CN110054187A - 一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用 - Google Patents

一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用 Download PDF

Info

Publication number
CN110054187A
CN110054187A CN201910497774.2A CN201910497774A CN110054187A CN 110054187 A CN110054187 A CN 110054187A CN 201910497774 A CN201910497774 A CN 201910497774A CN 110054187 A CN110054187 A CN 110054187A
Authority
CN
China
Prior art keywords
mxene
preparation
ball
nano
accessory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910497774.2A
Other languages
English (en)
Other versions
CN110054187B (zh
Inventor
吕宝臣
任鑫
沈丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201910497774.2A priority Critical patent/CN110054187B/zh
Publication of CN110054187A publication Critical patent/CN110054187A/zh
Application granted granted Critical
Publication of CN110054187B publication Critical patent/CN110054187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本发明提供了一种基于纳米复合镀应用的MXene的制备方法及其应用,该方法包括:将Ti2AlC装进二氧化锆球磨罐之中,球料比选定为8~15:1,每罐样品总重定为5~8克,充氩气密封罐,正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间15~60小时;该球磨产物在真空手套箱中开罐,并且按P与Ti2AlC1:1摩尔比加入红磷P,搅拌均匀,充氩气密封罐,正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间2~30小时;在真空手套箱中开罐,将产物直接倾倒进pH值3以下的水溶液之中,长时间后沉淀物即为目标物质,惰性保护气体封存。本发明还包括该MXene复合镀层以及镀覆有该镀层的配件,本发明的复合镀层以及镀覆有该镀层的配件具有优异的耐磨抗蚀等性能。

Description

一种基于纳米复合镀应用的MXene的制备方法、制备的MXene 及应用
技术领域
本发明属于用金属材料对材料的镀覆领域,特别是涉及纳米复合镀应用的MXene的制备方法、制备的MXene及应用。
背景技术
MXene作为不溶性颗粒的纳米复合镀层由于具有高性能、可大面积镀覆以及可以获得冶金法制备的无法比拟的新合金的特点,其研究备受关注。其中,现有MXene多采用强酸性或强碱性水溶液刻蚀法,通常具有大的横截面尺寸特征,作为不溶性颗粒易于变形而对复合镀不利。因此,很有必要研究一种基于纳米复合镀应用的MXene的制备方法。
发明内容
为解决现有技术的不足,本发明提供一种基于纳米复合镀应用的MXene制备方法——金属间铝化物力学磷化法制备新型组分。本发明具有MXene,用于纳米复合镀,其镀层可望具有优异的耐磨性及良好的抗蚀等性能。
本发明涉及一种MXene的制备方法,其中,所述方法包括:将Ti2AlC装进二氧化锆球磨罐之中,球料比选定为8~15:1,每罐样品总重定为5~8克,充氩气密封罐,正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间15~60小时;所述球磨产物在真空手套箱中开罐,并且按P与Ti2AlC1:1摩尔比加入红磷P,搅拌均匀,充氩气密封罐,正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间2~30小时。在真空手套箱中开罐,将产物直接倾倒进pH值3以下的水溶液之中,长时间后沉淀物即为所述MXene,惰性保护气体封存。
本发明还涉及根据所述方法制备的MXene纳米复合镀层,其不溶性颗粒为Ti2CMXene。
本发明还涉及一种具有MXene复合镀层的的配件的制备方法,其中,所述方法包括使用所述Ti2C MXene不溶性颗粒施镀所述配件,所述施镀的方法为纳米复合镀。
作为本发明的一种实施方式,所述纳米复合镀为化学复合镀或复合电沉积。
作为本发明的一种优选实施方式,所述复合电沉积方法包括:0.2~4g/L所述Ti2CMXene不溶性颗粒在电镀液中电镀,所述电镀液包含有40g/L NiCl2·6H2O、0.8~1.6g/LNaBH4、20g/L NaOH、40ml/L乙二胺、35g/L酒石酸钾钠(NaKC4H4O6·4H2O)、0.08g/L硫酸铬(3CdSO4·8H2O);所述电沉积条件为pH 13.5、镀液温度40~60℃、阴极电流密度2~6A/dm2、电镀时间2h、搅拌器转速150-250转/min。
作为本发明的一种实施方式,本发明MXene复合镀层的制备方法中,所述纳米复合电沉积方法包括:0.2~4g/L所述Ti2C MXene不溶性颗粒在电镀液中电镀,所述电镀液包含有40g/L NiCl2·6H2O、0.8~1.6g/L NaBH4、20g/L NaOH、40ml/L乙二胺、35g/L酒石酸钾钠(NaKC4H4O6·4H2O)、0.08g/L硫酸铬(3CdSO4·8H2O);所述电沉积条件为pH13.5、镀液温度40~60℃、阴极电流密2~6A/dm2、电镀时间2h、搅拌器转速150-250转/min。
本发明还涉及所述制备方法制备的MXene纳米复合镀层的配件。
本发明制备的MXene,其具有优良的耐磨性、抗蚀性,保证了具有MXene的纳米复合镀层的配件的优良的技术性能。
附图说明
图1为本发明制备的MXene复合镀层横截面SEM显微形貌。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
本发明实施例中所用到的化学试剂均为分析纯,购自国药集团。本发明所述的实验方法,若无特殊说明,均为常规方法;所述的生物材料,若无特殊说明,均可从商业途径获得。
实施例1本发明MXene的制备
将Ti2AlC装进二氧化锆球磨罐之中,球料比选定为8~15:1,每罐样品总重定为5~8克,充氩气密封罐。正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间15~60小时。
上述球磨产物在真空手套箱中开罐,并且按P与Ti2AlC1:1摩尔比例加入红磷P,搅拌均匀,充氩气密封罐。正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间2~30小时。在真空手套箱中开罐,将产物直接倾倒进pH值3以下的水溶液之中,长时间后沉淀物即为目标物质,惰性保护气体封存待用。
实施例2本发明MXene复合镀层的复合电沉积配方以及工艺
以Ni-B-Ti2C MXene电学复合镀层为例说明复合电沉积制备(见表1),其配方和电镀工艺参数如下:
表1实验的电镀液配方以及工艺参数
制备的镀层横截面在SEM不同倍数下的显微形貌见图1,从图可明显看出第二相颗粒,为两图右侧黑色颗粒,但大小不一,上述结果表明复合镀成功。
实施例3本发明制备的Ni-B-Ti2C MXene电学复合镀层耐磨性、抗蚀性测试
3.1耐磨性测试
选用ML-100型滑动摩擦磨损机对实施例2制备的镀层的磨粒磨损速率进行测量,将镀件进行线切割成10mm×10mm的正方形,800目的砂纸,载荷为10N,进行正反转各半圈,旋转时间40s,以直接磨损量m表示耐磨性,测试数据见表2。
表2试件的磨损量
试样 磨损量/g
二元镀层 0.0100
复合镀层 0.0070
3.2抗蚀性测试
腐蚀试验中采用的浸泡失重法,主要测试了电化学Ni-B合金镀层在强碱下的耐腐蚀性能。试样非镀层部分采用抗碱物密封,以保证几乎不受碱液腐蚀。浸泡液采用的是15%的NaOH溶液,每两个小时取出称重,但发现其失重总重量特别少,以腐蚀10小时的总失重计算了试样的腐蚀速率(数据见表3)。
表3碱性条件下试件的腐蚀速率
试件 二元镀层试样 复合镀层试样
腐蚀速率/g·m<sup>-2</sup>·h<sup>-1</sup> 0.181 0.250
从上述测试结果可见本发明可以制得MXene纳米复合镀层,其具有优异的耐磨性及良好的抗碱蚀性能。
以上所述仅是本发明的优选实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以优选实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (6)

1.一种基于纳米复合镀应用的MXene的制备方法,其中,所述方法包括:
将Ti2AlC装进二氧化锆球磨罐之中,球料比选定为8~15:1,每罐样品总重定为5~8克,充氩气密封罐,正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间15~60小时;
所述球磨产物在真空手套箱中开罐,并且按P与Ti2AlC1:1摩尔比加入红磷P,搅拌均匀,充氩气密封罐,正转4~8分钟,反转1~2分钟,转速600~1500r/min,球磨时间2~30小时,在真空手套箱中开罐,将产物直接倾倒进pH值3以下的水溶液之中,长时间后沉淀物即为所述MXene,惰性保护气体封存。
2.根据权利要求1所述方法制备的纳米复合MXene,其不溶性颗粒为Ti2C MXene。
3.一种基于MXene的纳米复合镀层的配件的制备方法,其中,所述方法包括使用权利要求2所述Ti2C MXene不溶性颗粒施镀所述配件,所述施镀的方法为纳米复合镀。
4.根据权利要求3所述的制备方法,其中,所述纳米复合镀为化学复合镀或复合电沉积。
5.根据权利要求4所述的制备方法,其中,所述复合电沉积方法包括:0.2~4g/L所述Ti2C MXene不溶性颗粒在电镀液中电镀,所述电镀液包含有40g/L NiCl2·6H2O、0.8~1.6g/L NaBH4、20g/L NaOH、40ml/L乙二胺、35g/L酒石酸钾钠(NaKC4H4O6·4H2O)、0.08g/L硫酸铬(3CdSO4·8H2O);所述电沉积条件为pH13.5、镀液温度40~60℃、阴极电流密度2~6A/dm2、电镀时间2h、搅拌器转速150-250转/min。
6.根据权利要求3~5所述制备方法制备的MXene的纳米复合镀层的配件。
CN201910497774.2A 2019-06-10 2019-06-10 一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用 Active CN110054187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910497774.2A CN110054187B (zh) 2019-06-10 2019-06-10 一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910497774.2A CN110054187B (zh) 2019-06-10 2019-06-10 一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用

Publications (2)

Publication Number Publication Date
CN110054187A true CN110054187A (zh) 2019-07-26
CN110054187B CN110054187B (zh) 2022-10-04

Family

ID=67325699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910497774.2A Active CN110054187B (zh) 2019-06-10 2019-06-10 一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用

Country Status (1)

Country Link
CN (1) CN110054187B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656288A (zh) * 2022-03-15 2022-06-24 中国科学院过程工程研究所 一种MXene/陶瓷纤维光热转换复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044262A1 (en) * 2015-09-08 2017-03-16 Drexel University Improved routes to mx-ene carbides
CN108183212A (zh) * 2017-12-27 2018-06-19 山东大学 一种Mxene包覆多孔硅的复合电极材料及其制备方法
CN108245682A (zh) * 2018-02-11 2018-07-06 中国人民解放军第二军医大学 酸度、光热响应型介孔MXene纳米片药物载体及制法
US20180291508A1 (en) * 2017-04-07 2018-10-11 National Chiao Tung University Fabrication method for two-dimensional materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044262A1 (en) * 2015-09-08 2017-03-16 Drexel University Improved routes to mx-ene carbides
US20180291508A1 (en) * 2017-04-07 2018-10-11 National Chiao Tung University Fabrication method for two-dimensional materials
CN108183212A (zh) * 2017-12-27 2018-06-19 山东大学 一种Mxene包覆多孔硅的复合电极材料及其制备方法
CN108245682A (zh) * 2018-02-11 2018-07-06 中国人民解放军第二军医大学 酸度、光热响应型介孔MXene纳米片药物载体及制法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG, T.R.等: "A Red-Phosphorous-Assisted Ball-Milling Synthesis of Few-Layered Ti3C2Tx (MXene) Nanodot Composite", 《CHEMNANOMAT》 *
孙丹丹等: "新型二维晶体MXene的研究进展", 《人工晶体学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656288A (zh) * 2022-03-15 2022-06-24 中国科学院过程工程研究所 一种MXene/陶瓷纤维光热转换复合材料及其制备方法和应用
CN114656288B (zh) * 2022-03-15 2023-06-02 中国科学院过程工程研究所 一种MXene/陶瓷纤维光热转换复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110054187B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
Xing et al. Influence of Y2O3 nanoparticles on microstructures and properties of electrodeposited Ni–W–Y2O3 nanocrystalline coatings
Zhang et al. Synthesis and characterization of Ni-W/TiN nanocomposite coating with enhanced wear and corrosion resistance deposited by pulse electrodeposition
Carbajal et al. Electrochemical production and corrosion testing of amorphous Ni‐P
Li et al. Fabrication of the ZrC reinforced NiW composite coating and exploration of its mechanical properties and corrosion resistance
Yari et al. Deposition and characterization of nanocrystalline and amorphous Ni–W coatings with embedded alumina nanoparticles
Li et al. Synthesis of Ni–Co–ZrO2 nanocomposites doped with ceria particles via electrodeposition as highly protective coating
Safavi et al. Feasible strategies for promoting the mechano-corrosion performance of Ni-Co based coatings: Which one is better?
CN112239874A (zh) 具有纳米孪晶结构的纯镍或镍基合金镀层及其电沉积制备方法
CN1880513B (zh) 一种热生长Cr2O3或Al2O3膜型M-Cr-Al纳米复合电镀层及制备方法和应用
Yuan et al. Synthesis and protective properties of Ni-W alloy strengthened by incorporation of diamond particles
Li et al. Preparation of Ni-W nanocrystalline composite films reinforced by embedded zirconia ceramic nanoparticles
Park et al. Electrodeposited Ni1− x Co x Nanocrystalline Thin Films: Structure–Property Relationships
Zhang et al. Influences of Co and process parameters on structure and corrosion properties of nanocrystalline Ni-W-Co ternary alloy film fabricated by electrodeposition at low current density
Larson et al. Recent advances in pulsed current electrodeposition: a brief review
CN110054187A (zh) 一种基于纳米复合镀应用的MXene的制备方法、制备的MXene及应用
Ma et al. Electrodeposition of Ni-Co-Fe2O3 composite coatings
Hu et al. Improved corrosion resistance of Ni-Co coatings prepared by electrodeposition with large centrifugal acceleration
Ding et al. The electrodeposition of low-Sn imitation gold Cu–Sn alloy from EDTA-tartrate double complexing agents
Fan et al. Improvement of Microstructure and Wear Resistance of the Ni-La 2 O 3 Nanocomposite Coatings by Jet-Electrodeposition
CN114351218B (zh) 一种高硬度自润滑镍钨磷复合电镀液、其制备方法、电镀方法和应用
CN100587123C (zh) 一种纳米碳化钨-镍复合涂层的制备方法和应用
Li et al. Preparation of Sol‐Enhanced Ni–P–Al2O3 Nanocomposite Coating by Electrodeposition
Hosseini et al. Electrodeposition of Ni–W–B nanocomposite from tartrate electrolyte as alternative to chromium plating
Yuan et al. Effect of nano-SiC particles on the corrosion resistance of NiP-SiC composite coatings
Zhang et al. Electrodeposition of multi-layer Pd–Ni coatings on 316L stainless steel and their corrosion resistance in hot sulfuric acid solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant