CN110061085A - 一种太阳能电池及其制备方法 - Google Patents

一种太阳能电池及其制备方法 Download PDF

Info

Publication number
CN110061085A
CN110061085A CN201910365976.1A CN201910365976A CN110061085A CN 110061085 A CN110061085 A CN 110061085A CN 201910365976 A CN201910365976 A CN 201910365976A CN 110061085 A CN110061085 A CN 110061085A
Authority
CN
China
Prior art keywords
layer
back electrode
solar battery
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910365976.1A
Other languages
English (en)
Other versions
CN110061085B (zh
Inventor
王德亮
郑根华
王东明
王敏
王光伟
蔡彦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201910365976.1A priority Critical patent/CN110061085B/zh
Publication of CN110061085A publication Critical patent/CN110061085A/zh
Application granted granted Critical
Publication of CN110061085B publication Critical patent/CN110061085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池及其制备方法,太阳能电池自下往上依次包括衬底(1)、透明导电玻璃层(2)、掺镁氧化锌层(3)、钝化层(4)、CdTe层(6)以及背电极缓冲层(7),还包括金属背电极(8),其中,金属背电极(8)的正极生长在背电极缓冲层(7)上,金属背电极(8)的负极生长在透明导电玻璃层(2)上,钝化层(4)为SnO2薄膜,此外,还可以在钝化层(4)和CdTe层(6)之间设置N型窗口层(5)。通过在掺镁氧化锌层和碲化镉界面引入钝化层,减少了界面处光生载流子复合,得到了更匹配的能带结构,从而显著提高了碲化镉薄膜太阳能电池的开路电压。

Description

一种太阳能电池及其制备方法
技术领域
本公开涉及太阳能光伏器件领域,具体地,涉及一种太阳能电池及其制备方法。
背景技术
碲化镉(CdTe)是一种禁带宽度为1.45eV的II-VI族直接带隙半导体,其吸收系数高达105cm-1,仅需数微米的CdTe就可吸收绝大部分太阳光,基于上述特性,CdTe成为了极具应用前景的光伏材料,并受到广泛关注。目前,CdTe薄膜太阳能电池的实验室最高转换效率已达到22.1%,其组件效率也高达18.6%,但与其理论上31%的光电转换效率仍有较大的差距,这很大程度上受限于较低的开路电压。
对于掺镁氧化锌(MgxZn1-xO,MZO)/CdTe结构太阳能电池,开路电压较低是限制其效率提升的一大因素,原则上可以通过以下方法提高开路电压:提高CdTe的P型掺杂浓度;提高CdTe中少数载流子寿命;优化太阳能电池背接触。但是,由于CdTe具有较强的自补偿效应,无法进行有效的重掺杂;并且,由于CdTe具有高达5.7eV的功函数,很难形成良好的欧姆接触;而提高CdTe中少数载流子寿命的生产制备工艺复杂。
发明内容
(一)要解决的技术问题
本公开鉴于上述问题,提供了一种太阳能电池及其制备方法,通过在MZO和CdTe界面引入钝化层,以至少解决以上技术问题。
(二)技术方案
本公开提供了一种太阳能电池,自下往上依次包括:衬底、透明导电玻璃层、掺镁氧化锌层、钝化层、CdTe层以及背电极缓冲层,还包括金属背电极,所述金属背电极的正极生长在所述背电极缓冲层上,所述金属背电极的负极生长在所述透明导电玻璃层上。
可选地,所述掺镁氧化锌层的厚度为20-200nm。
可选地,所述钝化层为SnO2薄膜,其厚度为1-10nm。
可选地,所述钝化层和CdTe层之间还可以设置有N型窗口层,所述N型窗口层为CdS薄膜、CdSe薄膜或CdSexTe1-x薄膜。
可选地,所述CdS薄膜的厚度为20-100nm;所述CdSe薄膜的厚度为20-100nm,所述CdSe薄膜与所述CdTe层之间扩散形成厚度为200-1000nm的CdSexTe1-x薄膜;所述CdSexTe1-x薄膜的厚度为200-1000nm。
可选地,所述CdTe层的厚度为3-5μm。
可选地,所述背电极缓冲层为ZnTe薄膜,其厚度为100nm。
可选地,所述金属背电极为Cu/Au合金,所述Cu/Au合金中Cu的厚度为5nm,所述Cu/Au合金中Au的厚度为300nm。
本公开还提供了一种太阳能电池的制备方法,包括:步骤1,清洗衬底和透明导电玻璃层;步骤2,在所述透明导电玻璃层上自下往上依次生长掺镁氧化锌层、钝化层和N型窗口层,其中,所述钝化层为SnO2薄膜;步骤3,对所述衬底、透明导电玻璃层、掺镁氧化锌层、钝化层和N型窗口层进行热处理;步骤4,在热处理后的所述N型窗口层上自下往上依次生长CdTe层、背电极缓冲层以及金属背电极的正极,在热处理后的所述透明导电玻璃层上生长所述金属背电极的负极。
可选地,所述热处理的温度为400-700℃,保护气氛为N2,气压为0.1-8Pa,时间为20-60min。
(三)有益效果
本公开提供的太阳能电池及其制备方法,具有以下有益效果:
(1)通过在MZO和CdTe界面引入钝化层,利用该钝化层对MZO层进行钝化处理,减少了MZO与CdTe界面处光生载流子的复合,从而显著提高了CdTe太阳能电池的开路电压;
(2)使用SnO2作为钝化层,使得太阳能电池拥有更匹配的能带结构,从而使得导带电子传输更加通畅,抑制了SnO2与MZO界面的复合,并且减少SnO2与CdTe界面处的复合;
(3)制备工艺简单,性能稳定,效果显著。
附图说明
图1示意性示出了本公开实施例提供的MZO/CdTe太阳能电池的结构示意图。
图2示意性示出了本公开实施例提供的使用SnO2钝化层后太阳能电池前电极的能带结构图。
图3示意性示出了本公开实施例提供的标准测试条件下使用钝化层与不使用钝化层的MZO/CdTe太阳电池的电流-电压曲线对比图。
图4示意性示出了本公开实施例提供的MZO/CdTe太阳能电池的制备方法的流程图。
附图标记说明:
1-衬底;2-透明导电玻璃层;3-掺镁氧化锌层;4-钝化层;5-N型窗口层;6-CdTe层;7-背电极缓冲层;8-金属背电极。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
本公开的第一实施例提供了一种太阳能电池,参阅图1,结合图2和图3,对图1所示太阳能电池的结构进行详细说明。
本公开实施例提供的太阳能电池自下往上依次包括:衬底1、透明导电玻璃层2、掺镁氧化锌层3、钝化层4、N型窗口层5、CdTe层6、背电极缓冲层7和金属背电极8,其中,金属背电极8的正极生长在背电极缓冲层7上,金属背电极8的负极生长在透明导电玻璃层2上。可以理解的是,该太阳能电池中也可以不包含N型窗口层5。
衬底1在太阳能电池中起支撑等作用,其为玻璃衬底,例如衬底1可以为3.2mm厚的TEC C10玻璃,其具有耐用的玻璃表面。
透明导电玻璃层2例如可以为400nm厚的FTO透明导电玻璃,其中,FTO导电玻璃为掺杂氟的二氧化锡(SnO2:F)透明导电玻璃,其优良的透光性能使得绝大部分太阳光可以透过,并且导电传输电子到金属背电极8的负极。
掺镁氧化锌(MgxZn1-xO,MZO)层3作为窗口层,其厚度为20-200nm,MgxZn1-xO中x的值范围为0到0.56,例如0.2,其禁带宽度较大,可以透过更多的太阳光。
钝化层4为SnO2薄膜,其厚度为1-10nm,具有钝化作用,可以调节太阳能电池的能带结构,从而减少复合,提高开路电压。
N型窗口层5为硫化镉(CdS)薄膜、硒化镉(CdSe)薄膜或CdSexTe1-x薄膜,当N型窗口层5为CdS薄膜时,其厚度为20-100nm,CdS薄膜可以与CdTe层6形成良好的pn结;当N型窗口层5为CdSe薄膜时,其厚度为20-100nm,CdSe薄膜与CdTe层6之间互扩散形成200-1000nm厚的CdSexTe1-x薄膜,以降低CdTe的禁带宽度;此外,也可以直接共蒸发200-1000nm厚的CdSexTe1-x薄膜,CdSexTe1-x薄膜可以吸收额外红外区域的太阳光,增加短路电流,并且CdSexTe1-x自身的少子寿命较长,也可以提高开路电压。
CdTe层6为CdTe光吸收层,其厚度为3-5μm,用于吸收光子以产生光生载流子。
背电极缓冲层7通常采用碲化锌(ZnTe)薄膜,其厚度为100nm。
金属背电极8为铜/金(Cu/Au)合金,Cu/Au合金中Cu的厚度为5nm,Au的厚度为300nm。通过金属背电极8正极中的Cu对ZnTe重掺杂,从而降低背接触的肖特基势垒,形成准欧姆接触,提升太阳能电池性能;金属背电极8正极中Au的功函数高达5.leV,与背电极缓冲层形成良好的准欧姆接触,有利于空穴的传输与收集;金属背电极8负极与透明导电玻璃层2接触,用于收集和传输电子。
参阅图2,当使用SnO2作为钝化层时,导带电子传输更加通畅;而且SnO2与MZO之间存在约0.3eV的导带带阶,抑制了界面的复合;在SnO2于CdTe界面,存在较大的价带带阶,可以有效地反射空穴,减少界面处的空穴浓度,从而减少复合。因此,本公开的太阳能电池拥有更匹配的能带结构,相比于不含钝化层的太阳能电池,本公开的电池能够有效地减少界面处光生载流子的复合,并且其制备工艺简单,性能稳定,效果显著。
参阅图3,在太阳能电池标准测试条件(1000W/m2,25℃,AM1.5)下,本公开实施例中的太阳能电池利用1-10nm厚的钝化层,对掺镁氧化锌层进行钝化处理后,MZO/CdTe结构的太阳能电池的开路电压从781mV提高到851mV,因此,本公开中的太阳能电池结构显著提高了太阳能电池的开路电压。
本公开的第二实施例提供了一种太阳能电池的制备方法,以制备透明导电玻璃层/MZO/SnO2/CdSe/CdTe/缓冲层/Au结构的太阳能电池为例,对图4中所示制备方法进行详细说明,该制备方法包括以下操作。
S1,清洗衬底1和透明导电玻璃层2。
在操作S1中进行透明导电玻璃的清洗,具体地,依次使用丙酮、酒精、去离子水,在超声中清洗透明导电玻璃一个小时,并用高纯N2吹干。
S2,在透明导电玻璃层2上自下往上依次生长掺镁氧化锌层3、钝化层4和N型窗口层5,其中,钝化层4为SnO2薄膜。
首先,可以使用磁控溅射、热蒸发、物理气相沉积、电子束蒸发、分子束外延、化学气相沉积、化学水浴、溶胶凝胶法等物理、化学沉积方式制备掺镁氧化锌层,以磁控溅射法生长掺镁氧化锌层为例,MZO靶材的直径为2英寸,锌/镁原子比为4∶1,溅射气压为0.5Pa,溅射气氛Ar/O2比为99∶1,衬底和透明导电玻璃层的温度为室温(例如25℃),溅射形成的MZO薄膜的厚度为20-200nm,例如90nm。
其次,可以使用磁控溅射、热蒸发、物理气相沉积、电子束蒸发、分子束外延、化学气相沉积、化学水浴、溶胶凝胶法等物理、化学沉积方式制备钝化层,以在MZO薄膜上,使用磁控溅射法沉积SnO2薄膜以作为钝化层为例,SnO2靶材的直径为2英寸,溅射气压为0.5Pa,溅射气氛Ar/O2比为4∶1,衬底、透明导电玻璃层和掺镁氧化锌层的温度为200℃,溅射形成的SnO2薄膜的厚度为1-10nm,例如1nm。
然后,在SnO2薄膜上,使用磁控溅射法生长N型窗口层(例如CdSe薄膜),CdSe靶材的直径为2英寸,溅射气压为0.5Pa,溅射气氛为Ar,衬底、透明导电玻璃层、掺镁氧化锌层和钝化层的温度为250℃,溅射形成的CdSe薄膜的厚度为20-100nm,例如24nm。
S3,对衬底1、透明导电玻璃层2、掺镁氧化锌层3、钝化层4和N型窗口层5进行热处理。
在操作S3中,对上述操作中形成的结构进行热处理,热处理的温度为400-700℃(例如500℃),保护气氛为N2,气压为0.1-8Pa(例如5.8Pa),时间为20-60min(例如30min)。
S4,在热处理后的N型窗口层5上自下往上依次生长CdTe层6、背电极缓冲层7以及金属背电极8的正极,在热处理后的透明导电玻璃层2上生长金属背电极8的负极。
首先,利用近空间升华法,将衬底、透明导电玻璃层、掺镁氧化锌层、钝化层和N型窗口层的温度设定为540℃,将CdTe源的温度设定为670℃,CdTe源与N型窗口层距离为2mm,生长的CdTe层的厚度为3-5μm,例如4μm。
其次,采用热蒸发方法在CdTe层上生长ZnTe薄膜,以制备背电极缓冲层,其厚度为100nm。
然后,采用热蒸发方法在背电极缓冲层上生长Cu/Au合金作为金属背电极的正极,在透明导电玻璃层上生长Cu/Au合金作为金属背电极的负极,Cu的厚度为5nm,Au的厚度为300nm。
本公开的第三实施例提供了一种透明导电玻璃层/MZO/SnO2/CdTe/缓冲层/Au结构的太阳能电池的制备方法,与第二实施例不同的是,本实施例制备的太阳能电池不含有N型窗口层。具体的制备方法如下:
衬底、透明导电玻璃层、掺镁氧化锌层和钝化层的制备过程与第二实施例中衬底、透明导电玻璃层、掺镁氧化锌层和钝化层的制备过程相同,这里不再赘述。
对衬底、透明导电玻璃层、掺镁氧化锌层和钝化层进行热处理,热处理的温度为400-700℃(例如600℃),保护气氛为N2,气压为0.1-8Pa(例如5.8Pa),时间为20-60min(例如30min)。
利用近空间升华法将衬底、透明导电玻璃层、掺镁氧化锌层和钝化层的温度设定为540℃,将CdTe源的温度设定为670℃,CdTe源与钝化层距离为2mm,生长的CdTe层的厚度为3-5μm,例如4μm。
背电极缓冲层和金属背电极的制备过程与第二实施例中背电极缓冲层和金属背电极的制备过程相同,这里不再赘述。
本公开的第四实施例提供了另一种透明导电玻璃层/MZO/SnO2/CdTe/缓冲层/Au结构的太阳能电池的制备方法,与第三实施例不同的是,本实施例通过电子束蒸发的方法制备钝化层。具体的制备方法如下:
衬底、透明导电玻璃层和掺镁氧化锌层的制备过程与第二实施例中衬底、透明导电玻璃层和掺镁氧化锌层的制备过程相同,这里不再赘述。
在MZO薄膜上,使用纯度为99.99%的SnO2源材料,通过电子束蒸发的方法生长SnO2薄膜作为钝化层,真空气压为10-4pa,衬底、透明导电玻璃层和掺镁氧化锌层的温度为200℃,制备的SnO2薄膜的厚度为5nm。
对衬底、透明导电玻璃层、掺镁氧化锌层和钝化层进行热处理,热处理的温度为400-700℃(例如600℃),保护气氛为N2,气压为0.1-8Pa(例如5.8Pa),时间为20-60min(例如30min)。
利用近空间升华法将衬底、透明导电玻璃层、掺镁氧化锌层和钝化层的温度设定为540℃,将CdTe源的温度设定为670℃,CdTe源与钝化层距离为2mm,生长的CdTe层的厚度为3-5μm,例如4μm。
背电极缓冲层和金属背电极的制备过程与第二实施例中背电极缓冲层和金属背电极的制备过程相同,这里不再赘述。
至此,已对本公开中太阳能电池及其制备方法进行了详细的说明,起将钝化层引入CdTe薄膜太阳能电池的制备过程中,通过使用1-10nm后的钝化层,得到更好的MZO薄膜特性,减少了MZO层与CdTe光吸收层界面处光生载流子复合,得到了更匹配的能带结构,从而显著提高了太阳能电池的开路电压。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

1.一种太阳能电池,自下往上依次包括:衬底(1)、透明导电玻璃层(2)、掺镁氧化锌层(3)、钝化层(4)、CdTe层(6)以及背电极缓冲层(7),还包括金属背电极(8),所述金属背电极(8)的正极生长在所述背电极缓冲层(7)上,所述金属背电极(8)的负极生长在所述透明导电玻璃层(2)上。
2.根据权利要求1所述的太阳能电池,其中,所述掺镁氧化锌层(3)的厚度为20-200nm。
3.根据权利要求1所述的太阳能电池,其中,所述钝化层(4)为SnO2薄膜,其厚度为1-10nm。
4.根据权利要求1所述的太阳能电池,其中,所述钝化层(4)和CdTe层(6)之间还可以设置有N型窗口层(5),所述N型窗口层(5)为CdS薄膜、CdSe薄膜或CdSexTe1-x薄膜。
5.根据权利要求4所述的太阳能电池,其中,所述CdS薄膜的厚度为20-100nm;所述CdSe薄膜的厚度为20-100nm,所述CdSe薄膜与所述CdTe层(6)之间扩散形成厚度为200-1000nm的CdSexTe1-x薄膜;所述CdSexTe1-x薄膜的厚度为200-1000nm。
6.根据权利要求1所述的太阳能电池,其中,所述CdTe层(6)的厚度为3-5μm。
7.根据权利要求1所述的太阳能电池,其中,所述背电极缓冲层(7)为ZnTe薄膜,其厚度为100nm。
8.根据权利要求1所述的太阳能电池,其中,所述金属背电极(8)为Cu/Au合金,所述Cu/Au合金中Cu的厚度为5nm,所述Cu/Au合金中Au的厚度为300nm。
9.一种太阳能电池的制备方法,包括:
步骤1,清洗衬底(1)和透明导电玻璃层(2);
步骤2,在所述透明导电玻璃层(2)上自下往上依次生长掺镁氧化锌层(3)、钝化层(4)和N型窗口层(5),其中,所述钝化层(4)为SnO2薄膜;
步骤3,对所述衬底(1)、透明导电玻璃层(2)、掺镁氧化锌层(3)、钝化层(4)和N型窗口层(5)进行热处理;
步骤4,在热处理后的所述N型窗口层(5)上自下往上依次生长CdTe层(6)、背电极缓冲层(7)以及金属背电极(8)的正极,在热处理后的所述透明导电玻璃层(2)上生长所述金属背电极(8)的负极。
10.根据权利要求8所述的太阳能电池的制备方法,其中,所述热处理的温度为400-700℃,保护气氛为N2,气压为0.1-8Pa,时间为20-60min。
CN201910365976.1A 2019-04-30 2019-04-30 一种太阳能电池及其制备方法 Active CN110061085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910365976.1A CN110061085B (zh) 2019-04-30 2019-04-30 一种太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910365976.1A CN110061085B (zh) 2019-04-30 2019-04-30 一种太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN110061085A true CN110061085A (zh) 2019-07-26
CN110061085B CN110061085B (zh) 2021-10-01

Family

ID=67322045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910365976.1A Active CN110061085B (zh) 2019-04-30 2019-04-30 一种太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110061085B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739959A (zh) * 2020-06-05 2020-10-02 中国建材国际工程集团有限公司 一种高效碲化镉薄膜太阳能电池及其制备方法
CN113745359A (zh) * 2021-08-26 2021-12-03 暨南大学 一种碲化镉梯度吸收层的制备方法及太阳电池
CN114050188A (zh) * 2021-10-09 2022-02-15 中国建材国际工程集团有限公司 一种基于多层膜电极的碲化镉太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098816A (zh) * 2016-07-13 2016-11-09 盐城普兰特新能源有限公司 一种碲化镉薄膜太阳能电池及其制备方法
CN106847941A (zh) * 2017-02-04 2017-06-13 江苏神科新能源有限公司 一种碲化镉薄膜太阳能电池及其制备方法
CN107946393A (zh) * 2017-11-07 2018-04-20 浙江大学 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
WO2018083480A1 (en) * 2016-11-02 2018-05-11 Loughborough University Improvements to the deposition and formation of coatings for photovoltaic cells
CN109545881A (zh) * 2018-10-29 2019-03-29 四川大学 一种基于单晶硅片衬底的CdS/CdTe太阳电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098816A (zh) * 2016-07-13 2016-11-09 盐城普兰特新能源有限公司 一种碲化镉薄膜太阳能电池及其制备方法
WO2018083480A1 (en) * 2016-11-02 2018-05-11 Loughborough University Improvements to the deposition and formation of coatings for photovoltaic cells
CN106847941A (zh) * 2017-02-04 2017-06-13 江苏神科新能源有限公司 一种碲化镉薄膜太阳能电池及其制备方法
CN107946393A (zh) * 2017-11-07 2018-04-20 浙江大学 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
CN109545881A (zh) * 2018-10-29 2019-03-29 四川大学 一种基于单晶硅片衬底的CdS/CdTe太阳电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGQIANG REN等: "Interface modification to enhance electron extraction by deposition of a ZnMgO buffer on SnO 2 -coated FTO in CdTe solar cells", 《SOLAR ENERGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739959A (zh) * 2020-06-05 2020-10-02 中国建材国际工程集团有限公司 一种高效碲化镉薄膜太阳能电池及其制备方法
CN111739959B (zh) * 2020-06-05 2021-06-25 中国建材国际工程集团有限公司 一种高效碲化镉薄膜太阳能电池及其制备方法
CN113745359A (zh) * 2021-08-26 2021-12-03 暨南大学 一种碲化镉梯度吸收层的制备方法及太阳电池
CN114050188A (zh) * 2021-10-09 2022-02-15 中国建材国际工程集团有限公司 一种基于多层膜电极的碲化镉太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN110061085B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
US8084682B2 (en) Multiple band gapped cadmium telluride photovoltaic devices and process for making the same
US6169246B1 (en) Photovoltaic devices comprising zinc stannate buffer layer and method for making
US8829342B2 (en) Back contact buffer layer for thin-film solar cells
EP1492169A2 (en) Solar cell
KR101103770B1 (ko) 화합물 반도체 태양 전지 및 그 제조 방법
US20110139247A1 (en) Graded alloy telluride layer in cadmium telluride thin film photovoltaic devices and methods of manufacturing the same
US20150136216A1 (en) Compound semiconductor solar cell
EP2224491A2 (en) Solar cell and method of fabricating the same
CN110061085A (zh) 一种太阳能电池及其制备方法
US20110265874A1 (en) Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and methods of their manufacture
KR20120080045A (ko) 태양전지의 제조방법
GB2405030A (en) Bifacial thin film solar cell
EP2383792A2 (en) Cadmium Sulfide Layers for Use in Cadmium Telluride Based Thin Film Photovoltaic Devices and Methods of their Manufacture
KR101415251B1 (ko) 다중 버퍼층 및 이를 포함하는 태양전지 및 그 생산방법
KR20110048731A (ko) 태양전지 및 이의 제조방법
JP2003258278A (ja) 光電変換装置及びその製造方法
US20120000768A1 (en) Methods for sputtering a resistive transparent buffer thin film for use in cadmium telluride based photovoltaic devices
US20120024692A1 (en) Mixed sputtering targets and their use in cadmium sulfide layers of cadmium telluride vased thin film photovoltaic devices
JP2012124284A (ja) 光電素子
JP2012209518A (ja) 光電素子及び太陽電池
CN109841697A (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池
KR20190053687A (ko) 박막 태양전지 및 박막 태양전지의 제조방법
KR101485009B1 (ko) Cigs계 박막 태양 전지의 제조 방법 및 이에 따른 태양 전지
US20170373213A1 (en) Photovoltaic devices with improved n-type partner and methods for making the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant