CN110046771A - A kind of PM2.5 concentration prediction method and apparatus - Google Patents

A kind of PM2.5 concentration prediction method and apparatus Download PDF

Info

Publication number
CN110046771A
CN110046771A CN201910340382.5A CN201910340382A CN110046771A CN 110046771 A CN110046771 A CN 110046771A CN 201910340382 A CN201910340382 A CN 201910340382A CN 110046771 A CN110046771 A CN 110046771A
Authority
CN
China
Prior art keywords
observation point
gtwr
model
concentration
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910340382.5A
Other languages
Chinese (zh)
Other versions
CN110046771B (en
Inventor
李卫东
董立晔
董前林
赵晨曦
张学海
段金龙
孟凡谦
许向安
张定文
王雪志
侯嘉润
崔永成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201910340382.5A priority Critical patent/CN110046771B/en
Publication of CN110046771A publication Critical patent/CN110046771A/en
Application granted granted Critical
Publication of CN110046771B publication Critical patent/CN110046771B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Tourism & Hospitality (AREA)
  • Software Systems (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Computing Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a kind of PM2.5 concentration prediction method and apparatus, belong to the electric powder prediction of PM2.5 concentration value.Wherein method is the following steps are included: obtain PM2.5 concentration history data, meteorological historical data, Determination of Aerosol Optical historical data;Obtain two-dimensional position information, elevation information and the sampling time information of observation point;The parameter of 4D-GTWR model is determined according to above-mentioned data, so that it is determined that 4D-GTWR model, 4D-GTWR model are as follows:According to the 4D-GTWR model of the meteorological data of prediction, Determination of Aerosol Optical data and determination, the concentration of PM2.5 is predicted.4D-GTWR model in this method provides effective method in terms of predicting PM2.5 concentration, so that the prediction of PM2.5 concentration is more accurate, while also solving the non-stationary of four-dimensional spacetime, also demonstrating elevation information has great influence to the variation of PM2.5 concentration.

Description

一种PM2.5浓度预测方法与装置A PM2.5 concentration prediction method and device

技术领域technical field

本发明涉及一种PM2.5浓度预测方法与装置,属于PM2.5浓度值的预测技术领域。The invention relates to a PM2.5 concentration prediction method and device, belonging to the technical field of PM2.5 concentration value prediction.

背景技术Background technique

细颗粒物(PM2.5)不仅对公众健康造成严重威胁,而且严重影响了城市交通和市民日常生活,因此,PM2.5作为一种直接影响人类生活和健康的大气污染物,引起了众多学者对PM2.5相关反演研究工作的广泛关注,实现对PM2.5浓度的预测。Fine particulate matter (PM2.5) not only poses a serious threat to public health, but also seriously affects urban traffic and citizens' daily lives. Therefore, PM2.5, as an air pollutant that directly affects human life and health, has attracted many scholars' attention. The extensive attention of PM2.5 related inversion research work to realize the prediction of PM2.5 concentration.

现有技术中对PM2.5进行预测的方法有很多,比如:申请公布号CN106056210A的中国专利申请文件公开了一种基于混合神经网络的PM2.5浓度值预测方法,该方法采用PM2.5浓度值的历史数据、相关指标的历史数据、气象历史数据以及PM2.5成分解析数据,通过神经网络分段模拟出当地PM2.5浓度值的变化规律,实现PM2.5浓度值的预测。There are many methods for predicting PM2.5 in the prior art. For example, the Chinese patent application document with application publication number CN106056210A discloses a method for predicting PM2.5 concentration value based on a hybrid neural network. The method adopts PM2.5 concentration The historical data of the value, the historical data of the relevant indicators, the historical meteorological data and the analysis data of the PM2.5 components are used to simulate the variation law of the local PM2.5 concentration value through the neural network, so as to realize the prediction of the PM2.5 concentration value.

又比如:赵阳阳等人结合了协同训练与时空地理加权回归模型(GTWR),提出一种协同时空地理加权回归PM2.5浓度估算方法,其出处为《测绘科学》,2016,41(12):172-178,该方法以2015年3月到7月的京津冀PM2.5浓度为例,采用欧式空间距离度量,通过不同核函数的GTWR进行对比分析实验,结果表明,在时空样本数量不足时,该方法能够提高PM2.5的浓度估算精度。然而现有技术中PM2.5浓度预测方法的预测准确性仍然有待提高。Another example: Zhao Yangyang et al. combined collaborative training with the spatiotemporal geographic weighted regression model (GTWR), and proposed a collaborative spatiotemporal geographic weighted regression PM2.5 concentration estimation method. The source is "Science of Surveying and Mapping", 2016, 41(12): 172-178, this method takes the Beijing-Tianjin-Hebei PM2.5 concentration from March to July 2015 as an example, adopts the Euclidean spatial distance metric, and conducts a comparative analysis experiment through GTWR of different kernel functions. The results show that the number of samples in space and time is insufficient. , the method can improve the estimation accuracy of PM2.5 concentration. However, the prediction accuracy of the PM2.5 concentration prediction method in the prior art still needs to be improved.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种PM2.5浓度预测方法,用以解决现有预测方法的准确性低的问题;同时还提供一种PM2.5浓度预测装置,用以解决现有预测装置的准确性低的问题。The purpose of the present invention is to provide a PM2.5 concentration prediction method to solve the problem of low accuracy of the existing prediction method; and also to provide a PM2.5 concentration prediction device to solve the accuracy of the existing prediction device. low sex issue.

为实现上述目的,本发明提出一种PM2.5浓度预测方法,包括以下步骤:In order to achieve the above object, the present invention proposes a PM2.5 concentration prediction method, comprising the following steps:

获取PM2.5浓度历史数据、气象历史数据、大气气溶胶光学厚度历史数据;Obtain PM2.5 concentration historical data, meteorological historical data, and atmospheric aerosol optical depth historical data;

获取观测点的二维位置信息、高程信息和采样时间信息;Obtain two-dimensional position information, elevation information and sampling time information of observation points;

根据上述数据确定4D-GTWR模型的参数,从而确定4D-GTWR模型,4D-GTWR模型为:According to the above data, the parameters of the 4D-GTWR model are determined to determine the 4D-GTWR model. The 4D-GTWR model is:

其中,xik为观测点i的第k个自变量,共有p个自变量,所述自变量为气象数据;yi为观测点i的因变量,所述因变量为PM2.5浓度数据;4D-GTWR模型的参数为:βik(ui,vi,zi,ti)、βi0(ui,vi,zi,ti)和ξi,βik(ui,vi,zi,ti)为观测点i的第k个自变量的自变量回归系数,与观测点i的空间位置有关;βi0(ui,vi,zi,ti)为观测点i的自变量回归系数常数项;ξi为观测点i的随机误差;(ui,vi,zi,ti)为观测点i的四维空间坐标,其中,(ui,vi)表示二维空间坐标,(zi)表示高程空间坐标,(ti)表示时间坐标;n为观测点的数量;Wherein, x ik is the k-th independent variable of observation point i, there are p independent variables in total, and the independent variable is meteorological data; y i is the dependent variable of observation point i, and the dependent variable is PM2.5 concentration data; The parameters of the 4D-GTWR model are: β ik (u i ,vi ,z i ,t i ), β i0 (u i ,vi ,z i ,t i ) and ξ i , β ik ( u i , v i , z i , t i ) is the independent variable regression coefficient of the k-th independent variable of observation point i, which is related to the spatial position of observation point i; β i0 (u i ,v i ,z i ,t i ) is the observation point i The independent variable regression coefficient constant term of point i; ξ i is the random error of observation point i; (u i ,vi ,z i ,t i ) is the four-dimensional space coordinate of observation point i , where (u i ,vi i ) represents the two-dimensional space coordinate, (z i ) represents the elevation space coordinate, (t i ) represents the time coordinate; n is the number of observation points;

根据预测的气象数据、大气气溶胶光学厚度数据以及确定的4D-GTWR模型,预测PM2.5的浓度。Based on the predicted meteorological data, atmospheric aerosol optical depth data and the determined 4D-GTWR model, the PM2.5 concentration was predicted.

另外,本发明还提出一种PM2.5浓度预测装置,包括存储器、处理器以及存储在所述存储器中并可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现上述PM2.5浓度预测方法。In addition, the present invention also provides a PM2.5 concentration prediction device, comprising a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implements when the computer program is executed The above-mentioned PM2.5 concentration prediction method.

有益效果是:在时空地理加权回归模型中引入高程信息,提出了一种四维时空地理加权回归模型(4D-GTWR),采用四维空间欧式距离度量,能够更好的反映四维时空分布特征,提供更加真实的空间距离,从而对实际情况进行有效的分析,并且4D-GTWR模型在预测PM2.5浓度方面提供了有效的方法,使得PM2.5浓度的预测更加准确,同时还解决了四维时空的非平稳性,也验证了高程信息对PM2.5浓度变化具有重要影响。The beneficial effects are: the elevation information is introduced into the space-time geography weighted regression model, and a four-dimensional space-time geography weighted regression model (4D-GTWR) is proposed, which adopts the four-dimensional space Euclidean distance measure, which can better reflect the four-dimensional space-time distribution characteristics and provide more The real spatial distance can effectively analyze the actual situation, and the 4D-GTWR model provides an effective method in predicting PM2. Stationarity also verifies that the elevation information has an important influence on the change of PM2.5 concentration.

进一步的,上述PM2.5浓度预测方法及装置中,计算自变量回归系数的方法包括:通过建立观测点i的目标函数求解自变量回归系数的最小二乘估值,所述目标函数为:Further, in the above-mentioned PM2.5 concentration prediction method and device, the method for calculating the regression coefficient of the independent variable includes: by establishing the objective function of the observation point i, the least squares estimation of the regression coefficient of the independent variable is obtained, and the objective function is:

其中,wij ST为观测点i与观测点j之间的核函数;Among them, w ij ST is the kernel function between observation point i and observation point j;

所述自变量回归系数的最小二乘估值为:least squares estimates of the regression coefficients of the independent variables for:

其中,W(ui,vi,zi,ti)为四维时空权重矩阵,是由wij ST组成的矩阵,X为自变量矩阵,Y为因变量的观测值矩阵。Among them, W(u i ,v i ,z i ,t i ) is a four-dimensional space-time weight matrix, which is a matrix composed of w ij ST , X is the independent variable matrix, and Y is the observation value matrix of the dependent variable.

有益效果是:通过建立目标函数进行自变量回归系数的求解,该方法简单准确。The beneficial effects are: by establishing an objective function to solve the regression coefficient of the independent variable, the method is simple and accurate.

进一步的,上述PM2.5浓度预测方法及装置中,所述核函数为Gaussian型核函数,公式为:Further, in the above-mentioned PM2.5 concentration prediction method and device, the kernel function is a Gaussian type kernel function, and the formula is:

其中,h4D-ST为四维时空带宽,dij ST为观测点i与观测点j之间的四维时空距离。Among them, h 4D-ST is the four-dimensional space-time bandwidth, and d ij ST is the four-dimensional space-time distance between observation point i and observation point j.

有益效果是:通过Gaussian型核函数可以更加准确的得到四维时空权重矩阵。The beneficial effect is that the four-dimensional space-time weight matrix can be obtained more accurately through the Gaussian kernel function.

进一步的,上述PM2.5浓度预测方法及装置中,所述高程信息为数字高程信息,所述观测点i与观测点j之间的四维时空距离的计算公式为:Further, in the above-mentioned PM2.5 concentration prediction method and device, the elevation information is digital elevation information, and the calculation formula of the four-dimensional space-time distance between the observation point i and the observation point j is:

其中,为观测点i与观测点j之间的二维空间距离;为观测点i与观测点j之间的数字高程空间距离;为观测点i与观测点j之间的时间距离;λ、δ、μ为尺度调整因子,用来平衡不同四维时空距离的尺度差异。in, is the two-dimensional spatial distance between observation point i and observation point j; is the digital elevation space distance between observation point i and observation point j; is the time distance between observation point i and observation point j; λ, δ and μ are scale adjustment factors, which are used to balance the scale differences of different four-dimensional space-time distances.

有益效果是:计算四维时空距离的方法简单准确。The beneficial effects are: the method for calculating the four-dimensional space-time distance is simple and accurate.

进一步的,上述PM2.5浓度预测方法及装置中,所述四维时空带宽是根据的二维空间带宽hS2d、数字高程空间带宽hSDEM以及时间带宽hT得到的。Further, in the above-mentioned PM2.5 concentration prediction method and device, the four-dimensional space-time bandwidth is obtained according to the two-dimensional space bandwidth h S2d , the digital elevation space bandwidth h SDEM and the time bandwidth h T .

有益效果是:分别求解二维空间带宽、数字高程空间带宽和时间带宽,然后根据二维空间带宽、数字高程空间带宽、时间带宽和四维时空带宽得到四维时空带宽,使得得到的四维时空带宽更加准确。The beneficial effects are: solving the two-dimensional space bandwidth, the digital elevation space bandwidth and the time bandwidth respectively, and then obtaining the four-dimensional space-time bandwidth according to the two-dimensional space bandwidth, the digital elevation space bandwidth, the time bandwidth and the four-dimensional space-time bandwidth, so that the obtained four-dimensional space-time bandwidth is more accurate. .

进一步的,上述PM2.5浓度预测方法及装置中,根据赤池信息量准则计算二维空间带宽、数字高程空间带宽和时间带宽,所述赤池信息量准则AICc为:Further, in the above-mentioned PM2.5 concentration prediction method and device, two-dimensional space bandwidth, digital elevation space bandwidth and time bandwidth are calculated according to the Akaike Information Content Criterion, and the Akaike Information Content Criterion AICc is:

其中,σ2为4D-GTWR模型中随机误差方差的无偏估计,S是4D-GTWR模型的帽子矩阵,X1、X2、…、Xn分别是观测点1、2、…、n的自变量组成的行向量。Among them, σ 2 is the unbiased estimate of the random error variance in the 4D-GTWR model, S is the hat matrix of the 4D-GTWR model, X 1 , X 2 , ..., X n are the values of observation points 1, 2, ..., n, respectively A row vector of independent variables.

有益效果是:通过赤池信息量准则可以得到更加准确的带宽数据,进一步的提高PM2.5预测的准确度。The beneficial effects are: more accurate bandwidth data can be obtained through the Akaike information quantity criterion, and the accuracy of PM2.5 prediction can be further improved.

进一步的,上述PM2.5浓度预测方法及装置中,所述4D-GTWR模型中随机误差方差的无偏估计σ2的计算公式为:Further, in the above-mentioned PM2.5 concentration prediction method and device, the calculation formula of the unbiased estimate σ 2 of the random error variance in the 4D-GTWR model is:

σ2=RSS4D-GTWR/(n-2tr(S)+tr(STS));σ 2 =RSS 4D-GTWR /(n-2tr(S)+tr(S T S));

其中,RSS4D-GTWR为4D-GTWR模型的残差平方和。Among them, RSS 4D-GTWR is the residual sum of squares of the 4D-GTWR model.

进一步的,上述PM2.5浓度预测方法及装置中,所述4D-GTWR模型的残差平方和RSS4D-GTWR的计算公式为:Further, in the above-mentioned PM2.5 concentration prediction method and device, the calculation formula of the residual squared sum RSS 4D-GTWR of the 4D-GTWR model is:

RSS4D-GTWR=YT(I-S)T(I-S)Y;RSS 4D-GTWR = Y T (IS) T (IS) Y;

其中,I为单位矩阵。where I is the identity matrix.

进一步的,上述PM2.5浓度预测方法及装置中,气象数据至少包括气压、气温、相对湿度、降雨量、风速以及风向。Further, in the above-mentioned PM2.5 concentration prediction method and device, the meteorological data includes at least air pressure, air temperature, relative humidity, rainfall, wind speed and wind direction.

有益效果是:以上各气象数据都与PM2.5的浓度相关,通过以上气象数据可以更加全面的预测PM2.5的浓度。The beneficial effects are: the above meteorological data are all related to the concentration of PM2.5, and the concentration of PM2.5 can be more comprehensively predicted through the above meteorological data.

附图说明Description of drawings

图1为本发明观测点i与观测点j之间的四维时空距离示意图;1 is a schematic diagram of the four-dimensional space-time distance between observation point i and observation point j of the present invention;

图2为现有技术中采用GTWR模型的PM2.5估计值与观测值的关系图;Fig. 2 is the relation diagram of PM2.5 estimated value and observed value using GTWR model in the prior art;

图3为本发明采用4D-GTWR模型的PM2.5估计值与观测值的关系图。FIG. 3 is a graph showing the relationship between the PM2.5 estimated value and the observed value using the 4D-GTWR model in the present invention.

具体实施方式Detailed ways

PM2.5浓度预测方法实施例:Example of PM2.5 concentration prediction method:

本实施例提出的PM2.5浓度预测方法,包括以下步骤:The PM2.5 concentration prediction method proposed in this embodiment includes the following steps:

1)获取PM2.5浓度历史数据、气象历史数据、大气气溶胶光学厚度历史数据。1) Obtain historical data of PM2.5 concentration, historical meteorological data, and historical data of atmospheric aerosol optical depth.

不同的气象和不同的大气气溶胶光学厚度(AOD数据)都会对PM2.5浓度产生不同的影响。Different meteorology and different atmospheric aerosol optical depth (AOD data) will have different effects on PM2.5 concentration.

本实施例中,气象历史数据包括的气象因子有气压(h Pa)、气温(℃)、相对湿度(%)、降雨量(mm)、风速(km/h)以及风向(°)。不过,对PM2.5浓度影响较大的有风速、风向以及相对湿度,因此在气象历史数据只有风速、风向以及相对湿度也是可以的。In this embodiment, the meteorological factors included in the meteorological historical data include air pressure (h Pa), air temperature (° C.), relative humidity (%), rainfall (mm), wind speed (km/h) and wind direction (°). However, wind speed, wind direction and relative humidity have a greater impact on PM2.5 concentration, so only wind speed, wind direction and relative humidity are acceptable in historical meteorological data.

PM2.5浓度历史数据是由空气质量污染自动监测站(以下简称监测站)检测得到的,为每小时PM2.5均值浓度监测数据,气象历史数据是由气象站检测得到的,为每小时均值数据。这些数据均可在中国国家气象信息中心网站提供下载,由于气象站点与PM2.5监测站点的地理位置有所差异,PM2.5监测站点的气象因子的值则由周围气象站点的数据采用克里金插值而来。The historical data of PM2.5 concentration is detected by the air quality pollution automatic monitoring station (hereinafter referred to as the monitoring station), which is the monitoring data of the average concentration of PM2.5 per hour, and the historical meteorological data is detected by the weather station, which is the average value per hour data. These data can be downloaded from the website of the National Meteorological Information Center of China. Due to the geographical differences between the meteorological sites and the PM2.5 monitoring sites, the values of the meteorological factors of the PM2.5 monitoring sites are obtained from the data of the surrounding meteorological sites. Gold interpolation comes.

AOD数据是由中分辨率成像光谱仪(MODIS)反演得来的,采用IDL程序设计将MYD04_3K数据做几何校正,转化为WGS-84地理坐标系,并利用Arcpy提取与PM2.5检测站点时空匹配的AOD数据。MODIS是一种反演大气气溶胶光学厚度常用的传感器,扫描宽度为2330km,可以每天获取至少一次的全球观测数据。MODIS具有36个光谱通道,波谱范围为0.4–14μm,空间分辨率可以为250m,500m,1000m,可以用于获取AOD,水汽,地表温度,海洋等方面的数据。MODIS数据中的AOD数据由NASA LAADS提供数据下载。The AOD data is retrieved by the Moderate Resolution Imaging Spectrometer (MODIS), and the MYD04_3K data is geometrically corrected by the IDL program design, converted into the WGS-84 geographic coordinate system, and extracted by Arcpy to match the PM2.5 detection site in space and time AOD data. MODIS is a commonly used sensor for retrieving the optical depth of atmospheric aerosols, with a scanning width of 2330 km, which can obtain global observation data at least once a day. MODIS has 36 spectral channels, the spectral range is 0.4–14 μm, and the spatial resolution can be 250m, 500m, 1000m, and can be used to obtain AOD, water vapor, surface temperature, ocean and other data. The AOD data in the MODIS data is provided by NASA LAADS for data download.

2)获取观测点的二维位置信息、数字高程信息(即DEM信息)和采样时间信息。2) Obtain the two-dimensional position information, digital elevation information (ie DEM information) and sampling time information of the observation point.

二维位置信息为观测点的位置信息,采样时间为2017.12-2018.2,本实施例中采用数字高程信息(即DEM信息)作为三维空间的高度信息,DEM数据(即DEM信息)来源于中国科学院计算机网络信息中心地理空间数据云平台,空间分辨率为30m,DEM数据为2009年的数据。作为其他实施方式,也可以采用其他高程信息,本发明对此不做限制。The two-dimensional position information is the position information of the observation point, and the sampling time is from 2017.12 to 2018.2. In this embodiment, digital elevation information (ie DEM information) is used as the height information of the three-dimensional space, and the DEM data (ie DEM information) comes from the computer of the Chinese Academy of Sciences. The network information center geospatial data cloud platform, the spatial resolution is 30m, and the DEM data is the data in 2009. As other implementation manners, other elevation information may also be used, which is not limited in the present invention.

3)根据上述数据确定4D-GTWR模型的参数,从而确定4D-GTWR模型。3) Determine the parameters of the 4D-GTWR model according to the above data, thereby determining the 4D-GTWR model.

4D-GTWR模型为:The 4D-GTWR model is:

其中,xik为观测点i的第k个自变量,共有p个自变量,自变量为气象数据;yi为观测点i的因变量,因变量为PM2.5浓度数据;4D-GTWR模型的参数为:βik(ui,vi,zi,ti)、βi0(ui,vi,zi,ti)和ξi,βik(ui,vi,zi,ti)为观测点i的第k个自变量的自变量回归系数,与观测点i的空间位置有关;βi0(ui,vi,zi,ti)为观测点i的自变量回归系数常数项;ξi为观测点i的随机误差;(ui,vi,zi,ti)为观测点i的四维空间坐标,其中,(ui,vi)表示二维空间坐标,(zi)表示数字高程空间坐标,(ti)表示时间坐标;n为观测点的数量。Among them, x ik is the k-th independent variable of observation point i, there are p independent variables in total, and the independent variable is meteorological data; y i is the dependent variable of observation point i, and the dependent variable is PM2.5 concentration data; 4D-GTWR model The parameters are: β ik (u i ,vi ,z i ,t i ), β i0 (u i ,vi ,z i ,t i ) and ξ i , β ik ( u i ,vi , z i ) ,t i ) is the independent variable regression coefficient of the k - th independent variable of observation point i , which is related to the spatial position of observation point i ; Variable regression coefficient constant term; ξ i is the random error of observation point i; (u i ,vi ,z i ,t i ) is the four-dimensional space coordinate of observation point i , where ( u i ,vi ) represents two-dimensional Space coordinates, (z i ) represents digital elevation spatial coordinates, (t i ) represents time coordinates; n is the number of observation points.

对该模型求解主要是对自变量回归系数βik(ui,vi,zi,ti)的求解,ξi为观测点i的随机误差,服从ξi-N(0,ω2)的独立同分布,且Cov(ξij)=0(i≠j)(即随机变量ξi与ξj有相同的概率分布,并且互相独立)。The solution to this model is mainly to solve the independent variable regression coefficient β ik (u i ,vi ,z i ,t i ), ξ i is the random error of observation point i , obeying ξ i -N(0,ω 2 ) is independent and identically distributed, and Cov(ξ i , ξ j )=0 (i≠j) (that is, random variables ξ i and ξ j have the same probability distribution and are independent of each other).

观测点i的自变量回归系数的最小二乘估值为是由βik(ui,vi,zi,ti)组成的矩阵,βi0(ui,vi,zi,ti)是矩阵中的第一列的值,依据加权最小二乘准则对4D-GTWR模型进行估计,分别对每个观测点建立目标函数。观测点i的目标函数如下:The least squares estimate of the independent variable regression coefficient for observation point i is is a matrix composed of β ik (u i ,v i ,z i ,t i ), and β i0 (u i ,v i ,z i ,t i ) is The value of the first column in the matrix is used to estimate the 4D-GTWR model according to the weighted least squares criterion, and an objective function is established for each observation point. The objective function of observation point i is as follows:

其中,wij ST为观测点i与观测点j之间的核函数(即权重),与四维时空距离相关。Among them, w ij ST is the kernel function (ie the weight) between the observation point i and the observation point j, which is related to the four-dimensional space-time distance.

自变量回归系数的最小二乘估值可表示为:Least Squares Estimation of Regression Coefficients of Independent Variables can be expressed as:

其中,W(ui,vi,zi,ti)表示四维时空权重矩阵,是由wij ST组成的矩阵,X为自变量矩阵,X矩阵中的1为βi0对应的自变量xi0,一般取值为1,Y为观测值矩阵(这里为观测到的实际PM2.5值),通过上述计算可得出观测点i的因变量估计值为:Among them, W(u i ,v i ,z i ,t i ) represents the four-dimensional space-time weight matrix, which is a matrix composed of w ij ST , X is the independent variable matrix, and 1 in the X matrix is the independent variable x corresponding to β i0 i0 , generally takes the value of 1, Y is the observed value matrix (here is the observed actual PM2.5 value), the estimated value of the dependent variable of the observation point i can be obtained through the above calculation for:

其中,Xi表示矩阵X第i行的向量(即观测点i的自变量组成的行向量)。因此,各观测点处的因变量回归向量(即预测结果)为:Among them, X i represents the vector of the i-th row of the matrix X (that is, the row vector composed of the independent variables of the observation point i). Therefore, the dependent variable regression vector at each observation point (ie, the predicted outcome) for:

其中,S是4D-GTWR模型的帽子矩阵。where S is the hat matrix of the 4D-GTWR model.

本实施例中wij ST核函数为Gaussian型核函数,作为其他实施方式,wij ST核函数也可以为Bi-square型核函数,本发明对核函数的类型不做限制。In this embodiment, the w ij ST kernel function is a Gaussian type kernel function. As another implementation manner, the w ij ST kernel function may also be a Bi-square type kernel function, and the present invention does not limit the type of the kernel function.

Gaussian型核函数公式为:The Gaussian kernel function formula is:

其中,h4D-ST为四维时空带宽,dij ST为观测点i与观测点j之间的四维时空距离。Among them, h 4D-ST is the four-dimensional space-time bandwidth, and d ij ST is the four-dimensional space-time distance between observation point i and observation point j.

本发明考虑到三维空间和一维时间的四维空间异质性,提出四维时空距离的分析计算方法,下面阐述4D-GTWR模型的时间距离和三维空间距离的构造方法。Considering the heterogeneity of four-dimensional space in three-dimensional space and one-dimensional time, the present invention proposes an analysis and calculation method for four-dimensional space-time distance.

考虑到DEM主要对空间维度产生一定影响,基于本文对PM2.5时空变化研究,PM2.5等污染物的污染过程是具有四维时空地域性变化的,即存在四维时空非平稳性变化。因此,针对任意多个监测点,它们之间的三维空间坐标是有区别的。考虑到二三维空间可能具有不同的尺度效应,4D-GTWR模型引入来表现其之间的尺度差异。因此,由欧式空间距离可知,对于观测点i和观测点j之间的三维空间距离dij s可通过如下方式表示:Considering that DEM mainly has a certain impact on the spatial dimension, based on the research on the temporal and spatial variation of PM2.5 in this paper, the pollution process of PM2.5 and other pollutants has a four-dimensional spatial-temporal regional variation, that is, there is a four-dimensional spatial-temporal non-stationary change. Therefore, for any number of monitoring points, the three-dimensional space coordinates between them are different. Considering that two- and three-dimensional spaces may have different scale effects, the 4D-GTWR model introduces to show the difference in scale between them. Therefore, according to the Euclidean space distance, the three-dimensional space distance d ij s between the observation point i and the observation point j can be expressed as follows:

其中,可表示各种运算符。在此基础上,融合时空距离构造方法,四维时空距离表示如下:in, Various operators can be represented. On this basis, combining the spatiotemporal distance construction method, the four-dimensional spatiotemporal distance is expressed as follows:

尺度效应符号通常均采用加法,即对四维时空距离进行线性组合,可得到4D-GTWR模型下,如图1所示,观测点i(即图1中的回归点)与观测点j(即图1中的临近点)之间的四维时空距离dij ST的表示如下:scale effect symbol and Usually, addition is used, that is, the linear combination of the four-dimensional space-time distance can be obtained. Under the 4D-GTWR model, as shown in Figure 1, the observation point i (that is, the regression point in Figure 1) and the observation point j (that is, the The four-dimensional space-time distance d ij ST between adjacent points) is expressed as follows:

其中,为观测点i与观测点j之间的二维空间距离;观测点i与观测点j之间的数字高程空间距离;观测点i与观测点j之间的时间距离,λ、δ、μ为尺度调整因子,用来平衡不同四维时空距离的尺度差异。这里的u对应图中坐标的X轴,v对应图中坐标的Y轴,z对应图中坐标的Z轴,t对应图中坐标的T轴。in, is the two-dimensional spatial distance between observation point i and observation point j; The digital elevation space distance between observation point i and observation point j; The time distance between observation point i and observation point j, λ, δ and μ are scale adjustment factors, which are used to balance the scale differences of different four-dimensional space-time distances. Here, u corresponds to the X axis of the coordinates in the figure, v corresponds to the Y axis of the coordinates in the figure, z corresponds to the Z axis of the coordinates in the figure, and t corresponds to the T axis of the coordinates in the figure.

在核函数中,带宽参数的选取对模型的拟合结果影响很大,带宽过小会导致估计结果出现过拟合,带宽过大则会导致估计结果不够准确。因此,选取合适的带宽参数对于模型估计的准确性至关重要。应用到本实施例中,也就是说四维时空带宽h4D-ST对于4D-GTWR模型估计的准确性至关重要。四维时空带宽h4D-ST是根据的二维空间带宽hS2d、数字高程空间带宽hSDEM以及时间带宽hT得到的。In the kernel function, the selection of the bandwidth parameter has a great influence on the fitting result of the model. If the bandwidth is too small, the estimation result will be over-fitted. If the bandwidth is too large, the estimation result will be inaccurate. Therefore, the selection of appropriate bandwidth parameters is crucial to the accuracy of model estimation. Applied to this embodiment, that is to say, the four-dimensional space-time bandwidth h 4D-ST is very important for the estimation accuracy of the 4D-GTWR model. The four-dimensional space-time bandwidth h 4D-ST is obtained according to the two-dimensional space bandwidth h S2d , the digital elevation space bandwidth h SDEM and the time bandwidth h T .

将以上所述的dij ST带入可以得出:Bring the d ij ST described above into It can be concluded that:

其中,wij S2d、wij SDEM、wij T分别表示二维空间权重、DEM空间权重和时间权重,因而,4D-GTWR模型的四维时空权重矩阵表述如下:Among them, w ij S2d , w ij SDEM , w ij T represent the two-dimensional space weight, DEM space weight and time weight, respectively. Therefore, the four-dimensional space-time weight matrix of the 4D-GTWR model is expressed as follows:

从上述W(ui,vi,zi,ti)的表达式可以看出四维时空权重矩阵是与二维空间权重、DEM空间权重和时间权重相关的,为了求解需要求解出hS2d、hSDEM、hT、λ、δ、μ。From the above expression of W(u i ,vi ,z i ,t i ) , it can be seen that the four-dimensional space-time weight matrix is related to the two-dimensional space weight, DEM space weight and time weight. Need to solve h S2d , h SDEM , h T , λ, δ, μ.

本实施例中,根据赤池信息量准则(AICc)计算hS2d、hSDEM、hT、λ、δ、μ,作为其他实施方式,也可以根据CV准则(交叉验证法)进行计算,本发明对带宽以及尺度调整因子的计算过程不做限制。In this embodiment, h S2d , h SDEM , h T , λ , δ and μ, as other embodiments, can also be calculated according to the CV criterion (cross-validation method), and the present invention does not limit the calculation process of the bandwidth and the scale adjustment factor.

AICc的计算过程为:The calculation process of AICc is:

σ2=RSS4D-GTWR/(n-2tr(S)+tr(STS));σ 2 =RSS 4D-GTWR /(n-2tr(S)+tr(S T S));

RSS4D-GTWR=YT(I-S)T(I-S)Y;RSS 4D-GTWR = Y T (IS) T (IS) Y;

其中,σ2为4D-GTWR模型中随机误差方差的无偏估计,RSS4D-GTWR为4D-GTWR模型的残差平方和,I为单位矩阵。where σ2 is the unbiased estimate of the random error variance in the 4D-GTWR model, RSS 4D-GTWR is the residual sum of squares of the 4D-GTWR model, and I is the identity matrix.

RSS4D-GTWR的具体计算过程为:The specific calculation process of RSS 4D-GTWR is:

其中, in,

假设拟合值是E(yi)的无偏估计,即则:Hypothetical fit is an unbiased estimate of E(y i ), that is but:

且E(εTε)=σ2I。那么RSS4D-GTWR还可以表式为: and E(ε T ε)=σ 2 I. Then RSS 4D-GTWR can also be expressed as:

其中自由度fd为n-2tr(S)+tr(STS),从而可以得到4D-GTWR模型中随机误差项的无偏方差估计σ2为:where the degree of freedom fd is n-2tr(S)+tr(S T S), so the unbiased variance estimate σ 2 of the random error term in the 4D-GTWR model can be obtained as:

σ2=RSS4D-GTWR/(n-2tr(S)+tr(STS))。σ 2 =RSS 4D-GTWR /(n-2tr(S)+tr(S T S)).

通过以上公式可以看出,4D-GTWR模型的帽子矩阵S是关于未知参数W(ui,vi,zi,ti)的矩阵,则AICc是仅关于W(ui,vi,zi,ti)的函数,然而W(ui,vi,zi,ti)是关于各带宽的函数,因此最终AICc是关于各带宽的函数,求解AICc值最小时对应的各带宽以及尺度调整因子即为所需的各带宽以及尺度调整因子。It can be seen from the above formula that the hat matrix S of the 4D-GTWR model is a matrix about the unknown parameters W(u i ,vi ,z i ,t i ) , then AICc is only about W(u i ,vi ,z ) i , t i ), but W(u i ,vi ,z i ,t i ) is a function of each bandwidth, so the final AICc is a function of each bandwidth, and the corresponding bandwidths and The scaling factor is each required bandwidth and scaling factor.

尺度调整因子λ、与二维空间相关,λ、δ与DEM空间相关,μ与时间相关,一般情况下,λ、设置成为一个常数m,在进行δ、μ以及各个带宽计算的过程中,首先先设定δ、μ以及各个带宽的范围(带宽范围设置依据其实是在计算过程中不断去测试的,与四维时空距离有关)。scaling factor λ, It is related to two-dimensional space, λ and δ are related to DEM space, and μ is related to time. In general, λ, Set it as a constant m. In the process of calculating δ, μ and each bandwidth, first set the range of δ, μ and each bandwidth (the basis for setting the bandwidth range is actually constantly tested in the calculation process, and the four-dimensional space-time distance).

具体求解过程为:The specific solution process is:

第一步:将λ和设置成m,再设置hS2d的范围,确定最小AICc值对应的hS2dStep 1: Put λ and Set to m, then set the range of h S2d to determine the h S2d corresponding to the minimum AICc value;

第二步:将λ和设置成m,再设置μ与hT的范围,确定最小AICc值对应的μ和hTStep 2: Put λ and Set to m, and then set the range of μ and h T to determine μ and h T corresponding to the minimum AICc value;

第三步:将λ和设置成m,再设置δ与hSDEM的范围,确定最小AICc值对应的δ和hSDEMStep 3: Put λ and Set to m, and then set the range of δ and h SDEM to determine the δ and h SDEM corresponding to the minimum AICc value.

4)通过以上计算可以反推求解出W(ui,vi,zi,ti),进而求解出4D-GTWR模型的帽子矩阵S,最后得到预测结果 4) Through the above calculation, W(u i ,vi ,z i ,t i ) can be reversely solved, and then the hat matrix S of the 4D-GTWR model can be solved, and finally the prediction result can be obtained

通过以上计算,4D-GTWR模型中的各参数已经确定,最终可以确定4D-GTWR模型,在进行PM2.5浓度预测时,将预测的气象数据带入4D-GTWR模型,即可预测出各观测区的PM2.5浓度。Through the above calculations, the parameters in the 4D-GTWR model have been determined, and the 4D-GTWR model can finally be determined. When predicting PM2.5 concentration, the predicted meteorological data is brought into the 4D-GTWR model, and each observation can be predicted. PM2.5 concentration in the area.

以下通过具体的历史数据对本方法进行验证:The method is verified by the following specific historical data:

以某观测点为例进行验证,设某观测点为(u1,v1,z1,t1),其他另外两个观测点为(u2,v2,z2,t2)和(u3,v3,z3,t3),自变量和因变量的历史数据如表一:Take a certain observation point as an example to verify, let a certain observation point be (u 1 , v 1 , z 1 , t 1 ), and the other two observation points are (u 2 , v 2 , z 2 , t 2 ) and ( u 3 , v 3 , z 3 , t 3 ), the historical data of independent variables and dependent variables are shown in Table 1:

表一 历史数据Table 1 Historical data

以上数据只是一部分历史数据,在确定4D-GTWR模型的过程中,至少需要100个观测点的数据,由于数据过多这里不一一列举。The above data is only a part of the historical data. In the process of determining the 4D-GTWR model, data of at least 100 observation points are required. Due to the excessive amount of data, they will not be listed here.

三个观测点的时空坐标为表二,二维位置信息是WGS_1984_World_Mercator投影坐标系中的横坐标与纵坐标:The space-time coordinates of the three observation points are shown in Table 2, and the two-dimensional position information is the abscissa and ordinate in the WGS_1984_World_Mercator projected coordinate system:

表二 观测点的时空坐标Table 2 Space-time coordinates of observation points

zz tt uu vv 161(z<sub>1</sub>)161(z<sub>1</sub>) 49(t<sub>1</sub>)49(t<sub>1</sub>) 12612250.93(u<sub>1</sub>)12612250.93(u<sub>1</sub>) 4111074.699(v<sub>1</sub>)4111074.699(v<sub>1</sub>) 147(z<sub>2</sub>)147(z<sub>2</sub>) 49(t<sub>2</sub>)49(t<sub>2</sub>) 12612591.07(u<sub>2</sub>)12612591.07(u<sub>2</sub>) 4114111.191(v<sub>2</sub>)4114111.191(v<sub>2</sub>) 131(z<sub>3</sub>)131(z<sub>3</sub>) 49(t<sub>3</sub>)49(t<sub>3</sub>) 12575408.2(u<sub>3</sub>)12575408.2(u<sub>3</sub>) 4105491.236(v<sub>3</sub>)4105491.236(v<sub>3</sub>)

将历史数据带入模型中,做相关性的分析即可得知模型的准确度,相关性分析包括R2(相关系数),RMSE(均方根误差),MAE(平均绝对误差),R2越大,RMSE和MAE越小,说明模型准确度高。计算公式如下:Bring the historical data into the model, and do the correlation analysis to know the accuracy of the model. The correlation analysis includes R 2 (correlation coefficient), RMSE (root mean square error), MAE (mean absolute error), R 2 The larger the value, the smaller the RMSE and MAE, indicating that the model has high accuracy. Calculated as follows:

其中,为观测点i的PM2.5浓度估计值(预测值),为观测点i的PM2.5浓度观测值的平均值,yi为观测点i的PM2.5浓度观测值。in, is the estimated value (predicted value) of PM2.5 concentration at observation point i, is the average value of PM2.5 concentration observations at observation point i, and y i is the PM2.5 concentration observation value at observation point i.

将上述历史数据分别带入GTWR模型中(GTWR模型为现有技术,这里不做过多介绍),将得出GTWR模型的结果,包括各观测点中自变量的自变量回归系数,各观测点的因变量回归拟合向量带宽参数为2.2895,然后将与实际向量值y(各观测点的PM2.5观测值)做线性相关性分析,结果如图2所示,可以得出线性相关分析曲线y=1.0536x-2.3442(该曲线为相关性分析曲线,该公式中的x为PM2.5观测值,y为PM2.5的预测值),R2,RMSE,MAE,图2中零散的点中既有PM2.5估计值(预测值),也有PM2.5观测值(实测值),横坐标为PM2.5(实测值),纵坐标为PM2.5预测值,通过零散的点与的线性相关分析曲线的关系可以看出模型的效果,所得的结果如表三所示:Bring the above historical data into the GTWR model (the GTWR model is the prior art and will not be introduced too much here), and the results of the GTWR model will be obtained, including the independent variable regression coefficients of the independent variables in each observation point, and each observation point. The dependent variable regression fit vector of The bandwidth parameter is 2.2895, then the Perform linear correlation analysis with the actual vector value y (the PM2.5 observation value of each observation point), and the result is shown in Figure 2. The linear correlation analysis curve y=1.0536x-2.3442 (this curve is the correlation analysis curve) can be obtained. , x in this formula is the observed value of PM2.5, y is the predicted value of PM2.5), R 2 , RMSE, MAE, the scattered points in Figure 2 have both the estimated value (predicted value) of PM2.5 and the The observed value of PM2.5 (measured value), the abscissa is PM2.5 (measured value), and the ordinate is the predicted value of PM2.5. The effect of the model can be seen through the relationship between the scattered points and the linear correlation analysis curve. The results are shown in Table 3:

表三 GTWR模型Table 3 GTWR model

表三中,Min为最小值,LQ为下四分位数,Med为中值,UQ为上四分位数,Max为最大值,描述了各自变量回归系数随时空位置的变化情况,截距为自变量的回归系数常数项,表中的AOD表示自变量AOD对应的自变量回归系数,相对湿度表示自变量相对湿度对应的自变量回归系数,气压表示自变量气压对应的自变量回归系数,气温表示自变量气温对应的自变量回归系数,风速表示自变量风速对应的自变量回归系数,风向表示自变量风向对应的自变量回归系数,降雨量数据为0,因此这里没有相关回归系数。In Table 3, Min is the minimum value, LQ is the lower quartile, Med is the median value, UQ is the upper quartile, and Max is the maximum value, which describes the change of the regression coefficients of the respective variables with time and space, and the intercept is the regression coefficient constant term of the independent variable, AOD in the table represents the independent variable regression coefficient corresponding to the independent variable AOD, relative humidity represents the independent variable regression coefficient corresponding to the independent variable relative humidity, and air pressure represents the independent variable regression coefficient corresponding to the independent variable air pressure, Temperature represents the independent variable regression coefficient corresponding to the independent variable temperature, wind speed represents the independent variable regression coefficient corresponding to the independent variable wind speed, and wind direction represents the independent variable regression coefficient corresponding to the independent variable wind direction. The rainfall data is 0, so there is no correlation regression coefficient here.

将上述历史数据分别带入4D-GTWR模型中,将得出4D-GTWR模型的结果,包括各观测点中自变量的自变量回归系数,各观测点的因变量回归拟合向量带宽参数为0.0063,然后将与实际向量值y(各观测点的PM2.5观测值)做线性相关性分析,结果如图3所示,可以得出线性相关分析曲线y=1.0253x-1.2749,R2,RMSE,MAE,如图3所示,图3与图2横坐标、纵坐标、零散的点与曲线所表示的含义相同,这里不做过多介绍,所得的结果如表四所示:Bring the above historical data into the 4D-GTWR model respectively, and the results of the 4D-GTWR model will be obtained, including the independent variable regression coefficient of the independent variable in each observation point, and the dependent variable regression fitting vector of each observation point. The bandwidth parameter is 0.0063, then the Perform linear correlation analysis with the actual vector value y (the PM2.5 observed value of each observation point), the result is shown in Figure 3, the linear correlation analysis curve y=1.0253x-1.2749, R 2 , RMSE, MAE, As shown in Figure 3, the abscissa, ordinate and scattered points in Figure 3 and Figure 2 have the same meaning as the curve, so I won't introduce too much here. The results are shown in Table 4:

表四 4D-GTWR模型Table 4 4D-GTWR model

表四中的各含义与表三相同,从结果可以看出,GTWR模型中,R2=0.8811,RMSE=12.9579,MAE=9.5815,4D-GTWR模型中,R2=0.9496,RMSE=8.5931,MAE=5.9498,4D-GTWR模型的R2比GTWR模型的R2大,4D-GTWR模型的RMSE和MAE比GTWR模型的RMSE和MAE小,说明4D-GTWR模型准确度更高。The meanings in Table 4 are the same as those in Table 3. It can be seen from the results that in the GTWR model, R 2 =0.8811, RMSE=12.9579, MAE=9.5815, and in the 4D-GTWR model, R 2 =0.9496, RMSE=8.5931, MAE = 5.9498, the R 2 of the 4D - GTWR model is larger than that of the GTWR model, and the RMSE and MAE of the 4D-GTWR model are smaller than those of the GTWR model, indicating that the 4D-GTWR model is more accurate.

PM2.5浓度预测装置实施例:Example of PM2.5 concentration prediction device:

本实施例提出的PM2.5浓度预测装置,包括存储器、处理器以及存储在所述存储器中并可在处理器上运行的计算机程序,处理器在执行所述计算机程序时实现PM2.5浓度预测方法。The PM2.5 concentration prediction device proposed in this embodiment includes a memory, a processor, and a computer program stored in the memory and running on the processor. The processor implements PM2.5 concentration prediction when executing the computer program. method.

PM2.5浓度预测方法的具体实施过程在上述PM2.5浓度预测方法实施例中已经介绍,这里不做赘述。The specific implementation process of the PM2.5 concentration prediction method has been introduced in the above-mentioned embodiment of the PM2.5 concentration prediction method, and will not be repeated here.

Claims (10)

1. A PM2.5 concentration prediction method is characterized by comprising the following steps:
acquiring PM2.5 concentration historical data, meteorological historical data and atmospheric aerosol optical thickness historical data;
acquiring two-dimensional position information, elevation information and sampling time information of an observation point;
determining parameters of a 4D-GTWR model according to the data, thereby determining the 4D-GTWR model, wherein the 4D-GTWR model is as follows:
wherein x isikP independent variables are the k independent variables of the observation point i, and the independent variables are meteorological data; y isiThe dependent variable is the PM2.5 concentration data of the observation point i, and the parameter of the 4D-GTWR model is βik(ui,vi,zi,ti)、βi0(ui,vi,zi,ti) And ξi,βik(ui,vi,zi,ti) The independent variable regression coefficient of the k independent variable of the observation point i is related to the space position of the observation point i βi0(ui,vi,zi,ti) Constant term of independent variable regression coefficient for observation point i ξiIs the random error of observation point i; (u)i,vi,zi,ti) Is the four-dimensional space coordinate of observation point i, where (u)i,vi) Representing two-dimensional spatial coordinates, (z)i) Representing the elevation space coordinate (t)i) Representing a time coordinate; n is the number of observation points;
and predicting the concentration of PM2.5 according to the predicted meteorological data, the atmospheric aerosol optical thickness data and the determined 4D-GTWR model.
2. The PM2.5 concentration prediction method according to claim 1, wherein the method of calculating the regression coefficient of the independent variable includes: solving a least squares estimate of the independent variable regression coefficient by establishing an objective function of the observation point i, the objective function being:
wherein, wij STIs a kernel function between observation point i and observation point j;
least squares estimation of the independent variable regression coefficientsComprises the following steps:
wherein, W (u)i,vi,zi,ti) Is a four-dimensional space-time weight matrix composed of wij STAnd (3) forming a matrix, wherein X is an independent variable matrix, and Y is an observed value matrix of a dependent variable.
3. The PM2.5 concentration prediction method according to claim 2, wherein the kernel function is a Gaussian kernel function, and the formula is:
wherein h is4D-STIs a four-dimensional space-time bandwidth, dij STIs the four-dimensional space-time distance between the observation point i and the observation point j.
4. The PM2.5 concentration prediction method according to claim 3, wherein the elevation information is digital elevation information, and the four-dimensional space-time distance between the observation point i and the observation point j is calculated by the following formula:
wherein,the two-dimensional space distance between the observation point i and the observation point j is obtained;the digital elevation space distance between the observation point i and the observation point j is obtained;the time distance between the observation point i and the observation point j is obtained; lambda, lambda,Delta and mu are scale adjustment factors used for balancing the scale difference of different four-dimensional space-time distances.
5. The PM2.5 concentration prediction method of claim 4, wherein the four-dimensional space-time bandwidth is a two-dimensional space bandwidth h based onS2dDigital elevation space bandwidth hSDEMAnd time bandwidth hTAnd (4) obtaining the product.
6. The PM2.5 concentration prediction method according to claim 5, wherein the two-dimensional spatial bandwidth, the digital elevation spatial bandwidth and the time bandwidth are calculated according to the akage information amount criterion, and the akage information amount criterion AICc is:
wherein σ2Is an unbiased estimate of random error variance in the 4D-GTWR model, S is the cap matrix of the 4D-GTWR model, X1、X2、…、XnAre row vectors consisting of the arguments of observation points 1, 2, …, n, respectively.
7. The PM2.5 concentration prediction method of claim 6, wherein the unbiased estimation of random error variance σ in the 4D-GTWR model2The calculation formula of (2) is as follows:
σ2=RSS4D-GTWR/(n-2tr(S)+tr(STS));
wherein the RSS4D-GTWRAs residues of the 4D-GTWR modelThe difference is the sum of squares.
8. The PM2.5 concentration prediction method according to claim 7, wherein the Residual Sum of Squares (RSS) of the residuals of the 4D-GTWR model4D-GTWRThe calculation formula of (2) is as follows:
RSS4D-GTWR=YT(I-S)T(I-S)Y;
wherein I is an identity matrix.
9. The PM2.5 concentration prediction method according to claim 1, wherein the meteorological data includes at least air pressure, air temperature, relative humidity, rainfall, wind speed, and wind direction.
10. A PM2.5 concentration prediction apparatus comprising a memory, a processor and a computer program stored in the memory and executable on the processor, characterized in that the processor implements the PM2.5 concentration prediction method according to any one of claims 1 to 9 when executing the computer program.
CN201910340382.5A 2019-04-25 2019-04-25 PM2.5 concentration prediction method and device Active CN110046771B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910340382.5A CN110046771B (en) 2019-04-25 2019-04-25 PM2.5 concentration prediction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910340382.5A CN110046771B (en) 2019-04-25 2019-04-25 PM2.5 concentration prediction method and device

Publications (2)

Publication Number Publication Date
CN110046771A true CN110046771A (en) 2019-07-23
CN110046771B CN110046771B (en) 2021-04-16

Family

ID=67279470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910340382.5A Active CN110046771B (en) 2019-04-25 2019-04-25 PM2.5 concentration prediction method and device

Country Status (1)

Country Link
CN (1) CN110046771B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111256745A (en) * 2020-02-28 2020-06-09 芜湖职业技术学院 A kind of portable air quality monitor data calibration method
CN111307199A (en) * 2019-12-05 2020-06-19 北京普源精电科技有限公司 Electronic measuring instrument with prediction device and prediction method of electronic measuring instrument
CN111896680A (en) * 2020-07-08 2020-11-06 天津师范大学 Greenhouse Gas Emission Analysis Method and System Based on Satellite Remote Sensing Data
CN112013822A (en) * 2020-07-22 2020-12-01 武汉智图云起科技有限公司 Multispectral remote sensing water depth inversion method based on improved GWR model
CN112990609A (en) * 2021-04-30 2021-06-18 中国测绘科学研究院 Air quality prediction method based on space-time bandwidth self-adaptive geographical weighted regression
CN113538239A (en) * 2021-07-12 2021-10-22 浙江大学 Interpolation method based on space-time autoregressive neural network model
CN113901348A (en) * 2021-11-10 2022-01-07 江苏省血吸虫病防治研究所 A Mathematical Model-Based Method for Identifying and Predicting Influencing Factors of Snail Distribution
CN114511087A (en) * 2022-04-19 2022-05-17 四川国蓝中天环境科技集团有限公司 Air quality space inference method and system based on double models
CN117055087A (en) * 2023-10-10 2023-11-14 中国电建集团西北勘测设计研究院有限公司 GNSS real-time positioning and resolving method for haze influence area
CN117786618A (en) * 2024-02-27 2024-03-29 四川国蓝中天环境科技集团有限公司 Application method of regional pollution transmission evaluation method in environment control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105184012A (en) * 2015-09-28 2015-12-23 宁波大学 Method for predicting PM2.5 concentration of regional air
CN106056210A (en) * 2016-06-07 2016-10-26 浙江工业大学 PM 2.5 concentration value prediction method based on hybrid neural network
CN106407633A (en) * 2015-07-30 2017-02-15 中国科学院遥感与数字地球研究所 Method and system for estimating ground PM2.5 based on space-time regression Kriging model
CN107103392A (en) * 2017-05-24 2017-08-29 北京航空航天大学 A kind of identification of bus passenger flow influence factor and Forecasting Methodology based on space-time Geographical Weighted Regression
CN107133686A (en) * 2017-03-30 2017-09-05 大连理工大学 City-level PM2.5 concentration prediction methods based on Spatio-Temporal Data Model for Spatial
CN108763756A (en) * 2018-05-28 2018-11-06 河南工业大学 A kind of aerosol optical depth and PM2.5 invertings correction method and its system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106407633A (en) * 2015-07-30 2017-02-15 中国科学院遥感与数字地球研究所 Method and system for estimating ground PM2.5 based on space-time regression Kriging model
CN105184012A (en) * 2015-09-28 2015-12-23 宁波大学 Method for predicting PM2.5 concentration of regional air
CN106056210A (en) * 2016-06-07 2016-10-26 浙江工业大学 PM 2.5 concentration value prediction method based on hybrid neural network
CN107133686A (en) * 2017-03-30 2017-09-05 大连理工大学 City-level PM2.5 concentration prediction methods based on Spatio-Temporal Data Model for Spatial
CN107103392A (en) * 2017-05-24 2017-08-29 北京航空航天大学 A kind of identification of bus passenger flow influence factor and Forecasting Methodology based on space-time Geographical Weighted Regression
CN108763756A (en) * 2018-05-28 2018-11-06 河南工业大学 A kind of aerosol optical depth and PM2.5 invertings correction method and its system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QINGQING HE: "Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model", 《ENVIRONMENTAL POLLUTION》 *
WEIDONG LI: "Environmental Study on Contribution Rates of Aerosol Scale Height and Humidity in PM2.5 Inversion Based on Calipso Data", 《FOUNDATION ENVIRONMENTAL PROTECTION & RESEARCH》 *
卢月明: "一种基于主成分分析的时空地理加权回归方法", 《测绘科学技术学报》 *
赵阳阳: "一种协同时空地理加权回归PM2.5浓度估算方法", 《测绘科学》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307199A (en) * 2019-12-05 2020-06-19 北京普源精电科技有限公司 Electronic measuring instrument with prediction device and prediction method of electronic measuring instrument
CN111256745A (en) * 2020-02-28 2020-06-09 芜湖职业技术学院 A kind of portable air quality monitor data calibration method
CN111896680B (en) * 2020-07-08 2022-07-05 天津师范大学 Greenhouse gas emission analysis method and system based on satellite remote sensing data
CN111896680A (en) * 2020-07-08 2020-11-06 天津师范大学 Greenhouse Gas Emission Analysis Method and System Based on Satellite Remote Sensing Data
CN112013822A (en) * 2020-07-22 2020-12-01 武汉智图云起科技有限公司 Multispectral remote sensing water depth inversion method based on improved GWR model
CN112990609A (en) * 2021-04-30 2021-06-18 中国测绘科学研究院 Air quality prediction method based on space-time bandwidth self-adaptive geographical weighted regression
CN112990609B (en) * 2021-04-30 2021-09-14 中国测绘科学研究院 Air quality prediction method based on space-time bandwidth self-adaptive geographical weighted regression
CN113538239A (en) * 2021-07-12 2021-10-22 浙江大学 Interpolation method based on space-time autoregressive neural network model
CN113538239B (en) * 2021-07-12 2024-03-19 浙江大学 Interpolation method based on space-time autoregressive neural network model
CN113901348A (en) * 2021-11-10 2022-01-07 江苏省血吸虫病防治研究所 A Mathematical Model-Based Method for Identifying and Predicting Influencing Factors of Snail Distribution
CN114511087A (en) * 2022-04-19 2022-05-17 四川国蓝中天环境科技集团有限公司 Air quality space inference method and system based on double models
CN114511087B (en) * 2022-04-19 2022-07-01 四川国蓝中天环境科技集团有限公司 Air quality space inference method and system based on double models
CN117055087A (en) * 2023-10-10 2023-11-14 中国电建集团西北勘测设计研究院有限公司 GNSS real-time positioning and resolving method for haze influence area
CN117055087B (en) * 2023-10-10 2024-01-30 中国电建集团西北勘测设计研究院有限公司 GNSS real-time positioning and resolving method for haze influence area
CN117786618A (en) * 2024-02-27 2024-03-29 四川国蓝中天环境科技集团有限公司 Application method of regional pollution transmission evaluation method in environment control
CN117786618B (en) * 2024-02-27 2024-05-07 四川国蓝中天环境科技集团有限公司 Application method of regional pollution transmission evaluation method in environment control

Also Published As

Publication number Publication date
CN110046771B (en) 2021-04-16

Similar Documents

Publication Publication Date Title
CN110046771B (en) PM2.5 concentration prediction method and device
Kent et al. Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas
Banks et al. Performance evaluation of the boundary-layer height from lidar and the Weather Research and Forecasting model at an urban coastal site in the north-east Iberian Peninsula
Lin et al. ASCAT wind quality control near rain
CN106407633B (en) Method and system based on space regression Kriging model estimation ground PM2.5
CN110232471B (en) A method and device for optimizing node layout of precipitation sensor network
CN110595968B (en) A PM2.5 Concentration Estimation Method Based on Geostationary Satellites
CN105303030B (en) A kind of MODIS remote sensing estimation method of eutrophic lake algae Gauss vertical characteristics structural parameters
Portabella et al. Scatterometer backscatter uncertainty due to wind variability
WO2020044127A1 (en) Atmospheric pollution forecasting method
CN108154271A (en) A kind of surface air temperature method of quality control based on spatial coherence and surface fitting
McRobie et al. A spatial-temporal rainfall generator for urban drainage design
CN110595960B (en) A remote sensing estimation method of PM2.5 concentration based on machine learning
CN114972984A (en) Accumulated snow time-space analysis and prediction method based on random forest
CN110443830A (en) A precipitation cloud detection method based on mixed Gaussian background model
CN111325376A (en) Wind speed prediction method and device
CN115598027A (en) PM based on remote sensing and machine learning technology 2.5 Inversion method
Liu et al. Gridded statistical downscaling based on interpolation of parameters and predictor locations for summer daily precipitation in North China
CN118097433B (en) Remote sensing image processing method and system based on deep learning
Wardah et al. Radar rainfall estimates comparison with kriging interpolation of gauged rain
CN113049606A (en) Large-area high-precision insulator pollution distribution assessment method
CN116466368B (en) Dust extinction coefficient profile estimation method based on laser radar and satellite data
CN109710718B (en) Method for quickly estimating plant coverage factor
CN116400432B (en) Method and device for calculating influence of observation data on numerical weather forecast based on set
CN112966710A (en) FY-3D infrared hyperspectral cloud detection method based on linear discriminant analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant