。处理器230可命令通信接口220操作,以使得处理器230经由通信接口220发送和接收信号(TX和RX)。
总而言之,通信接口220被实现为执行模拟前端(AFE)和/或物理层(PHY)发射器、接收器、和/或收发器的任何操作。操作的实施例可包括各种操作中的任意一种或者多种,其中包括频率与模拟或者连续时间域之间的转换(例如,诸如由数模转换器(DAC)和/或模数转换器(ADC)执行的操作等)、包括缩放的增益调整、滤波(例如,数字域或者模拟域)、频率转换(例如,诸如升频和/或降频,例如对设备110中的部件中的一个或者多个操作的基带频率进行升频和/或降频等)、均等化、预均等化、度量生成、符号映射和/或去映射、自动增益控制(AGC)操作、和/或由通信设备内的AFE和/或PHY部件执行的任何其他操作。
在操作的实施例中,处理器230和CD 110的通信接口220产生信号并且将信号传输至CD 112并且还从CD112接收信号以及处理接收的信号。
在操作的实施例中,CD 110被配置为在经由CD 110与CD 112之间的通信信道将信号传输至CD 112之前基于至少一个参数通过对信号进行采样而产生信号捕获。在一些实例中,从CD 112或者诸如前摄网络维护(PNM)设备等另一通信设备提供该至少一个参数。由CD112和/或PNM设备处理信号捕获,以确定与CD 110和CD 112之间的US通信信道的性能相关联的至少一种特性。
在操作的实施例中,CD 110被配置为支持与CD 112的通信。CD 110被配置为从CD112接收样本捕获。CD 112包括诊断分析器,诊断分析器被配置为基于CD 112的功率放大器(PA)的输出节点产生样本捕获,样本捕获基于CD 112与通信设备之间的上游(US)通信信道的频谱。CD 112被配置为处理样本捕获,以确定与CD 110和CD 112之间的US通信信道的性能相关联的至少一种特性。
在操作的另一实施例中,CD 110被配置为从CD 112接收信号并且基于从CD 112接收的信号产生另一信号捕获。CD 110还被配置为从CD 112接收样本捕获。CD 112包括诊断分析器,诊断分析器被配置为在CD 112将信号传输至CD 110时产生样本捕获,并且CD 110被配置为处理样本捕获和另一信号捕获,以确定与CD 110和CD 112之间的US通信信道的性能相关联的至少一种特性。
在操作的另一实施例中,CD 110被配置为从CD 112接收信号并且基于从CD 112接收的信号产生在CD 110与CD 112之间的US通信信道的全带频谱的第一样本捕获。CD 110被配置为基于从CD 112接收的信号,产生在CD 110与CD 112之间的US通信信道的全带频谱的子集的第二样本捕获。CD 110还被配置为处理样本捕获和第一样本捕获和/或第二样本捕获,以确定与CD 110和CD 112之间的US通信信道的性能相关联的至少另一种特性。在一些实施例中,CD 110还被配置为基于该信号的处理确定猝发/脉冲噪音和/或窄带进入权的特性。
在操作的另一实施例中,CD 110被配置为支持与另一通信设备(例如,CD 112)的通信。CD 110被配置为接收CD 110与CD 112之间的上游(US)通信信道的样本捕获、US通信信道的频谱的样本(基于US通信信道的样本捕获)、和/或US通信信道的每个符号的集成功率直方图。CD 112包括诊断分析器,诊断分析器被配置为产生US通信信道的样本捕获、US通信信道的频谱的样本、和/或US通信信道的每个符号的集成功率直方图。CD 110被配置为处理US通信信道的样本捕获、US通信信道的频谱的样本(基于US通信信道的样本捕获)、和/或US通信信道的每个符号的集成功率直方图,以确定与CD 110和CD 112之间的US通信信道的性能相关联的至少一种特性。
应注意,设备110可被实现为操作为卫星通信设备、无线通信设备、有线通信设备、光纤通信设备、或者移动通信设备中的任意一种或者多种,并且设备110可在包括卫星通信系统、无线通信系统、有线通信系统、光纤通信系统、或者移动通信系统的任意一种或者多种通信系统内实现和/或操作。
图2B是示出了在一种或者多种通信系统内操作的CD 110的另一实施例202的示图。诸如参考图1B示出了CD 110(例如,电缆调制解调器(CM 1))。CD 110连接或者耦接至分解器270,分解器270从位于CD 110定位的房屋处的电缆分支接收信号;应注意,电缆分支可被视为由多系统操作员(MSO)、电缆服务供应商等提供的基于电缆的通信系统的网络段。在一些实施例中,分解器270将信号分解至一种或者多种其他通信设备112-114(例如,CM、STB等)。应注意,猝发噪音、进入权、干涉等、和/或其他有害效应可对各种输入、输出等中的任一种产生有害影响。
猝发噪音、进入权、干扰等、和/或其他有害效应可对电缆系统中的多个各种部分中的任一种产生有害影响。
CD 110包括:双工器260(或者可替代地,另一滤波设备,诸如,三工器、或者其他设备等,双工器260将下游(DS)通信提供至CD 110并且从CD 110提供上游(US)通信);DS接收器238,处理、解调、解码、和/或解译经由电缆分支和双工器260接收的信号。处理器230包括执行各种操作的功能模块和能力,其中包括触发、分析、信道化等232、诊断分析器(例如,上游诊断分析器(UDA))234、上游(US)发射器236等,并且在一些实施例中,包括执行DS接收器功能的一部分或者全部的DS接收器238a。例如,DS接收器238a增加DS接收器238的操作或者被实现为代替DS接收器238。存储器240用于存储基于任意数目的参数做出的信号捕获。数模转换器(DAC)252将数字信号转换成模拟信号或者连续时间信号;以及功率放大器,如果期望或者需要将模拟信号或者连续时间信号放大,则可以实现。开关(switch)或者分接头(tap)将放大的模拟信号或者连续时间信号馈送至模数转换器(ADC)251,模数转换器(ADC)251从开关或分接头产生放大的模拟信号或者连续时间信号并且将数字信号提供至存储器240和/或处理器230。
当执行上游诊断分析器(UDA)相关的操作时,处理器230被配置为基于对应于CD110与至少另一通信设备之间的上游(US)通信信道的可使用频谱的全带宽的全带样本捕获,而选择性地对来自DAC 252的模拟信号或者连续时间信号(或者当被实现时,来自PA254的放大模拟信号或者连续时间信号)进行采样,以产生全带信号捕获;和/或基于对应于CD 110与至少另一通信设备之间的US通信信道的可使用频谱的子集带宽的窄带样本捕获,而选择性地对来自DAC 252的模拟信号或者连续时间信号(或者当被实现时,来自PA 254的放大模拟信号或者连续时间信号)进行采样,以产生窄带信号捕获。在一些实施例中,CD110被配置为基于其他参数对来自DAC 252的模拟信号或者连续时间信号(或者当被实现时,来自PA 254的放大模拟信号或者连续时间信号)执行信号捕获。CD 110可被指示如何基于从系统中的其他通信设备接收的信号(包括指定时间戳的到达)执行信号捕获。然后,CD110将信号捕获(例如,可能在执行捕获信号的局部或者全部分析之后)传输至另一通信设备(例如,CMTS、PNM等),以供该另一通信设备使用,从而确定与经由电缆分支从CD 110扩展的US通信信道的性能相关联的至少一种特性。在一些实施例中,还可以使用其他信道通信捕获信号和分析结果(例如,诸如经由有线、无线、和/或其他类型的网络的独立互联网连接)。
在操作的另一实施例中,设备110包括被配置为产生第一信号的处理器230。设备110的DAC 252被配置为处理第一信号,以产生第二信号。PA 254耦接或者连接至DAC 252且被配置为处理第二信号,以产生第三信号。诊断分析器(例如,上游诊断分析器(UDA))234被配置为基于PA 254的输出节点产生在通信设备与另一通信设备之间的上游(US)通信信道的频谱的样本捕获。设备110还包括被配置为将第三信号传输至另一通信设备的通信接口。通信接口还被配置为将样本捕获传输至另一通信设备和/或前摄网络维护(PNM)通信设备并且供其使用,以确定与US通信信道的性能相关联的至少一种特性。
在操作的另一实施例中,诊断分析器(例如,上游诊断分析器(UDA))234被配置为:当通信接口将第三信号传输至其他通信设备时,基于PA 254的输出节点,产生通信设备与其他通信设备之间的US通信信道的频谱的样本捕获。诊断分析器(例如,上游诊断分析器(UDA))234被配置为:当通信接口不将任何信号传输至另一通信设备时,基于PA 254的输出节点产生在通信设备与其他通信设备之间的US通信信道的频谱的另一样本捕获。
在操作的另一实施例中,诊断分析器(例如,上游诊断分析器(UDA))234被配置为:当通信接口将第三信号传输至另一通信设备时,处理经由PA的输出节点接收的第四信号,包括执行第四信号衰减和/或从第四信号中消除第三信号的至少一部分,以产生通信设备与其他通信设备之间的US通信信道的频谱的样本捕获。
在操作的另一实施例中,诊断分析器(例如,上游诊断分析器(UDA))234被配置为处理样本捕获,以产生对应于样本捕获的局部处理信息。设备110还被配置为(例如,经由设备110的通信接口)将对应于样本捕获的局部处理信息传输至另一通信设备和/或PNM通信设备并且供其使用,以完成局部处理信息的处理,从而产生对应于样本捕获的完全处理信息,并且基于对应于样本捕获的完全处理信息确定与US通信信道的性能相关联的至少另一种特性。当诊断分析器(例如,上游诊断分析器(UDA))234被配置为产生局部处理信息,被传输至并且供另一通信设备和/或PNM通信设备使用的信息量减少,以基于对应于样本捕获的完全处理信息至少部分确定与US通信信道的性能相关联的至少另一种特性。
在操作的另一实施例中,诊断分析器(例如,上游诊断分析器(UDA))234被配置为基于PA 254的输出节点,产生通信设备与其他通信设备之间的US通信信道的全带频谱的第一样本捕获。诊断分析器(例如,上游诊断分析器(UDA))234还被配置为基于PA 254的输出节点,产生通信设备与其他通信设备之间的US通信信道的全带频谱的子集的第二样本捕获。设备110还被配置为(例如,经由设备110的通信接口)将第一样本捕获和第二样本捕获传输至其他通信设备和/或PNM通信设备并且供其使用,以确定与US通信信道的性能相关联的至少另一种特性。
在操作的另一实施例中,诊断分析器(例如,上游诊断分析器(UDA))234被配置为基于PA 254的输出节点,且基于至少一种触发条件产生通信设备与其他通信设备之间的US通信信道的频谱的样本捕获,该至少一种触发条件包括:从其他通信设备接收的第一时间戳、从PNM通信设备接收的第二时间戳、能量阈值、功率阈值、从其他通信设备接收的第一控制信号、从PNM通信设备接收的第二控制信号、由处理器产生的第三控制信号、和/或与US通信信道相关联的猝发噪音事件或者削波(clipping)事件中的至少一种的检测。在样本超过诊断分析器中的ADC的范围或者超过诊断分析器中的数字字的范围的情况中,所述削波可能发生在外部设备中(诸如激光器或者放大器)或者诊断分析器自身中。
图3A是示出了一种或者多种通信系统内的CD之间的通信的实施例301的示图。CD110包括诊断分析器332(例如,支持上游诊断分析器(UDA)功能)。
CD 110连接或者耦接至位于CD 110定位的房屋处的电缆分支。电缆分支连接或者耦接至一个或者多个电缆网络段198/199,并且包括存储器(捕获缓冲器)341的CMTS 140/140a也连接或者耦接至一个或者多个电缆网络段198/199。应注意,一个或者多个电缆网络段198/199的多个各种部分中的任一种均可能被物理地损坏和/或被猝发噪音、进入权、干扰等、和/或其他有害效应对其信号产生有害影响。此外,应注意,电缆分支自身199可被物理地损坏和/或被猝发噪音、进入权、干扰等、和/或其他有害效应对其信号产生不利地影响。噪音还可源自于室内并且耦合至电缆系统中。
双工器360将DS通信提供至CD 110并且从CD 110提供US通信。DS ADC(例如,宽带ADC(WBADC)356或者可替代地全带ADC(FBADC))从双工器接收信号并且对信号进行采样并且将信号提供至DS处理器333。US处理器331产生数字信号用于US传输,US DAC 351,以及PA354从数字信号产生放大的模拟信号或者连续时间信号。应注意,出于方便,诊断分析器可以使用双工器360(例如,在CM中可以实现双工器360,或者可替代地,在CM中可以实现三工器)。然而,通常,可以使用另一滤波器(例如,诸如低通滤波器(LPF),使一些上游(US)频率限制以下的信号通过,诸如42MHz、65MHz、或108MHz等)代替双工器从而分离出诊断分析器感兴趣的信号并且拒绝诊断分析器不感兴趣的信号。
分接头将信号从PA 354(或者从设备内的任何其他期望样本点,诸如,PA 354之前、数模转换器(DAC)的输出处、诸如参考图7B和图7C描述的各个节点中的任一个)反馈至增益控制342,增益控制342将缩放/调整信号传输至上游诊断分析器(UDA)。ADC 343被实现为对来自CD110的US端口(在双工滤波器(diplex filter)/双工器360的基于这些数字信号产生模拟信号或者连续时间信号的位置)的任何缩放之后的信号进行采样,对来自增益控制342的信号进行采样并且将其提供用于触发、以及进行分析、信道化等345。在一些实施例中,当CD 110不传输任何信号时,向上调整或者调谐增益控制342的功率(例如,至最大值,或者至相对更高的值等),并且当CD 110传输时,则向回调整或者调谐增益控制342的功率(例如,至先前值,或者相对于最大值比较低的值等)。
在一些实施例中,将增益控制设置为由ADC的动态范围和输入信号的分布确定的值,以防止ADC的欠载或者超载。一旦设置,则在样本捕获期间通常不会改变增益。猝发事件计数器352、直方图353、以及存储器(捕获缓冲器)&快速傅里叶变换(FFT)355全部链接至触发、分析、信道化等345。存储器(捕获缓冲器)&FFT 355内的信息可从CD 110被传输至另一CD 112(例如,PNM服务器)。
诊断分析器332(UDA)包括具有测量存在于分之电缆上处于US频带内的信号(包括脉冲/猝发噪音和窄带进入权)的能力的线路、部件、元件等。诊断分析器332(UDA)将信息提供至CD 112(例如,PNM服务器)使其能够找出US噪音的任意来源的位置。可以连续或者间歇地使用诊断分析器332(UDA)(例如,当CD 112(例如,PNM服务器)搜索噪音来源时)。
诊断分析器332(UDA)可被实现为以多种模式中的任一种操作。应注意,一些模式可以是两种或者多种基本模式的组合。操作诊断分析器332(UDA)的操作的模式的一些实施例包括:执行全带样本捕获、(例如,基于一个或者多个窄带样本捕获)执行全带样本捕获的子集、执行基于功率的考虑(例如,集成功率直方图)、执行用于各个部件、元件、电路、多个电路等的具体设置(诸如,模拟前端(AFE)、模数转换器(ADC)、功率放大器(PA)等)。
下面描述了操作的特定模式的特定实施例。
1.宽带样本捕获:CMTS 140/140a和CD 110的诊断分析器332(UDA)捕获猝发噪音事件的样本(例如,UDA将样本存储在存储器(捕获缓冲器)341中)。时域样本和/或频谱被发送至CD 112(例如,PNM服务器)。因为许多噪音事件(诸如人为噪音事件等)以低频率(例如,10MHz以下)发生,从而将窄带检测器配置为一频带(例如,5MHz-7MHz),检测大多数噪音事件而不受CM Tx信号影响、或者从室内的STB或其他设备传输信号(定位在较高频率处(例如,诸如10MHz以上等))的影响。CD 112(例如,PNM服务器)将来自多个位置的相同事件的样本和/或频谱相比较。
2.窄带猝发检测器/样本捕获:诊断分析器332(UDA)触发窄带猝发噪音事件并且提供事件的测量。CD 112(例如,PNM服务器)服务器将来自CMTS 140/140a与多个UDA位置(例如,在整个通信系统实现的多个CM内)的测量相比较。
3.集成功率直方图:诊断分析器332(UDA)在一个或者多个可配置的时间段内(例如,20μs或者40μs窗口是与DOCSIS 3.1符号数目一致的实施例)集成采样输入信号的功率并且提供集成功率的直方图。如果期望,集成周期可以与OFDMA符号的上游时序同步。
在一些实施例中,包括该UDA功能模块的设备或者系统可被设计成满足下列各个元件的功能需求:
测量点:包括US PA 354之后的高阻抗电阻分接头和双工器360的US端口。一种实施例包括由于信号的分接而导致的传输(TX)功率的小于0.1dB的减少量。
模拟前端(AFE):调整模拟增益从而包括从CD 110传输的信号范围以上的10dB-20dB。从而能够用于保护免于比传输信号大许多的猝发噪音。
模数转换器(ADC):设置成基于每秒特定数目(例如,540Msps(sps=每秒的符号),9enob(enob=有效的位数))的符号而使用信号操作。
多个位置处的削波检测包括:ADC输出、宽带(WB)信道器(channelizer)、以及窄带(NB)信道器。
增益控制:与max(TX_power,P0)成比例的AFE衰减,其中,P0是选择功率(例如,近似30dBmV)。CD 110可包括基于削波检测器(clip detector)进一步调整增益的调整能力。
抽取器:使用多级可以实现滤波器/抽取信道器链自每秒一些符号开始(例如,540Msps),每一级均除以2的乘方,以覆盖双工器的分解(例如,42MHz、65MHz、85MHz、108MHz、204MHz)。
两个复式信道器:用于猝发检测器的窄带和用于样本捕获的宽带(例如,见图4中的实施例)。
在一些实施例中,(可被实现为执行窄带猝发检测和事件计数的)猝发事件计数器352,是基于在CMTS线路中实现的相似硬件从而允许在CM和CMTS处的一致性测量。例如,输入可以是覆盖窄带宽直到某一频率(例如,10.24MHz)的抽取样本。中心频率可以调整并且通常灵活地默认设置为某一具体值(例如,10MHz)以下。猝发事件计数器352检测大于某一阈值的功率、测量平均功率或者振幅、猝发事件的持续时间和时间戳,且将最后的多个(例如,1024)的信号样本测量存储在环形缓冲器中。猝发事件计数器352可被实现为使多个CM中的猝发检测器同步,以使得猝发检测器捕获相同事件。猝发事件计数器352可被实现为使环形缓冲器在时间戳值上开始或者停止、或者在时间戳值发生之后的阈交上开始或者停止;因此,多个CM同时开始其环形缓冲器。还应注意,可以基于AFE增益和传输(TX)增益使输入标准化。
图3B是示出了集成功率直方图生成功能模块的实施例302的示图。该功能模块可被视为如同由图3A中的直方图提供。如示图所示,基于选择器375将宽带(WB)信道器371或者窄带(NB)信道器372路由至功率检测器(I^2+Q^2)380,然后,路由至具有可编程积分周期(例如,1μs至50μs)的积分-清除器(I&D)385。可将输出转换至具有1/4dB分辨率的对数(转换至dB 390),然后,以特定的二进制数(例如,512)加到直方图395中。直方图的操作可被限制为利用或者不利用从CD激活的传输进行操作、和/或在激活或静态模式期间操作。I&D385可以与US传输信号同步,以使得积分与传输的OFDM/A符号对准(下面提供OFDM/A符号的细节)。
关于执行宽带样本捕获和缓冲(例如,基于WB信道器371),应注意,对其提供的输入是原ADC或者以基于选择的双工器分解器的采样率覆盖全部上游带的抽取样本,并且能够以某一期望的采样率或者更低的采样率对双数据速率(DDR)存储器的直接存储器访问(DMA)。优选地,可执行为包括双工器滚边区域(例如,在低端为0MHz-5MHz并且在高端为42MHz以上等)。在一些实施例中,可以接受捕获一些负频率(图像),以降低CM中的滤波需求。另一CD(例如,PNM服务器)可操作为移除图像。此外,该宽带样本捕获和缓冲可使多个CM中的捕获同步,以使得多个CM获取相同事件(例如,启动自时间戳值开始的捕获)。
存在关于特定样本捕获如何发生和何时发生,存在各种触发模式。下面提供了用于WB或者NB样本捕获的触发模式的一些实施例:
1.WB级(level)触发:当宽带猝发检测器发现(检测)事件时触发。猝发检测器可触发可编程阈值以上的单个样本,或者其可基于阈值以上的持续时间进一步限定猝发噪音事件。
2.NB级触发:当窄带猝发检测器发现事件时触发。由于NB信道器中的延迟时间大于WB信道器中的延迟时间的事实(由两个信道器之间的带宽差异引起),可能存在触发器能够放置在缓冲器中的什么位置的限制。
3.削波触发:触发削波检测(例如,诸如ADC输出、NB信道器、WB信道器等各个位置处的削波检测器的逻辑OR的逻辑组合)。
4.US探测触发:当发生MAC定时信号(表示诸如激活时间或者静态探测时间等事件)时触发。
5.时间戳触发:当发生特定时间戳值时触发。
6.触发的软件或者控制信号/指令:无论何时被处理器指令启动或命令(例如,诸如通过在处理器上运行的软件)。
应注意,如果可以配置上述触发条件中的任意数目的各种布尔组合(例如,使用诸如AND、OR、XOR等布尔操作符)。例如,当时间戳发生AND超过WB阈值时触发。可替代地,在激活/静态探测过程中AND超过WB阈值时触发。
在一些实施例中,所有选择的触发条件的AND运算产生对样本捕获的最终触发。每种触发条件或者其逆运算可被独立地启动进入AND门。因此,可限定(a)当CD传输时或者(b)当CD不传输时发生捕获。还可限定为仅在上游探测过程中发生捕获。此外,可以通过控制CD是否启用传输(例如,TxEnable或TxEnableNot)而门控制(gate)ADC输出。
关于在触发前和触发后执行的预触发和后触发等操作,可将CD实现为将样本连续存储在存储器(捕获缓冲器)&快速傅里叶变换(FFT)355中,存储器(捕获缓冲器)&快速傅里叶变换(FFT)355可被配置成环形缓冲器。当发生触发时,存储器(捕获缓冲器)&快速傅里叶变换(FFT)355继续从而激活捕获可编程数目的样本并且然后停止,从而在触发之前和之后在缓冲器中产生样本,且在缓冲器中的任意期望位置触发(预触发或者后触发)。缓冲器大小是可配置的(例如,32kB(8K复式样本,每个I和Q为16位),与其他PNM测量共享)。然后,经请求将存储器(捕获缓冲器)&快速傅里叶变换(FFT)355中的原始样本发送至另一CD(例如,PNM服务器)。样本还可用于CD中或者CD外部的FFT处理。触发器的时间戳、以及描述捕获的条件的其他参数与捕获数据一起报告。诸如,可以在CD内执行各种方法、算法、和/或处理,以对数据进行预处理,例如将频谱与建立的限制相比较。
关于FFT处理,应注意,通过CD中的UDA线路、功能等可以执行该FFT处理。可以使用上述样本捕获模式中的任一种从而捕获用于FFT的数据。下面提供频谱轨迹的一些实施例:
1.最小保持(Min-hold):使用低功率值(如果其达到)替代任意FFT二进制的内容。在‘min’函数之前可以完成某种平均化,以防止深零位占优势。
2.最大保持(Max-hold):使用高功率值(如果其达到)替代任意二进制的内容。一些实施例在最大保持(max-hold)函数之前可使用某种平均化。
3.均值:提供多个捕获的频谱平均化。设备可被配置为执行平均计算并且可优选地使用有效功率(FFT二进制的I^2+Q^2)而非通常的dB值作为执行平均化的设备的输入。使用漏积分器可以实现时间平均化,且漏积分器具有自1至4096范围的2的次方的时间常数。当开始新的测量时,可以利用第一频谱(例如,非零)将积分器初始化。
4.软件FFT限定:采用FFT并且丢弃(即,不包括在平均或者显示中)不满足期望标准的这些频谱,如关于猝发噪音的感兴趣的的频带内的阈值以上的能量(例如,5MHz-7MHz)。
可以使用FFT的任意期望的操作参数,其中包括各种类型的窗口和各种FFT长度。例如,可以选择诸如矩形窗(例如,可被选择为默认设置)、汉宁窗等FFT窗口,以及FFT长度可以选择从而包括与US CD(例如,CMTS)匹配的其他参数。矩形窗口可优选用于不在窗口中心处的猝发信号。关于FFT长度,一些实施例基于自256至4096的2的乘方而操作,以与US CD(例如,CMTS)匹配。如果FFT长度小于捕获长度,则可以采用使用全部、几乎全部、或者一些捕获样本的多个频谱的均值。
图4是示出了在CD内实现的信道器400的实施例的示图。提供至信道器400的信号可以被视为从(用于双工器的上游(US)端口的)功率放大器(PA)的输出端或者从CD(例如,电缆调制解调器)内的其他期望采样点分接或提供。信道器400可被配置为基于宽带(WB)和/或窄带(NB)考虑因素(或者可替代地,全带(FB)和/或FB的子集的考虑因素)协助信号的样本捕获。WB信道器旨在基于诸如猝发噪音的分析基本捕获信号的全带宽。例如,WB半带滤波器421的集合可被实现以使用任意数目的选择频率范围、频带等协助样本捕获。在一些实施例中,WB半带滤波器421的集合可在从X=200MHz、至X/2=100MHz等,直至X/n=25MHz的频率范围内变化。总而言之,使用WB半带滤波器421的集合可以提供任意期望的WB频率范围。
同样,NB半带滤波器422的集合可被实现为使用任意数目的选择频率范围、频带等协助样本捕获。NB信道器旨在捕获带宽的较小片段,同时抵消诸如STB传输和来自包含UDA的相同CD的传输等其他信号。在一些实施例中,NB半带滤波器422的集合可在从Y=10.24MHz,至Y/2=5.12MHz等,直至Y/M=1.28MHz的频率范围内变化。总而言之,可以使用NB半带滤波器422的集合提供任意期望的WB频率范围。
待采样的信号被提供至WB半带滤波器421集合和NB半带滤波器422的集合中的一个或者两个。在WB链内,直接数字频率合成器(DDFS)411基于频率代码字1(FCW 1)混合信号或者使信号频移,并且将从直接数字频率合成器(DDFS)411输出的处理信号提供至WB半带滤波器421。同样,在NB链内,DDFS 412基于FCW 2混合信号或者使信号频移,并且将从DDFS412输出的处理信号提供至NB半带滤波器422的集合。
可以选择由WB半带滤波器421的集合和NB半带滤波器422的集合提供的各个带宽范围内的任意期望的频率范围等。从而允许在任意给定时间和出于各种目的对频谱的一个或者多个部分进行采样的更大适应性和选择性。相邻信道干扰(ACI)滤波器425可被实现为处理来自NB半带滤波器422的集合的输出。此外,交叉开关430可被实现为提供WB链与NB链之间的信号。
功率检测器、积分-清除器(I&D)、以及直方图432被实现为接收来自WB链和NB链的输出中的一个或者两个。同样,基于来自WB链和NB链的输出中的一个或者两个可以执行猝发噪音检测特性描述434。猝发噪音检测特性描述434可被配置为接收定时信号(例如,从另一CD的上游媒体访问控制(MAC))。触发控制436可被配置为基于此处描述的多种触发标准的任意组合(例如,任意布尔组合)发起样本捕获。逻辑分析器438允许触发位置位于捕获存储器中的任意地方。当完成样本捕获时(例如,当存储器已满时),可以进行中断。
在特定应用中,各种通信设备支持基于(OFDM)和/或正交频分多址访问(OFDMA)的通信。在一些实施例中,根据包括DOCSIS 3.1的各种版本的电缆数据业务接口规范(DOCSIS)执行此处描述的通信设备。因此,下面提供OFDM/OFDMA的描述。
图5A是示出了正交频分多路复用(OFDM)和/或正交频分多址访问(OFDMA)的实施例501的示图。OFDM的调制可被视为将可用频谱划分成多个窄带子载波(例如,相对较低的数据速率载波)。可用频谱部分或者频带内包括子载波。可用频谱被划分成OFDM或OFDMA符号和包/帧所使用的子载波或者音调(tone)。应注意,可以交换使用子载波或者音调。通常,这些子载波的频率响应是非重叠的并且正交。使用各种调制编码技术(例如,如调制数据的垂直轴所示)中的任一种可以调制每个子载波。
通信设备可被配置为执行一个或者多个位的编码,以产生用于生成调制数据(或者通常是数据)的一个或者多个编码位。例如,通信设备的处理器和通信接口可被配置为执行一个或者多个位的前向纠错(FEC)和/或错误检验和校正(ECC)码,以产生一个或者多个编码位。FEC和/或ECC的实施例可包括turbo码、卷积码、turbo网格编码调制(TTCM)、低密度奇偶校验(LDPC)码、里德-索罗门(Reed-Solomon)(RS)码、BCH(Bose和Ray-Chaudhuri、以及Hocquenghem)码、二进制卷积码(BCC)、循环冗余校验(CRC)、和/或任何其他类型的ECC和/或FEC码和/或其组合。应注意,在包括级联(例如,伴随有第二ECC和/或FEC码的第一ECC和/或FEC码等,诸如,基于内码/外码架构等)、并联架构(例如,以使得第一ECC和/或FEC码在第一位上操作,同时第二ECC和/或FEC码在第二位上操作等)、和/或其任意组合的任意各种实现方式中可以使用一种类型以上的ECC和/或FEC码。一个或多个编码位可进行调制或符号映射从而产生调制符号。调制符号可包括旨在用于一种或者多种接收设备的数据。应注意,使用各种类型的调制编码技术中的任一种可以产生调制符号。调制编码技术的实施例可包括二进制相移键控(BPSK)、正交相移键控(QPSK)、8进制相移键控(PSK)、16进制正交振幅调制(QAM)、32进制振幅和相移键控(APSK)等、未编码调制、和/或包括高阶调制(可包括甚至更大数目的星座点(例如,4096QAM等))的任何其他期望类型的调制。
图5B是示出了OFDM和/或OFDMA的另一实施例502的示图。传输设备经由子载波传输调制符号。通过执行大量窄带载波(或者多音调)的同时传输可操作OFDM和/或OFDMA调制。在一些应用中,有时在各个OFDM符号之间采用保护间隔(GI)或者保护空间,以尝试使由通信系统(具体地,关于无线通信系统)内的多路径效应引起的ISI(符号间干扰)的效应最小化。此外,还可在保护间隔内采用循环前缀(CP)和/或循环后缀(CS)(如图5A中的右手侧所示)(可以是CP的复制),以允许切换时间(例如,当跳变至新的通信信道或者子信道时)并且有助于维持OFDM和/或OFDMA符号的正交性。总而言之,OFDM和/或OFDMA系统设计基于通信系统内的预期延迟扩展(例如,通信信道的预期延迟扩展)。
在发射器设备与接收器设备之间传输一个或者多个OFDM符号或OFDM包/帧的单用户系统中,所有的子载波或者音调专用于在发射器设备与接收器设备之间传输调制数据。如下面参考图5C描述的,在发射器设备与多个接收方或者接收器设备之间传输一个或者多个OFDM符号或OFDM包/帧的多用户系统中,可以将各种子载波或者音调映射至不同的相应接收设备。
图5C是示出了OFDM和/或OFDMA的另一实施例503的示图。比较OFDMA与OFDM,OFDMA是广受欢迎的正交频分多路复用(OFDM)数字调制方案的多用户型式。通过将子载波的子集分配给单独的接收方设备或者用户从而在OFDMA内实现多址访问。例如,可以将第一载波/音调分配给用户1,可以将第二子载波/音调分配给用户2等,直至分配给任意期望数目的用户。此外,子载波/音调分配在不同的相应传输之间可以是动态的(例如,对于第一包/帧的第一分配、对于第二包/帧的第二分配等)。OFDM包/帧可包括一个以上OFDM符号。同样,OFDM包/帧可包括一个以上OFDM符号。此外,子载波/音调分配在给定包/帧或者超帧内的不同相应符号之间可以是动态的(例如,对于包/帧内的第一OFDMA符号的第一分配、对于包/帧内的第二OFDMA符号的第二分配等)。总而言之,OFDMA符号是特殊类型的OFDM符号,并且此处,对OFDM符号的整体引用包括OFDM符号和OFDMA符号(并且此处,对OFDM包/帧的整体引用包括OFDM包/帧和OFDMA包/帧,反之亦然)。图5C示出了将分配至不同用户的子载波的分配彼此混合的实施例503(例如,被分配给第一用户的子载波包括非相邻的子载波,并且被分配给第二用户的至少一个子载波位于被分配给第一用户的两个子载波之间)。与每个用户相关联的不同组的子载波可被视为(由用于OFDM信令的所有可用子载波构成的)多个信道中的相应信道。
图5D是示出了OFDM和/或OFDMA的另一实施例504的示图。在该实施例504中,被分配给不同用户的子载波位于不同组的相邻子载波中(例如,被分配给第一用户的第一子载波包括第一相邻定位的子载波组,被分配给第二用户的第二子载波包括第二相邻定位的子载波组等)。与每个用户相关联的不同组的相邻定位子载波可被视为(由用于OFDM信令的所有可用子载波构成的)多个信道的相应信道。
图5E是示出了单载波(SC)信令的实施例505的示图。当与OFDM信令相比较时,SC信令包括通过其传输信号的单个相对宽信道。相反,在OFDM中,多个窄带子载波或者窄带子信道跨越可用的频率范围、带宽、或者频谱,通过可用的频率范围、带宽、或者频谱,信号在窄带子载波或者窄带子信道内传输。
通常,通信设备可被配置为包括处理器以及通信接口,其被配置为处理接收的OFDM或OFDMA符号和/或帧(和/或SC符号和/或帧)并且产生OFDM或OFDMA符号和/或帧(和/或SC符号和/或帧)。
图6是示出了不同CD中的事件的同步的实施例600的示图。在该示图中,设备112将触发消息传输至设备114。在一些实施例中,触发消息识别OFDM/A流中的一个或者多个符号,并且在其他实施例中,触发消息可由时间戳构成。应注意,尽管此处多个实施例被描述为依据触发消息中被识别的一个或者多个OFDM符号,然而,任何类型的符号和/或任何类型的信号可在设备之间传输的触发消息中识别。因此,基于在设备之间传输的这些符号和/或信号的捕获是在传输触发消息之后(例如,在传输之前执行第一捕获并且在接收器设备接收之后执行第二捕获)允许通信路径的特性描述,其中沿着该通信路径传输这些符号和/或信号。此外,多个CD可同时捕获诸如猝发噪音等事件,从而允许PNM服务器将在电缆设备中不同位置处找出的相同事件相比较并且相关联。因为猝发噪音随机发生,所以在实现猝发噪音的有效捕获之前需要若干次尝试。此外,通过将时间戳与阈值触发组合,多个设备可捕获相同事件。
在该示图的顶部,从设备112传输至设备114的触发消息指定了帧1中的符号S1,2和帧2中的符号S2,2。在其他实施例中,通过触发消息可仅指定一个或者多个帧内的一个符号。设备112在将符号传输至设备114之前或者过程中执行这些符号的第一捕获。设备114接收触发消息,然后,随后接收包括通过触发消息识别的一个或者多个符号的传输。设备114执行在触发消息内被识别的这些符号的捕获。当这些符号被一个或者多个信道效应(例如,噪音、干扰性、失真等)影响时,与从设备112传输之前的符号相比较,通过设备114捕获的符号至少在某种程度上被修改。例如,如果设备112产生识别帧1中的S1,2和符号S2,2的触发消息,则设备114在这些位置执行符号的捕获,但是,这些符号被略微地修改,如示图中的上撇号所示(例如,如由设备114执行的第二捕获所示的S1,2’和符号S2,2’)。
在一种实施例中,捕获的一个或者多个符号是上游探测符号。在这种情况下,因为探测器包含已知数据,探测符号的内容对于接收器而言是已知的。利用信道的输入和输出处的已知数据,使用系统识别技术可以解决信道响应(线性和非线性)。在另一实施例中,捕获的信号不由传输的符号构成,而是由猝发噪音的样本构成。如果在电缆设备的多个点处观测捕获的猝发噪音信号,则那么对来自各个点的信号的比较给出了关于捕获点之间的信道响应的信息以及噪音源的可能物理位置。
在该示图的底部中,从设备112传输至设备114的触发消息指定了将被传输的符号S1,2。设备112在在符号S1,2其传输至设备114之前或者过程中执行指定符号S1,2的第一捕获。设备114接收触发消息,然后,随后接收包括由触发消息识别的符号S1,2的传输。设备114执行在触发消息内被识别的符号S1,2的捕获。当符号S1,2受一个或者多个信道效应(例如,噪音、干扰性、失真等)影响时,与从设备112传输之前的符号相比较,由设备114捕获的符号S1,2至少在某种程度上被修改。例如,如果设备112产生识别S1,2的触发消息,则设备114将在该位置处执行符号的捕获,但是,符号S1,2可能被略微修改,如示图中的上撇号所示(例如,如由设备114执行的第二捕获所示的S1,2’)。该示图的底部的实施例示出了没有任何正式的帧结构的触发消息功能模块的使用。
访问第一捕获和第二捕获的任意设备可执行设备112与设备114之间的通信信道的特性描述。例如,当设备114从设备112接收第一捕获时,设备114则可确定设备112与设备114之间的通信信道的特性描述。在另一实施例中,当设备112从设备114接收第二捕获时,设备112则可确定设备112与设备114之间的通信信道的特性描述。在又一实施例中,该示图中未示出的接收第一捕获和第二捕获的另一设备可执行设备112与设备114之间的通信信道的特性描述。
总而言之,在触发消息内可以识别任何类型的符号和/或信号并且可以使用基于该符号和/或信号的捕获对通过传输这些符号和/或信号的通信路径进行特性描述。包括已知探测符号的正交频分多路复用(OFDM)符号是可用于这些目的一种可能类型的信号并且下面描述了一些细节。猝发噪音信号是可用于这些目的的第二种可能类型的信号。
图7A是示出了在一种或者多种通信系统内操作的其他通信设备的另一实施例701的示图。在下列示图中,实施例701示出了CD 110与电缆头端设备730(例如,图1B中的电缆头端发射器130)之间的US通信和DS通信,电缆头端设备730可包括诸如参考图1B描述的CMTS 140a。通常,CD 110和电缆头端设备730可被视为可替代实施例中的任何类型的通信设备。
在下列示图中,x(t)是由CD 110发送的上游探测信号,并且n(t)是插入到CD 110的外部位置处的电缆中的猝发噪音。n(t)的插入点的位置是要解决的技术问题。沿着自CD110至噪音插入点的电缆的时间延迟是tau1(τ1)。自噪音插入点至CMTS的时间延迟是tau2(τ2)。
来自CD 110的探测信号几乎瞬时到达UDA(例如,在该实施例中,位于CD 110中),因此,UDA找出基本未被修改的探测信号x(t)。应注意,UDA 732可被实现为包括DAC 751的片上系统(SOC),DAC 751产生被提供至PA 754的模拟信号或者连续时间信号,以产生用于传输至电缆头端设备730的放大的模拟信号或者连续时间信号。UDA 732还包括ADC743,ADC743被配置为执行对从PA 754输出的放大模拟信号或者连续时间信号的样本捕获。
应注意,其他实施例可包括电缆头端设备730、通信系统中的任何其他通信设备等中的UDA。相同探测信号经历穿过电缆设备的延迟tau1+tau2或(τ12),以使得电缆头端设备730找出延迟探测信号x(t-tau1-tau2)或x(t-τ12)。同样,对于噪音分量,UDA找出或者检测被tau1、或n(t-tau1)或n(t-τ1)延迟了的猝发噪音,而电缆头端设备730找出n(t-tau2)或n(t-τ2)。因此,UDA捕获y1=x(t)+n(t-tau1)或者y1=x(t)+n(t-τ1),并且电缆头端设备730捕获y2=x(t-tau1-tau2)+n(t-tau2)或者y2=x(t-τ12)+n(t-τ2)。
PNM服务器可被配置为使来自CD 110和电缆头端设备730的捕获(即,y1和y2)交叉关联。总之,包括PNM功能模块的任何设备可被配置为使来自位于通信链路或者路径的相对端的两个通信设备的捕获(例如,y1和y2)交叉关联。总之,该示图中的CD 110可被视为第一通信设备,并且该示图中的电缆头端设备730可被视为第二通信设备,第一通信设备和第二通信设备位于通信链路或者路径的相对端处。
在该实施例中,交叉关联函数的大小存在两个峰值:(1)一个对应于猝发噪音n,以及(2)另一个对应于探测信号x。探测信号的互相关峰值在偏移量tp=(t-tau1)-(t-tau2)=tau2-tau1或者tp=(t-τ1)-(t-τ2)=τ21处出现。
猝发噪音信号的互相关峰值在偏移量tb=t-(t-tau1-tau2)=tau1+tau2或者tb=t-(t-τ12)=τ12处出现。差值tb–tp=2×τ1,因此,设备可被配置为解决期望数量tau1=(tb-tp)/2或者τ1=(tb-tp)/2。已知电缆中的传播速率和/或物理布局,该计算给出了自CD 110至电缆的猝发噪音进入点(例如,n(t)在CD 110与电缆头端设备730之间的哪个位置进入电缆)的距离(期望测量)。在其他配置中,诸如,噪音来源在室内,可建立相似等式。
图7B是示出了包括上游诊断分析器(UDA)的CD的实施例702的示图。在该示图中,CD 110(例如,CM 1)包括F连接器。应注意,F连接器是同轴RF连接器,通常用于“无线电”陆地电视、有线电视、全球卫星电视和电缆调制解调器(通常具有RG-6/U电缆或者陈旧的安装装置的RG-59/U电缆)。应注意,各种应用可以使用任何其他类型的连接器。
CD 110还包括电路、部件、元件等,以执行并且支持上游诊断分析器(UDA)732的功能。分解器770在外部实施并且与CD 110分离。分解器770接收电缆分支,并且分解器还将输出提供至一个或者多个其他CD 112至CD 114,该一个或者多其他CD 112至CD114可位于用户房屋内(诸如室内)。UDA 732被配置为在由字母A、B、C、以及D所示的配置内的不同位置处执行各种信号的样本捕获。例如,UDA可在包括分解器770的端口的F连接器的任一侧上执行信号的样本捕获,所述分解器770连接至或者耦接至CD 110的F连接器。此外,UDA 732可被配置为在连接或者耦接至电缆分支的分解器770的端口上执行任何信号的样本捕获。
图7C是示出了包括UDA的CD的实施例703的示图。在该示图中,CD 110(例如,CM外壳)包括执行并且支持电缆调制解调器(CM 1)的功能的第一电路、部件、元件等以及执行并且支持上游诊断分析器(UDA)732的功能的第二电路、部件、元件等。在该架构中,CM 1和UDA732可被视为两个独立实现的电路、部件、元件等。
在该架构中,分解器772被实现为位于CD 110(例如,CM外壳)的内部。第一F连接器连接或者耦接至电缆分支并且将信号提供至内部实现的分解器772。分解器772的一个输出端口被提供至与一个或者多个其他CD 112-114连接或者耦接的第二F连接器。UDA 732被配置为在由字母V、W、X、Y、以及Z所示的配置中的不同位置处执行各个信号的样本捕获。
总而言之,参考图7B和图7C可以看出,基于不同的拓扑和架构可以实现不同的CD,并且UDA 732可被实现为在任意数目的各个位置处执行信号的样本捕获。允许各个位置处的样本捕获的各种实现方式许可捕获在任意数目的位置处发生的噪音、干扰等。还应注意,分解器(例如,或者在特定可替代的拓扑架构中实现的双工器)可在端口与衰减之间产生特定的绝缘性。当UDA 732能够在各个位置处执行样本捕获时,可以获取提供更大可见性的更好信息,以用于特性描述通信系统中的各个通信信道、路径等。
图8是示出了由一种或者多种通信设备执行的方法800的实施方式的示图。方法800开始于产生在通信设备与另一通信设备之间的上游(US)通信信道的样本捕获(框810)。接下来,方法800处理US通信信道的样本捕获,以产生US通信信道的频谱的样本和/或US通信信道的每个符号的集成功率直方图(框820)。
接下来,方法800经由通信设备的通信接口将US通信信道的样本捕获、US通信信道的频谱的样本、和/或US通信信道的每个符号的集成功率直方图传输至另一通信设备或者前摄网络维护(PNM)通信设备中的至少一个并且供其使用,以确定与US通信信道的性能相关联的至少一种特性(框830)。
图9A是示出了由一种或者多种通信设备执行的方法901的实施方式的示图。方法901开始于使用数模转换器(DAC)处理第一信号,以产生第二信号(框911)。接下来,方法901使用功率放大器(PA)处理第二信号,以产生第三信号(框921)。接下来,方法901基于PA的输出节点产生在通信设备与另一通信设备之间的上游(US)通信信道的频谱的样本捕获(框931)。接着,方法901经由通信设备的通信接口将第三信号传输至其他通信设备(框941)。然后,方法901经由通信设备的通信接口将样本捕获传输至其他通信设备和/或前摄网络维护(PNM)通信设备并且供其使用,以确定与US通信信道的性能相关联的至少一种特性(框951)。
图9B是示出了由一种或者多种通信设备执行的方法902的另一实施方式的示图。方法902开始于产生第一信号和包括用于执行样本捕获的指令的控制信号(框912)。接着,方法902使用数模转换器(DAC)处理第一信号,以产生第二信号(框922)。然后,方法902操作为使用功率放大器(PA)处理第二信号,以产生第三信号(框932)。然后,方法902经由通信设备的通信接口将第三信号传输至另一通信设备(框942)。
然后,方法902根据控制信号及其中的指令进行分支(每个决策框952)。当控制信号包括执行全带(FB)采样的指令时(每个决策框952),方法902则操作为基于与通信设备和其他通信设备之间的上游(US)通信信道的可使用频谱的全带宽相对应的全带样本捕获对第三信号进行采样,以产生全带信号捕获(框962)。当控制信号包括执行子集样本捕获的指令时(每个决策框952),方法902则操作为基于与通信设备和其他通信设备之间的US通信信道的可使用频谱的子集带宽相对应的子集样本捕获对第三信号进行采样,以产生子集信号捕获(框972)。
接下来,方法902经由通信设备的通信接口将全带信号捕获和/或子集信号捕获传输至其他通信设备和/或前摄网络维护(PNM)通信设备并且供其使用,以确定与US通信信道的性能相关联的至少一种特性(框982)。
如此处使用的,术语“大致地”和“近似地”提供其对应术语和/或各项之间的相对性的行业接受公差。行业接受公差的范围为小于百分之一至百分之五十并且对应于,但不限于部件值、集成电路过程变化、温度变化、上升和下降时间、和/或热噪音。各项之间的相对性的范围从百分之几的差至巨大差异。还如此处使用的,术语“被配置为”、“可操作地耦接至”、“耦接至”、和/或“耦接”包括各项之间的直接耦接和/或各项之间经由中间项(例如,项包括,但不限于部件、元件、电路、和/或模块)的间接耦接,以间接耦接为例,中间项不修改信号的信息,但是,可调整其电流电平、电压电平、和/或功率电平。如此处进一步使用的,推断耦接(即,推断一个元件耦接至另一元件)包括两项之间通过与“被耦接至”相同的方式的直接耦接和间接耦接。如此处又进一步使用的,术语“被配置为”、“可操作为”、“被耦接至”或者“可操作地耦接至”表示项包括功率连接、输入、输出等中的一个或者多个,当被激活时,该项执行一种或者多种其对应的功能并且可进一步包括与一个或者多个其他项的推断耦接。如此处又进一步使用的,术语“与…相关联”包括独立的各项和/或嵌入在另一项中的一项的直接和/或间接耦接。
如此处使用的,术语“有利地比较”或者等同表述表示两个或者多个项、信号等之间的比较,提供期望关系。例如,假设期望关系为信号1具有比信号更大的幅值时,则当信号1的幅值大于信号2的幅值或者当信号2的幅值小于信号1的幅值时,可以实现有利的比较。
还如此处使用的,术语“处理模块”、“处理电路”、“处理器”、和/或“处理单元”可以是单一处理设备或者多个处理设备。该处理设备可以是微处理器、微控制器、数字信号处理器、微计算机、中央处理单元、场可编程门阵列、可编程逻辑设备、状态机、逻辑线路、模拟线路、数字线路、和/或基于线路和/或操作指令的硬编码操纵信号(模拟和/或数字)的任意设备。处理模块、模块、处理电路、和/或处理单元可以是或者进一步包括存储器和/或集成存储器元件,存储器和/或集成存储器元件可以是单一存储器设备、多个存储器设备、和/或另一处理模块、模块、处理电路、和/或处理单元的嵌入式线路。该存储器设备可以是只读存储器、随机存取存储器、易失性存储器、非易失性存储器、静态存储器、动态存储器、闪存存储器、缓存存储器、和/或存储数字信息的任何设备。应注意,如果处理模块、模块、处理电路、和/或处理单元包括一个以上处理设备,则处理设备可位于中央处(例如,经由有线和/或无线总线结构直接耦接在一起)或者可以分布式定位(例如,经由局域网和/或广域网的间接耦接的云计算)。应进一步注意,如果处理模块、模块、处理电路、和/或处理单元经由状态机、模拟线路、数字线路、和/或逻辑线路实现其功能中的一种或者多种,则存储对应操作指令的存储器和/或存储器元件可被嵌入在包括状态机、模拟线路、数字线路、和/或逻辑线路的线路内或者位于该线路外部。应进一步注意,存储器元件可存储并且处理模块、模块、处理电路、和/或处理单元执行对应于在一个或者多个图中示出的步骤和/或功能中的至少一些的硬编码指令和/或操作指令。该存储器设备或者存储器元件可被包括在制造商的产品中。
凭借示出执行具体功能及其关系的方法步骤描述了发明的一种或者多种实施方式。此处,为便于描述,已经随意限定了这些功能构建块和方法步骤的边界及顺序。只要适当地执行具体功能及关系,则可限定可替代的边界与顺序。任何可替代的边界或者顺序由此落在权利要求的范围与实质内。进一步地,为便于描述,随意限定了这些功能构建块的边界。只要适当地执行特定的重要功能,则可限定可替代的边界。同样,此处还可随意限定流程图框,以示出特定的重要功能。在使用范围内,可另行限定流程图框边界与顺序并且仍执行特定的重要功能。因此,功能构建块和流程图框的可替代限定在要求保护的发明的范围与实质内。本领域技术人员还应当认识到,功能构建块、和其他示出性块、模块和其中的部件可被实现为示出性的或者离散的部件、专用集成电路、执行适当软件的处理器、及其任意组合等。
此处所使用的一种或者多种实施方式示出了本发明的一个或者多个方面、一种或者多种特征、一个或者多个概念、和/或一种或者多种实施例。装置的物理实施方式、制造商的产品、机器、和/或工艺可包括参考此处讨论的一种或者多种实施方式描述的一个或者多个方面、一种或者多种特征、一个或者多个概念、一种或者多种实施例等。进一步地,从图中可以看出,实施方式使用相同或者不同的参考标号整合了相同或者相似命名的功能、步骤、模块等,因此,该功能、步骤、模块等可以是相同或者相似的功能、步骤、模块等、或者不同的功能、步骤、模块等。
除非明确规定相反,否则,到、来自此处提供的各图中的任一图中的元件的信号、和/或此处提供的各图中的任一图中的元件之间的信号可以是模拟信号或者数字信号、连续时间信号或者离散时间信号、以及单端信号或者差分信号。例如,如果单个路径被示出为单端路径,则其还表示差分信号路径。同样,如果信号路径被示出为差分路径,则其还表示单端信号路径。尽管此处描述了一种或者多种具体的架构,然而,本领域技术人员应当认识到,使用未明确示出的一条或者多条数据总线、元件之间的直接连接性、和/或其他元件之间的间接耦接同样可以实现其他架构。
在描述一种或者多种实施方式时使用了术语“模块”。模块包括存储用于执行此处所描述的一种或者多种功能的操作指令的处理模块、处理器、功能块、硬件、和/或存储器。应注意,如果经由硬件实现模块,则该硬件可独立操作和/或结合软件和/或固件操作。还如此处使用的,模块可包含一个或者多个子模块,其中,每个子模块可以是一个或者多个模块。
尽管此处已经明确描述了一种或者多种实施方式的各种功能和特征的具体组合,然而,这些特征和功能的其他组合同样是可能的。发明的公开内容不受此处公开的具体实施例的限制并且明确整合了这些其他组合。

Claims (20)

1.一种通信设备,包括:
诊断分析器,配置为:
产生所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获;
处理所述上游通信信道的所述样本捕获,以产生所述上游通信信道的频谱的样本或者所述上游通信信道的每个符号的集成功率的直方图中的至少一个;
当通信接口正在将第二信号传输至所述另一通信设备时,从所述通信接口接收第一信号;并且
基于使所述第一信号衰减或者从所述第一信号中消除至少一部分所述第二信号中的至少一个来处理所述第一信号,以产生所述上游通信信道的所述样本捕获;并且
所述通信接口,配置为将所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的至少一个传输至所述另一通信设备或者前摄网络维护(PNM)通信设备中的至少一个并且供其处理之用,以确定与所述上游通信信道的性能相关联的至少一个特性。
2.根据权利要求1所述的通信设备,进一步包括:
处理器,配置为产生第一信号;
数模转换器(DAC),配置为处理所述第一信号,以产生第二信号;
功率放大器(PA),耦接或者连接至所述数模转换器并且配置为处理所述第二信号,以产生第三信号;其中
所述诊断分析器被配置为基于所述功率放大器的输出节点产生所述上游通信信道的所述样本捕获;并且
所述通信接口被配置为将所述第三信号传输至所述另一通信设备。
3.根据权利要求1所述的通信设备,其中:
所述诊断分析器被配置为:
当所述通信接口将信号传输至所述另一通信设备时,产生所述上游通信信道的所述样本捕获;
当所述通信接口不将任何信号传输至所述另一通信设备时,产生所述上游通信信道的另一样本捕获;并且
处理所述上游通信信道的所述另一样本捕获,以产生所述上游通信信道的所述频谱的第一其他样本或者所述上游通信信道的另一频谱的第二其他样本;和
所述通信接口配置为将所述上游通信信道的所述另一样本捕获、所述上游通信信道的所述频谱的所述第一其他样本、或者所述上游通信信道的所述另一频谱的所述第二其他样本中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的至少一个并且供其处理之用,以确定与所述上游通信信道的性能相关联的所述至少一个特性。
4.根据权利要求1所述的通信设备,进一步包括:
电缆调制解调器,其中所述另一通信设备包含电缆头端发射器或者电缆调制解调终端系统(CMTS)。
5.根据权利要求1所述的通信设备,其中:
所述诊断分析器被配置为:
产生所述上游通信信道的全带频谱的第一样本捕获;并且
产生所述上游通信信道的所述全带频谱的子集的第二样本捕获;以及
所述通信接口被配置为将所述第一样本捕获或者所述第二样本捕获中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的所述至少一个并且供其处理之用,以确定与所述上游通信信道的性能相关联的至少另一个特性。
6.根据权利要求1所述的通信设备,其中,所述诊断分析器进一步被配置为:
基于至少一个触发条件产生所述上游通信信道的所述样本捕获,所述至少一个触发条件包括下列项中的至少一个:从所述另一通信设备接收的第一时间戳、从所述前摄网络维护通信设备接收的第二时间戳、能量阈值、功率阈值、从所述另一通信设备接收的第一控制信号、从所述前摄网络维护通信设备接收的第二控制信号、或者检测与所述上游通信信道相关联的猝发噪音事件或削波事件中的至少一个。
7.根据权利要求1所述的通信设备,其中所述通信接口进一步被配置为:
支持卫星通信系统、无线通信系统、有线通信系统、光纤通信系统、或者移动通信系统中的至少一种通信。
8.一种通信设备,包括:
通信接口;和
处理器,所述处理器或者所述通信接口中的至少一个被配置为:
支持与另一通信设备的通信;
接收以下各项中的至少一个:所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获、基于所述上游通信信道的所述样本捕获的所述上游通信信道的频谱的样本、或者所述上游通信信道的每个符号的集成功率的直方图,其中,所述另一通信设备包括诊断分析器,配置为产生所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者从所述另一通信设备接收的所述上游通信信道的所述每个符号的集成功率的直方图,其中所述另一通信设备被配置为当所述另一通信设备正在将第二信号传输至所述通信设备时接收第一信号,并且基于使所述第一信号衰减或者从所述第一信号中消除至少一部分所述第二信号中的至少一个来处理所述第一信号,以产生所述上游通信信道的所述样本捕获;并且
处理所述上游通信信道的所述样本捕获、基于所述上游通信信道的所述样本捕获的所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的所述至少一个,以确定与所述另一通信设备和所述通信设备之间的所述上游通信信道的性能相关联的至少一个特性。
9.根据权利要求8所述的通信设备,其中,所述处理器或者所述通信接口中的所述至少一个进一步被配置为:
从所述另一通信设备接收信号;
基于从另一通信设备接收的所述信号产生另一样本捕获;
接收所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的所述至少一个,其中,所述另一通信设备包括所述诊断分析器,配置为在所述另一通信设备将所述信号传输至所述通信设备时产生所述样本捕获;并且
处理所述另一信号捕获和处理所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图中的所述至少一个,以确定与所述另一通信设备和所述通信设备之间的所述上游通信信道的性能相关联的所述至少一个特性。
10.根据权利要求8所述的通信设备,其中,所述处理器或者所述通信接口中的所述至少一个进一步被配置为:
从另一通信设备接收信号;
基于从另一通信设备接收的所述信号,产生在所述另一通信设备与所述通信设备之间的所述上游通信信道的全带频谱的第一样本捕获;
基于从另一通信设备接收的所述信号,产生在所述另一通信设备与所述通信设备之间的所述上游通信信道的所述全带频谱的子集的第二样本捕获;并且
处理所述样本捕获以及所述第一样本捕获或者所述第二样本捕获中的至少一个,以确定与所述另一通信设备和所述通信设备之间的所述上游通信信道的性能相关联的至少另一个特性。
11.根据权利要求8所述的通信设备,进一步包括:
电缆头端发射器或者电缆调制解调终端系统(CMTS),所述电缆头端发射器或者所述电缆调制解调终端系统(CMTS)包括前摄网络维护(PNM)功能模块,并且其中,所述另一通信设备是电缆调制解调器。
12.根据权利要求8所述的通信设备,其中所述处理器或者所述通信接口中的所述至少一个进一步被配置为:
支持卫星通信系统、无线通信系统、有线通信系统、光纤通信系统、或者移动通信系统中的至少一种通信。
13.一种由通信设备执行的方法,所述方法包括:
产生所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获;
当通信接口正在将第二信号传输至所述另一通信设备时,从所述通信设备的所述通信接口接收第一信号;
当产生所述上游通信信道的所述样本捕获时,基于使所述第一信号衰减或者从所述第一信号中消除至少一部分所述第二信号中的至少一个来处理所述第一信号;
处理所述上游通信信道的所述样本捕获,以产生所述上游通信信道的频谱的样本或者所述上游通信信道的每个符号的集成功率的直方图中的至少一个;并且
经由所述通信设备的所述通信接口,将以下各项中的至少一个传输至所述另一通信设备或者前摄网络维护(PNM)通信设备中的至少一个并且供其处理之用,以确定与所述上游通信信道的性能相关联的至少一个特性:所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图。
14.根据权利要求13所述的方法,进一步包括:
使用数模转换器(DAC)处理第一信号,以产生第二信号;
使用功率放大器(PA)处理所述第二信号,以产生第三信号;
基于所述功率放大器的输出节点产生所述上游通信信道的所述样本捕获;并且
经由所述通信设备的所述通信接口,将所述第三信号传输至所述另一通信设备。
15.根据权利要求13所述的方法,进一步包括:
当所述通信接口将信号传输至所述另一通信设备时,产生所述上游通信信道的所述样本捕获;
当所述通信接口不将任何信号传输至所述另一通信设备时,产生所述上游通信信道的另一样本捕获;
处理所述上游通信信道的所述另一样本捕获,以产生所述上游通信信道的所述频谱的第一其他样本或者所述上游通信信道的另一频谱的第二其他样本;并且
经由所述通信设备的所述通信接口,将所述上游通信信道的所述另一样本捕获、所述上游通信信道的所述频谱的所述第一其他样本、或者所述上游通信信道的所述另一频谱的所述第二其他样本中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的所述至少一个并且供其处理之用,以确定与所述上游通信信道的性能相关联的所述至少一个特性。
16.根据权利要求13所述的方法,其中所述通信设备包含电缆调制解调器,并且所述另一通信设备包含电缆头端发射器或者电缆调制解调器终端系统(CMTS)。
17.根据权利要求13所述的方法,进一步包括:
产生所述上游通信信道的全带频谱的第一样本捕获;
产生所述上游通信信道的所述全带频谱的子集的第二样本捕获;并且
经由所述通信设备的所述通信接口,将所述第一样本捕获或者所述第二样本捕获中的至少一个传输至所述另一通信设备或者所述前摄网络维护通信设备中的所述者少一个并且供其处理之用,以确定与所述上游通信信道的性能相关联的至少另一个特性。
18.根据权利要求13所述的方法,进一步包括:
基于至少一个触发条件产生所述上游通信信道的所述样本捕获,所述至少一个触发条件包括下列项中的至少一个:从所述另一通信设备接收的第一时间戳、从所述前摄网络维护通信设备接收的第二时间戳、能量阈值、功率阈值、从所述另一通信设备接收的第一控制信号、从所述前摄网络维护通信设备接收的第二控制信号、或者检测与所述上游通信信道相关联的猝发噪音事件或削波事件中的至少一个。
19.一种通信设备,包括:
诊断分析器,配置为:
产生所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获;
处理所述上游通信信道的所述样本捕获,以产生所述上游通信信道的频谱的样本或者所述上游通信信道的每个符号的集成功率的直方图中的至少一个;并且
处理所述上游通信信道的所述样本捕获,以产生对应于所述上游通信信道的所述样本捕获的局部处理信息;和
通信接口,配置为:
将以下各项中的至少一个传输至所述另一通信设备或者前摄网络维护(PNM)通信设备中的至少一个并且供其处理使用,以确定与所述上游通信信道的性能相关联的至少一个特性:所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图;并且
将对应于所述上游通信信道的所述样本捕获的所述局部处理信息传输至所述另一通信设备或者所述前摄网络维护通信设备中的所述至少一个并且供其处理之用,以完成所述局部处理信息的处理,从而产生对应于所述上游通信信道的所述样本捕获的完全处理信息并且基于所述完全处理信息确定与所述上游通信信道的性能相关联的至少另一个特性。
20.一种由通信设备执行的方法,所述方法包括:
产生所述通信设备与另一通信设备之间的上游(US)通信信道的样本捕获;
处理所述上游通信信道的所述样本捕获,以产生所述上游通信信道的频谱的样本或者所述上游通信信道的每个符号的集成功率的直方图中的至少一个;
处理所述上游通信信道的所述样本捕获,以产生对应于所述上游通信信道的所述样本捕获的局部处理信息;
经由所述通信设备的通信接口,将以下各项中的至少一个传输至所述另一通信设备或者前摄网络维护(PNM)通信设备中的至少一个并且供其处理使用,以确定与所述上游通信信道的性能相关联的至少一个特性:所述上游通信信道的所述样本捕获、所述上游通信信道的所述频谱的所述样本、或者所述上游通信信道的所述每个符号的集成功率的直方图;并且
经由所述通信设备的所述通信接口,将对应于所述上游通信信道的所述样本捕获的所述局部处理信息传输至所述另一通信设备或者所述前摄网络维护通信设备中的至少一个并且供其处理之用,以完成所述局部处理信息的处理,从而产生对应于所述上游通信信道的所述样本捕获的完全处理信息并且基于所述完全处理信息确定与所述上游通信信道的性能相关联的至少另一个特性。
CN201910260580.0A 2014-07-28 2015-07-28 通信设备以及由通信设备执行的方法 Active CN110061788B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201462030041P 2014-07-28 2014-07-28
US62/030,041 2014-07-28
US201562112093P 2015-02-04 2015-02-04
US62/112,093 2015-02-04
US201562157770P 2015-05-06 2015-05-06
US62/157,770 2015-05-06
US14/800,177 2015-07-15
US14/800,177 US9596041B2 (en) 2014-07-28 2015-07-15 Noise localization within cable based communication systems
CN201510452288.0A CN105306250A (zh) 2014-07-28 2015-07-28 通信设备以及由通信设备执行的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510452288.0A Division CN105306250A (zh) 2014-07-28 2015-07-28 通信设备以及由通信设备执行的方法

Publications (2)

Publication Number Publication Date
CN110061788A true CN110061788A (zh) 2019-07-26
CN110061788B CN110061788B (zh) 2020-07-10

Family

ID=53757950

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910260580.0A Active CN110061788B (zh) 2014-07-28 2015-07-28 通信设备以及由通信设备执行的方法
CN201510452288.0A Pending CN105306250A (zh) 2014-07-28 2015-07-28 通信设备以及由通信设备执行的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510452288.0A Pending CN105306250A (zh) 2014-07-28 2015-07-28 通信设备以及由通信设备执行的方法

Country Status (4)

Country Link
US (1) US9596041B2 (zh)
EP (1) EP2981016B1 (zh)
CN (2) CN110061788B (zh)
HK (1) HK1215900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117580148A (zh) * 2024-01-16 2024-02-20 中国人民解放军陆军航空兵学院 一种基于ddr存储的高动态猝发同步方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9826263B2 (en) 2014-10-22 2017-11-21 Arcom Digital, Llc Detecting CPD in HFC network with OFDM signals
US9948981B2 (en) * 2015-03-23 2018-04-17 Stmicroelectronics (Grenoble 2) Sas Upstream signal capture and processing in a subscriber device
US9960842B2 (en) 2015-10-12 2018-05-01 Arcom Digital, Llc Network traffic-compatible time domain reflectometer
US10763902B2 (en) * 2015-12-23 2020-09-01 Maxlinear, Inc. Remote spectrum analysis of transmit bands in communication systems
US10484084B2 (en) * 2016-05-04 2019-11-19 Hughes Network Systems, Llc Method and system to increase capacity of high throughput satellite communication
CN108886381B (zh) * 2016-08-15 2020-02-14 华为技术有限公司 Cm受干扰度测量方法、装置和系统
CN106788755A (zh) * 2016-12-14 2017-05-31 鼎点视讯科技有限公司 点对点光收发系统、ccmts设备和广电双向接入网系统
US10158423B2 (en) 2017-01-31 2018-12-18 Arcom Digital, Llc Communicating network maintenance data in a cable system
US10742264B2 (en) * 2017-03-31 2020-08-11 Intel Corporation Signaling method for interference group discovery in cable modems
US10333616B1 (en) 2018-01-17 2019-06-25 Arcom Digital, Llc Detecting burst PIM in downstream at drop
US10616622B2 (en) * 2018-06-06 2020-04-07 Arcom Digital Patent, Llc Detection of CPD from signals captured at remote PHY device
CN109150633A (zh) * 2018-10-19 2019-01-04 京信通信系统(中国)有限公司 一种功放保护的方法及装置
US11082732B2 (en) 2019-08-07 2021-08-03 Arcom Digital Patent, Llc Detection of CPD using leaked forward signal
US20210351899A1 (en) * 2020-05-05 2021-11-11 Coherent Logix, Incorporated Flexible Diplexer with Dynamically Configurable Band-Split in Hybrid Fiber Coax Deployments
CN113949641B (zh) * 2021-09-17 2023-10-27 合肥润东通信科技股份有限公司 基于电缆调制解调器的上行信号噪声分析诊断系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086641A1 (en) * 2000-11-16 2002-07-04 Howard Daniel H. Method and apparatus for detection and classification of impairments on an RF modulated network
CN102769584A (zh) * 2011-03-25 2012-11-07 美国博通公司 通信装置及通信设备的运行方法
CN102868458A (zh) * 2011-07-06 2013-01-09 上海华为技术有限公司 无线通讯设备的干扰检测方法及无线通讯设备
US20140010269A1 (en) * 2012-07-06 2014-01-09 Curtis Ling Method and system for detecting and mitigating interference in a cable network system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389068B1 (en) 2000-05-15 2002-05-14 Motorola, Inc. Sliced bandwidth distortion prediction
EP1341335B1 (en) 2002-02-28 2015-09-23 Intel Corporation Channel monitoring for improved parameter selection in a communication system
US7203227B1 (en) * 2002-03-06 2007-04-10 Broadcom Corporation All digital reference frequency locking
US7362773B2 (en) * 2003-03-25 2008-04-22 Terayon Communications Systems DOCSIS 2.0 SCDMA capable sniffers which can capture legacy DOCSIS bursts as well
US8677435B2 (en) * 2008-11-26 2014-03-18 Intel Corporation Upstream power control for multiple transmit channels
US8310940B2 (en) 2009-06-04 2012-11-13 Jds Uniphase Corporation Testing upstream cable channels
CN103384203B (zh) * 2012-05-04 2017-05-24 江虹 在通信终端设备之间已建立通信信道的即时通信系统和方法
US9031143B2 (en) * 2012-12-03 2015-05-12 Broadcom Corporation Adaptive decoding based on signal to noise ratio (SNR)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086641A1 (en) * 2000-11-16 2002-07-04 Howard Daniel H. Method and apparatus for detection and classification of impairments on an RF modulated network
CN102769584A (zh) * 2011-03-25 2012-11-07 美国博通公司 通信装置及通信设备的运行方法
CN102868458A (zh) * 2011-07-06 2013-01-09 上海华为技术有限公司 无线通讯设备的干扰检测方法及无线通讯设备
US20140010269A1 (en) * 2012-07-06 2014-01-09 Curtis Ling Method and system for detecting and mitigating interference in a cable network system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117580148A (zh) * 2024-01-16 2024-02-20 中国人民解放军陆军航空兵学院 一种基于ddr存储的高动态猝发同步方法
CN117580148B (zh) * 2024-01-16 2024-03-26 中国人民解放军陆军航空兵学院 一种基于ddr存储的高动态猝发同步方法

Also Published As

Publication number Publication date
EP2981016A1 (en) 2016-02-03
EP2981016B1 (en) 2017-03-08
US9596041B2 (en) 2017-03-14
US20160028496A1 (en) 2016-01-28
HK1215900A1 (zh) 2016-09-23
CN110061788B (zh) 2020-07-10
CN105306250A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
CN110061788A (zh) 通信设备以及由通信设备执行的方法
US8621539B1 (en) Physical layer transmitter for use in a broadband local area network
JP4397948B2 (ja) ネットワークにおけるqam信号解析
US20190313132A1 (en) Echo cancellation in a bidirectional communication system for out of band signaling to a user device
US20140010269A1 (en) Method and system for detecting and mitigating interference in a cable network system
EP2938095B1 (en) Full-duplex communication over a shared transmission medium
US9553683B2 (en) Upstream (US) transient impairment localization and detection within communication systems
CN106575971A (zh) 同轴电缆连接的电缆数据服务接口规范(docsis)系统或电缆网络中的干扰消除
US10742452B2 (en) Noise reduction between proximate networks
JP2010516065A (ja) アダプティブマルチキャリア符号分割多重アクセス
US9203664B2 (en) Measurement of intermodulation products of digital signals
US20130266310A1 (en) Intelligent node for improving signal quality in a cable modem network
US11456899B2 (en) Methods and systems for performing analysis and correlation of DOCSIS 3.1 pre-equalization coefficients
US20130128995A1 (en) Channel estimation in a communications system
US8427974B2 (en) Identifying an origin of a DOCSIS upstream burst
US9774419B2 (en) Inband spurious detection and processing within communication systems
US11601710B2 (en) Self interference cancellation for high performance transceivers
US20220407789A1 (en) Data aggregation for communications network optimization
Ryu et al. An Effective Sampling Clock Offset Synchronization Method for DOCSIS 3.1 Upstream System
Hazmi et al. DVB-T signal over cable TV network and phase noise requirements
Ibl et al. DOCSIS 3.1 application note
Hazmi et al. DVB-T signal in cable TV network: advantages and limitations
Hasse et al. Performance analysis in cable networks based on channel measurements with SDRs
Volpe DOCSIS Pre-Equalization: Vastly Powerful, Often Undervalued
Fischer et al. DVB-C2–the New DVB Broadband Cable Standard

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant