CN106407633A - Method and system for estimating ground PM2.5 based on space-time regression Kriging model - Google Patents
Method and system for estimating ground PM2.5 based on space-time regression Kriging model Download PDFInfo
- Publication number
- CN106407633A CN106407633A CN201510461379.0A CN201510461379A CN106407633A CN 106407633 A CN106407633 A CN 106407633A CN 201510461379 A CN201510461379 A CN 201510461379A CN 106407633 A CN106407633 A CN 106407633A
- Authority
- CN
- China
- Prior art keywords
- ground
- estimated
- model
- area
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供一种基于时空回归克里金模型估算地面PM2.5的方法及系统,其中的方法包括:将待估算地区的地面PM2.5观测数据重采样到创建的网格中并进行匹配;其中,匹配的过程包括,在创建的网格中,将待估算地区所对应的网格单元内所有PM2.5站点同一天监测到的地面PM2.5观测数据进行平均,然后将平均后的数据赋值给对应的网格单元;根据所匹配的待估算地区的地面PM2.5观测数据,计算残差的实验变异函数,根据残差的实验变异函数确定时空变异函数模型;采用最小二乘法对时空变异函数模型进行拟合;根据时空变异函数模型的拟合结果,采用时空回归克里金模型估算待估算地区的地面PM2.5浓度值。通过本发明能够提高PM2.5的估算精度。
The present invention provides a method and system for estimating ground PM2.5 based on a space-time regression kriging model, wherein the method includes: resampling the ground PM2.5 observation data in the area to be estimated into the created grid and performing matching; Among them, the matching process includes, in the created grid, averaging the ground PM2.5 observation data of all PM2.5 stations in the grid cell corresponding to the area to be estimated on the same day, and then averaging the data Assign the value to the corresponding grid unit; calculate the experimental variation function of the residual according to the ground PM2.5 observation data in the area to be estimated, and determine the space-time variation function model according to the experimental variation function of the residual; The variogram model was used for fitting; according to the fitting results of the spatiotemporal variogram model, the spatiotemporal regression Kriging model was used to estimate the ground PM2.5 concentration value in the area to be estimated. The estimation accuracy of PM2.5 can be improved through the invention.
Description
技术领域technical field
本发明涉及气溶胶监测技术领域,更为具体地,涉及一种基于时空回归克里金模型估算地面PM2.5的方法及系统。The invention relates to the technical field of aerosol monitoring, and more specifically, to a method and system for estimating ground PM2.5 based on a time-space regression kriging model.
背景技术Background technique
随着经济的快速发展,以及工业活动与机动车尾气等人为排放有害气体的急剧增加,导致空气质量持续恶化。PM2.5指空气中空气动力学粒径小于2.5微米的颗粒物,与大粒径颗粒物相比,PM2.5粒径小,富含大量的有毒有害物质且在大气中的停留时间长、输送距离远,因而对人体和大气环境质量的影响很大。大量的流行病学研究证明,PM2.5与哮喘、呼吸道感染、肺癌、心血管疾病等存在一定的关联性。因此,对PM2.5的监测成为研究大气环境的关键点之一。With the rapid development of the economy and the sharp increase of man-made harmful gases such as industrial activities and motor vehicle exhaust, the air quality continues to deteriorate. PM2.5 refers to particulate matter with an aerodynamic particle size of less than 2.5 microns in the air. Compared with large particle size particles, PM2.5 particle size is small, rich in a large amount of toxic and harmful substances, and has a long residence time in the atmosphere and a long transportation distance. Therefore, it has a great impact on the human body and the quality of the atmospheric environment. A large number of epidemiological studies have proved that there is a certain relationship between PM2.5 and asthma, respiratory infections, lung cancer, and cardiovascular diseases. Therefore, the monitoring of PM2.5 has become one of the key points in the study of atmospheric environment.
由于空气监测数据往往是具有一定时间序列的数据,其存在较强的时空变化特性,而空间插值方法是在设有测量站点的地方获取污染物分布的最简单有效的方法。Since the air monitoring data are often data with a certain time series, they have strong temporal and spatial variation characteristics, and the spatial interpolation method is the simplest and most effective method to obtain the distribution of pollutants in places with measurement stations.
目前很多学者使用空间插值方法来估算污染物的分布。例如,将空间插值方法应用于二氧化氮、臭氧、PM10等污染物的研究,但极少应用于PM2.5的研究,即使有研究人员利用空间插值的方法对PM2.5的分布特征进行研究,但是这些空间插值方法并没有考虑PM2.5的时间分布特性,且当地面监测站点覆盖不足时,对PM2.5的估算精度不高,因此有必要提出一种精度更高的空间插值模型。At present, many scholars use spatial interpolation methods to estimate the distribution of pollutants. For example, the spatial interpolation method is applied to the research of nitrogen dioxide, ozone, PM10 and other pollutants, but it is rarely applied to the research of PM2.5, even if some researchers use the spatial interpolation method to study the distribution characteristics of PM2.5 , but these spatial interpolation methods do not consider the time distribution characteristics of PM2.5, and when the coverage of ground monitoring stations is insufficient, the estimation accuracy of PM2.5 is not high, so it is necessary to propose a spatial interpolation model with higher accuracy.
发明内容Contents of the invention
鉴于上述问题,本发明的目的是提供一种基于时空回归克里金模型估算地面PM2.5的方法及系统,以解决现有的空间插值方法对地面PM2.5的估算精度不高的问题。In view of the above problems, the object of the present invention is to provide a method and system for estimating ground PM2.5 based on a spatio-temporal regression Kriging model, so as to solve the problem that the estimation accuracy of ground PM2.5 is not high by existing spatial interpolation methods.
根据本发明的一个方面,提供一种基于时空回归克里金模型估算地面PM2.5的方法,包括:According to one aspect of the present invention, there is provided a method for estimating ground PM2.5 based on a space-time regression kriging model, comprising:
根据待估算地区的经纬度范围以及分辨率创建网格,将待估算地区的地面PM2.5观测数据重采样到创建的网格中并进行匹配;其中,匹配的过程包括,在网格中,将待估算地区所对应的网格单元内所有PM2.5站点同一天监测到的地面PM2.5观测数据进行平均,然后将平均后的数据赋值给对应的网格单元;Create a grid according to the latitude and longitude range and resolution of the area to be estimated, resample the ground PM2.5 observation data of the area to be estimated into the created grid and perform matching; wherein, the matching process includes, in the grid, the Average the ground PM2.5 observation data monitored by all PM2.5 stations in the grid unit corresponding to the area to be estimated on the same day, and then assign the averaged data to the corresponding grid unit;
根据所匹配的待估算地区的地面PM2.5观测数据,计算残差的实验变异函数,然后根据残差的实验变异函数确定时空变异函数模型;Calculate the experimental variogram of the residual according to the ground PM2.5 observation data in the area to be estimated, and then determine the spatiotemporal variogram model according to the experimental variogram of the residual;
采用最小二乘法对时空变异函数模型进行拟合;The spatio-temporal variogram model was fitted by the least squares method;
根据时空变异函数模型的拟合结果,采用时空回归克里金模型估算待估算地区的地面PM2.5浓度值。According to the fitting results of the spatio-temporal variogram model, the spatio-temporal regression kriging model was used to estimate the ground PM2.5 concentration in the area to be estimated.
其中,还包括将辅助变量数据重采样到创建的网格中并进行匹配;其中,辅助变量数据包括气象数据、DEM和土地利用数据。Among them, it also includes resampling the auxiliary variable data into the created grid and matching; wherein, the auxiliary variable data includes meteorological data, DEM and land use data.
其中,在将辅助变量数据重采样到创建的网格中并进行匹配的过程中,将待估算地区所对应的网格单元的分辨率与该网格单元对应的辅助变量数据的分辨率进行比较,将高于对应网格单元的分辨率的辅助变量数据进行平均后赋值给对应的网格单元,将不高于对应网格单元的分辨率的辅助变量数据采用距离反比加权的插值方法赋值给对应的网格单元。Among them, in the process of resampling the auxiliary variable data into the created grid and performing matching, the resolution of the grid cell corresponding to the area to be estimated is compared with the resolution of the auxiliary variable data corresponding to the grid cell , the auxiliary variable data higher than the resolution of the corresponding grid unit is averaged and assigned to the corresponding grid unit, and the auxiliary variable data not higher than the resolution of the corresponding grid unit is assigned to the corresponding grid unit.
其中,提取待估算地区每个PM2.5站点对应的辅助变量数据,建立各个PM2.5站点的PM2.5观测数据与各个辅助变量数据之间的多元线性回归模型,根据多元线性回归模型的计算结果与PM2.5观测数据,获取待估算地区的地面PM2.5残差值。Among them, the auxiliary variable data corresponding to each PM2.5 station in the area to be estimated is extracted, and the multiple linear regression model between the PM2.5 observation data of each PM2.5 station and each auxiliary variable data is established. According to the calculation of the multiple linear regression model The results and PM2.5 observation data are used to obtain the ground PM2.5 residual value of the area to be estimated.
其中,将采用时空回归克里金模型估算得到的插值结果与地面PM2.5残差值进行求和汇总,获取待估算地区的地面PM2.5浓度值。Among them, the interpolation results estimated by the space-time regression kriging model and the ground PM2.5 residual value are summed to obtain the ground PM2.5 concentration value in the area to be estimated.
另一方面,本发明提供一种基于时空回归克里金模型估算地面PM2.5的系统,包括:In another aspect, the present invention provides a system for estimating ground PM2.5 based on a spatio-temporal regression kriging model, comprising:
PM2.5数据匹配单元,用于将待估算地区的地面PM2.5观测数据重采样到创建的网格中并进行匹配;其中,网格根据待估算地区的经纬度范围以及分辨率进行创建,匹配的过程包括,在网格中,将待估算地区所对应的网格单元内所有PM2.5站点同一天监测到的地面PM2.5观测数据进行平均,然后将平均后的数据赋值给对应的网格单元;The PM2.5 data matching unit is used to resample the ground PM2.5 observation data of the area to be estimated into the created grid and perform matching; wherein, the grid is created according to the latitude and longitude range and resolution of the area to be estimated, and the matching The process includes, in the grid, averaging the ground PM2.5 observation data monitored by all PM2.5 stations in the grid cell corresponding to the area to be estimated on the same day, and then assigning the averaged data to the corresponding network cell;
时空变异函数模型确定单元,用于根据所匹配的待估算地区的地面PM2.5观测数据,计算残差的实验变异函数,然后根据残差的实验变异函数确定时空变异函数模型;The spatio-temporal variogram model determination unit is used to calculate the experimental variogram of the residual error according to the ground PM2.5 observation data in the area to be estimated, and then determine the spatio-temporal variogram model according to the experimental variogram of the residual error;
时空变异函数模型拟合单元,用于采用最小二乘法对时空变异函数模型进行拟合;A spatio-temporal variogram model fitting unit is used to fit the spatio-temporal variogram model by the method of least squares;
PM2.5浓度值估算单元,用于根据时空变异函数模型的拟合结果,采用时空回归克里金模型估算待估算地区的地面PM2.5浓度值。The PM2.5 concentration value estimation unit is used to estimate the ground PM2.5 concentration value of the area to be estimated by using the space-time regression kriging model according to the fitting result of the space-time variation function model.
利用上述根据本发明的提供的基于时空回归克里金模型估算地面PM2.5的方法及系统,通过采用空间变异函数与时间自相关函数来验证PM2.5站点数据之间的时空相关特性,时空相关特性高,则说明监测站点的数据适合利用时空回归克里金插值模型,首先通过加入不同的气象参数、DEM(DigitalElevation Model,数字高程模型)、土地利用参数等信息,建立PM2.5数据与辅助变量之间的多元线性回归模型,可以反映PM2.5的影响因子;然后通过计算回归后残差的时空变异函数,选取合适的时空变异函数模型,该模型中加入了时间特征信息,因此可以更好的提高PM2.5的估算精度。Utilize the method and system for estimating ground PM2.5 based on the space-time regression Kriging model provided above according to the present invention, and verify the space-time correlation characteristics between the PM2.5 site data by using the spatial variation function and the time autocorrelation function, space-time If the correlation characteristic is high, it means that the data of the monitoring site is suitable for using the space-time regression kriging interpolation model. The multiple linear regression model among the auxiliary variables can reflect the impact factor of PM2.5; then, by calculating the spatio-temporal variogram of residuals after regression, an appropriate spatio-temporal variogram model is selected, and the time characteristic information is added to the model, so it can Better improve the estimation accuracy of PM2.5.
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。To the accomplishment of the above and related ends, one or more aspects of the invention comprise the features hereinafter described in detail and particularly pointed out in the claims. The following description and accompanying drawings detail certain exemplary aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Furthermore, the invention is intended to include all such aspects and their equivalents.
附图说明Description of drawings
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:By referring to the following description combined with the accompanying drawings and the contents of the claims, and with a more comprehensive understanding of the present invention, other objectives and results of the present invention will be more clear and easy to understand. In the attached picture:
图1为根据本发明实施例的基于时空回归克里金模型估算地面PM2.5的方法的第一流程示意图;Fig. 1 is the first flowchart of the method for estimating ground PM2.5 based on the space-time regression Kriging model according to an embodiment of the present invention;
图2为根据本发明实施例的基于时空回归克里金模型估算地面PM2.5的方法的第二流程示意图;Fig. 2 is the second schematic flow chart of the method for estimating ground PM2.5 based on the space-time regression Kriging model according to an embodiment of the present invention;
图3为根据本发明实施例的基于时空回归克里金模型估算地面PM2.5的系统的逻辑结构框图。Fig. 3 is a logical structural block diagram of a system for estimating ground PM2.5 based on a space-time regression kriging model according to an embodiment of the present invention.
在所有附图中相同的标号指示相似或相应的特征或功能。The same reference numerals indicate similar or corresponding features or functions throughout the drawings.
具体实施方式detailed description
以下将结合附图对本发明的具体实施例进行详细描述。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
针对前述现有的空间插值方法对地面PM2.5的估算精度不高的问题,本发明通过加入不同的辅助变量数据(如气象参数、DEM、土地利用参数等)信息,以建立PM2.5数据与辅助变量数据之间的多元线性回归模型,然后通过计算回归后残差的时空变异函数,选取时空变异函数模型,根据时空变异函数模型将PM2.5站点监测到的时空相关性高的地面PM2.5观测数据采用时空回归克里金模型来估算地面PM2.5浓度,从而能够提高PM2.5的估算精度。Aiming at the problem that the aforementioned existing spatial interpolation method has low estimation accuracy of ground PM2.5, the present invention is to establish PM2.5 data by adding different auxiliary variable data (such as meteorological parameters, DEM, land use parameters, etc.) information The multiple linear regression model between the data and the auxiliary variable data, and then by calculating the spatio-temporal variation function of the residual after the regression, select the spatio-temporal variance function model, according to the spatio-temporal variance function model, the PM2. .5 Observational data uses the space-time regression kriging model to estimate the ground PM2.5 concentration, which can improve the estimation accuracy of PM2.5.
在对本发明进行说明之前,先对时空回归克里金模型进行一下说明。Before explaining the present invention, the space-time regression Kriging model will be described first.
由于空间插值方法是在设有测量站点的地方获取污染物分布最简单有效的方法,而时空回归克里金模型(其是空间插值方法中的一种)因其最佳线性无偏估计的特性而被应用在局地尺度的臭氧与颗粒物插值估算中。本发明正是在此基础上提出的。Since the spatial interpolation method is the simplest and most effective method to obtain the distribution of pollutants in places with measurement stations, and the space-time regression kriging model (which is one of the spatial interpolation methods) has the characteristics of the best linear unbiased estimation It is used in the interpolation estimation of ozone and particulate matter at the local scale. The present invention proposes just on this basis.
另外,需要说明的是,本发明中的PM2.5亦可写为PM2.5。In addition, it should be noted that PM2.5 in the present invention can also be written as PM 2.5 .
下面对本发明提供的基于时空回归克里金模型估算地面PM2.5的方法进行详细说明。The method for estimating ground PM2.5 based on the space-time regression Kriging model provided by the present invention will be described in detail below.
图1示出了根据本发明实施例的基于时空回归克里金模型估算地面PM2.5的方法的第一流程。FIG. 1 shows a first flow of a method for estimating ground PM2.5 based on a spatio-temporal regression kriging model according to an embodiment of the present invention.
如图1所示,本发明提供的基于时空回归克里金模型估算地面PM2.5的方法包括:As shown in Figure 1, the method for estimating ground PM2.5 based on the space-time regression kriging model provided by the present invention includes:
S110:根据待估算地区的经纬度范围以及分辨率创建网格,将待估算地区的地面PM2.5观测数据重采样到创建的网格中并进行匹配;其中,匹配的过程包括,在创建的网格中,将待估算地区所对应的网格单元内所有PM2.5站点同一天监测到的地面PM2.5观测数据进行平均,然后将平均后的数据赋值给对应的网格单元。S110: Create a grid according to the latitude and longitude range and resolution of the area to be estimated, resample the ground PM2.5 observation data of the area to be estimated into the created grid and perform matching; wherein, the matching process includes, in the created grid In the grid, the ground PM2.5 observation data monitored by all PM2.5 stations in the grid unit corresponding to the area to be estimated is averaged on the same day, and then the averaged data is assigned to the corresponding grid unit.
S120:根据所匹配的待估算地区的地面PM2.5观测数据,计算残差的实验变异函数,根据残差的实验变异函数确定时空变异函数模型。S120: Calculate the experimental variation function of the residual according to the matched ground PM2.5 observation data of the area to be estimated, and determine the spatiotemporal variation function model according to the experimental variation function of the residual.
S130:采用最小二乘法对时空变异函数模型进行拟合。S130: Fitting the spatio-temporal variogram model by using the least square method.
S140:根据时空变异函数模型的拟合结果,采用时空回归克里金模型估算待估算地区的地面PM2.5浓度值。S140: According to the fitting results of the spatio-temporal variogram model, use the spatio-temporal regression kriging model to estimate the ground PM2.5 concentration value in the area to be estimated.
进一步地,图2示出了根据本发明实施例的基于时空回归克里金模型估算地面PM2.5的方法的第二流程,以进一步提高对地面PM2.5的估算精度。Further, FIG. 2 shows the second process of the method for estimating ground PM2.5 based on the spatio-temporal regression kriging model according to an embodiment of the present invention, so as to further improve the estimation accuracy of ground PM2.5.
如图2所示,本发明提供的基于时空回归克里金模型估算地面PM2.5的方法可以包括以下步骤:As shown in Figure 2, the method for estimating ground PM2.5 based on the space-time regression Kriging model provided by the present invention may include the following steps:
(1)S210:通过采用空间变异函数与时间相关函数计算待估算地区各PM2.5站点所监测到的PM2.5观测数据的时空相关性,考察PM2.5站点分布特征。(1) S210: By using the spatial variation function and time correlation function to calculate the temporal-spatial correlation of PM2.5 observation data monitored by each PM2.5 station in the area to be estimated, investigate the distribution characteristics of PM2.5 stations.
其中,如果计算结果表明PM2.5站点所监测到的PM2.5观测数据之间存在一定的时空相关特性,则可利用时空回归克里金插值模型对该地区的地面PM2.5浓度进行估算。Among them, if the calculation results show that there is a certain spatio-temporal correlation between the PM2.5 observation data monitored by the PM2.5 station, the spatial-temporal regression kriging interpolation model can be used to estimate the ground PM2.5 concentration in the area.
具体地,空间变异特征计算方法如公式1所示,时间相关特征计算方法如公式2、公式3所示。Specifically, the calculation method of the spatial variation feature is shown in Formula 1, and the calculation method of the time-related feature is shown in Formula 2 and Formula 3.
(公式1) (Formula 1)
(公式2) (Formula 2)
(公式3) (Formula 3)
其中,公式1中γ(h)为区域化变量在si与si+h处的值Z(si)与Z(si+h)的差的方差之半;h为两点间距离,又称为滞后距离,N(h)为距离h之间用来计算变异函数值的样本对数。Among them, γ(h) in Formula 1 is the half of the variance of the difference between the values Z(s i ) and Z(s i +h) of the regionalized variables at s i and s i +h; h is the distance between two points , also known as the lag distance, N(h) is the logarithm of the samples used to calculate the variation function value between the distance h.
公式2,3中,n是时间序列变量yn的数目,yn-t是与yn时间间隔t距离的变量,是时间距离t的自相关函数,为均值。In formulas 2 and 3, n is the number of time series variables y n , and y nt is a variable with a time interval t distance from y n , is the autocorrelation function of time distance t, is the mean value.
S220:将收集到的待估算地区的地面PM2.5数据、气象数据、DEM以及土地利用数据重采样到创建的网格中并进行匹配。S220: Resample the collected ground PM2.5 data, meteorological data, DEM and land use data of the area to be estimated into the created grid and perform matching.
具体地,在将上述数据重采样到创建的网格中进行匹配的过程包括:确定待估算地区所对应的网格的分辨率。其中,PM2.5数据的匹配方式为:将待估算地区所对应的网格单元内所有PM2.5站点同一天监测到的地面PM2.5观测数据进行平均后赋值给对应的网格单元;辅助变量数据(包括气象数据、DEM以及土地利用数据)的匹配方式为:将待估算地区所对应的网格单元的分辨率与该网格单元对应的辅助变量数据的分辨率进行比较,将高于对应网格单元的分辨率的辅助变量数据进行平均后赋值给对应的网格单元,将不高于对应网格单元的分辨率的辅助变量数据采用距离反比加权的插值方法赋值给对应的网格单元。Specifically, the process of resampling the above data into the created grid for matching includes: determining the resolution of the grid corresponding to the area to be estimated. Among them, the matching method of PM2.5 data is: the ground PM2.5 observation data monitored by all PM2.5 stations in the grid unit corresponding to the area to be estimated on the same day is averaged and then assigned to the corresponding grid unit; The matching method of variable data (including meteorological data, DEM and land use data) is: compare the resolution of the grid cell corresponding to the area to be estimated with the resolution of the auxiliary variable data corresponding to the grid cell, which will be higher than The auxiliary variable data corresponding to the resolution of the grid unit is averaged and assigned to the corresponding grid unit, and the auxiliary variable data not higher than the resolution of the corresponding grid unit is assigned to the corresponding grid by using the interpolation method of inverse distance weighting unit.
需要说明的是,在该匹配过程中,PM2.5数据来源于环境监测部门,气象数据来源于RAMS(Regional Atmospheric Modeling System,区域大气建模系统)模式模拟,DEM来源于SRTM(Shuttle Radar Topography Mission,航天飞机雷达地形测绘使命)90米分辨率高程数据,土地利用数据来源于MODISLand Cover产品;将RAMS中的气象数据插值成3km分辨率的格网,DEM、土地利用数据重采样到3km的格网。It should be noted that during the matching process, the PM2.5 data comes from the environmental monitoring department, the meteorological data comes from the RAMS (Regional Atmospheric Modeling System, Regional Atmospheric Modeling System) model simulation, and the DEM comes from the SRTM (Shuttle Radar Topography Mission , space shuttle radar topographic mapping mission) 90m resolution elevation data, land use data from MODISLand Cover products; interpolation of meteorological data in RAMS into 3km resolution grid, DEM, land use data resampled to 3km grid network.
S230:提取待估算地区每个PM2.5站点对应的辅助变量数据,建立各个PM2.5站点的PM2.5观测数据与各个辅助变量数据之间的多元线性回归模型,根据多元线性回归模型的计算结果与该PM2.5站点监测到的PM2.5观测数据,获取待估算地区的地面PM2.5残差值。S230: Extract the auxiliary variable data corresponding to each PM2.5 station in the area to be estimated, establish a multiple linear regression model between the PM2.5 observation data of each PM2.5 station and each auxiliary variable data, and calculate according to the multiple linear regression model The results are combined with the PM2.5 observation data monitored by the PM2.5 station to obtain the ground PM2.5 residual value of the area to be estimated.
具体地,利用多元线性回归模型建立PM2.5与辅助变量之间的关系,并用最小二乘法进行拟合:Specifically, the multiple linear regression model was used to establish the relationship between PM2.5 and auxiliary variables, and the least square method was used for fitting:
PM2.5=β+α1*RH+α2*PBL+α3*Wind+α4*DEM+α5*LandUse (公式4)PM 2.5 =β+α 1 *RH+α 2 *PBL+α 3 *Wind+α 4 *DEM+α 5 *LandUse (Formula 4)
式中RH表示相对湿度,PBL表示边界层高度,DEM表示高程,LandUse表示土地利用类型,β表示截距,α1~α5表示各辅助变量的斜率。将公式4得到的模型初步用于计算得到PM2.5趋势,计算PM2.5观测值与PM2.5趋势(即PM2.5观测数据与多元线性回归模型的计算结果)之间的残差。In the formula, RH represents relative humidity, PBL represents boundary layer height, DEM represents elevation, LandUse represents land use type, β represents intercept, and α 1 to α 5 represent the slopes of auxiliary variables. The model obtained by formula 4 was initially used to calculate the PM2.5 trend, and the residual error between the observed PM2.5 value and the PM2.5 trend (that is, the PM2.5 observed data and the calculation result of the multiple linear regression model) was calculated.
S240:计算残差的实验变异函数。S240: Calculate the experimental variation function of the residual.
具体地,假设待研究区域(即侍估算区域)内一空间点si(i=1,…,n)处的观测值(即PM2.5观测数据)为z(si),待估计点(即待估算区域中的某一点)s0处的属性估计值是周围n个已知样本点属性值的加权和,公式表达为:Specifically, assuming that the observation value (ie PM2.5 observation data) at a spatial point s i (i=1,...,n) in the area to be studied (ie, the area to be estimated) is z(s i ), the point to be estimated (i.e. a point in the area to be estimated) the estimated value of the attribute at s 0 is the weighted sum of the attribute values of the surrounding n known sample points, and the formula is expressed as:
(公式5) (Formula 5)
式中λi(i=1,…n)是待定的权重系数,是空间点s0的估计值,z(si)为样本点si的属性值。时空回归克里金模型是建立在无偏且估计方差最小的条件下,根据此条件可以建立克里金方程组。In the formula, λ i (i=1,…n) is the undetermined weight coefficient, is the estimated value of the spatial point s 0 , and z(s i ) is the attribute value of the sample point s i . The spatio-temporal regression Kriging model is established under the condition of unbiased and minimum estimated variance, and Kriging equations can be established according to this condition.
(公式6) (Formula 6)
式中γ(si,sj)表示第i点与第j点之间的变异函数,由公式6可知,计算出变异函数即可以求解克里金权重λ,进而求得待估计点值(即待估计点处的估算值)与估计误差(待估计点处的估算值与待估计点处实际观测值之间的误差)。In the formula, γ(s i , s j ) represents the variation function between the i-th point and the j-th point. It can be seen from formula 6 that the kriging weight λ can be calculated by calculating the variation function, and then the value of the point to be estimated ( That is, the estimated value at the point to be estimated) and the estimation error (the error between the estimated value at the point to be estimated and the actual observed value at the point to be estimated).
在本发明中,利用公式7计算残差的实验变异函数,根据残差的实验变异函数的分布情况,选择适合的时空变异函数模型。In the present invention, formula 7 is used to calculate the experimental variogram of the residual, and a suitable spatiotemporal variogram model is selected according to the distribution of the experimental variogram of the residual.
γst(hs,ht)=0.5Var[Z(s+hs,t+ht)-Z(s,t)] (公式7)γ st (h s ,h t )=0.5Var[Z(s+h s ,t+h t )-Z(s,t)] (Formula 7)
式中γst(hs,ht)为区域化变量在时空位置(s,t)与(s+hs,t+ht)处的值Z(s,t)与Z(s+hs,t+ht)的差的方差之半;hs为两点在空间上的距离,ht为时间上的距离。where γ st (h s ,h t ) is the value Z( s , t ) and Z(s+h s ,t+h t ) half of the variance of the difference; h s is the distance between two points in space, and h t is the distance in time.
S250:根据步骤S240的计算结果,构建选择能描述PM2.5观测数据之集时空特征的时空变异函数模型,并利用最小二乘法对时空变异函数模型进行拟合,计算出时空变异函数模型参数。S250: According to the calculation result of step S240, construct and select a spatio-temporal variogram model that can describe the spatio-temporal characteristics of the PM2.5 observation data set, and use the least squares method to fit the spatio-temporal variogram model, and calculate the spatio-temporal variogram model parameters.
其中,时空变异函数模型参数包括:空间部分块金值、基台值、变程;时间部分块金值、基台值、变程。Among them, the parameters of the spatio-temporal variogram model include: the nugget value, sill value, and range of the space part; the nugget value, sill value, and range of the time part.
S260:利用拟合的时空变异函数模型,进行时空回归克里金插值计算,将克里金插值结果与步骤S230中的趋势部分求和汇总(即将采用时空回归克里金模型估算得到的插值结果与步骤S230中计算得到的地面PM2.5残差值进行求和汇总),估算出待估算地区的地面PM2.5浓度值。S260: Use the fitted spatio-temporal variogram model to perform spatio-temporal regression Kriging interpolation calculations, and sum the Kriging interpolation results and the trend in step S230 (the interpolation results estimated by using the spatio-temporal regression Kriging model and the ground PM2.5 residual value calculated in step S230 are summed and summarized), and the ground PM2.5 concentration value of the area to be estimated is estimated.
进一步地,还可以采用十折交叉验证法对时空回归克里金模型的插值结果进行交叉验证,对于满足精度要求的模型,应用到PM2.5估算中,将最终的结果输出成.tff格式栅格数据。Furthermore, ten-fold cross-validation method can also be used to cross-validate the interpolation results of the space-time regression Kriging model. For the model that meets the accuracy requirements, it is applied to PM2.5 estimation, and the final result is output as a .tff format raster grid data.
需要说明的是,在本发明中,加入辅助变量数据(即气象数据、DEM以及土地利用数据)是为了进一步提高PM2.5的估算精度,然而也可以没有上述辅助变量数据,即:在上述步骤S220中,也可以不将待估算地区的气象数据、DEM以及土地利用数据重采样到创建的网格中并进行匹配,那么也就不需要执行步骤S230,而是直接进入步骤S240,如此即为如图1所示的流程。It should be noted that, in the present invention, adding auxiliary variable data (i.e. meteorological data, DEM and land use data) is in order to further improve the estimation accuracy of PM2. In S220, the meteorological data, DEM and land use data of the area to be estimated may not be resampled into the created grid and matched, then there is no need to execute step S230, but directly enter step S240, so that The process shown in Figure 1.
与上述方法相对应,本发明提供一种基于时空回归克里金模型估算地面PM2.5的系统。图3示出了根据本发明实施例的基于时空回归克里金模型估算地面PM2.5的系统的逻辑结构。Corresponding to the above method, the present invention provides a system for estimating ground PM2.5 based on a space-time regression kriging model. FIG. 3 shows the logical structure of the system for estimating ground PM2.5 based on the spatio-temporal regression Kriging model according to an embodiment of the present invention.
如图3所示,本发明提供的基于时空回归克里金模型估算地面PM2.5的系统300包括PM2.5数据匹配单元310、时空变异函数模型确定单元320、时空变异函数模型拟合单元330和PM2.5浓度值估算单元340。As shown in Figure 3, the system 300 for estimating ground PM2.5 based on the spatiotemporal regression Kriging model provided by the present invention includes a PM2.5 data matching unit 310, a spatiotemporal variogram model determination unit 320, and a spatiotemporal variogram model fitting unit 330 and PM2.5 concentration value estimation unit 340.
其中,PM2.5数据匹配单元310用于将待估算地区的地面PM2.5观测数据重采样到创建的网格中并进行匹配;其中,上述网格根据待估算地区的经纬度范围以及分辨率进行创建,匹配的过程包括,在创建的网格中,将待估算地区所对应的网格单元内所有PM2.5站点同一天监测到的地面PM2.5观测数据进行平均,然后将平均后的数据赋值给对应的网格单元。Wherein, the PM2.5 data matching unit 310 is used for resampling the ground PM2.5 observation data of the region to be estimated into the created grid and matching; The process of creating and matching includes, in the created grid, averaging the ground PM2.5 observation data of all PM2.5 stations in the grid cell corresponding to the area to be estimated on the same day, and then averaging the data Assigned to the corresponding grid unit.
时空变异函数模型确定单元320用于根据所匹配的待估算地区的地面PM2.5观测数据,计算残差的实验变异函数,根据残差的实验变异函数确定时空变异函数模型。The spatio-temporal variogram model determination unit 320 is used to calculate the experimental variogram of residuals based on the matched ground PM2.5 observation data in the region to be estimated, and determine the spatio-temporal variogram model according to the experimental variogram of residuals.
时空变异函数模型拟合单元330用于采用最小二乘法对时空变异函数模型进行拟合。The spatio-temporal variogram model fitting unit 330 is used to fit the spatio-temporal variogram model using the least square method.
PM2.5浓度值估算单元340用于根据时空变异函数模型的拟合结果,采用时空回归克里金模型估算待估算地区的地面PM2.5浓度值。The PM2.5 concentration value estimating unit 340 is used for estimating the surface PM2.5 concentration value of the area to be estimated by using the space-time regression kriging model according to the fitting result of the space-time variation function model.
进一步地,为了提高估算的精度,本发明提供的基于时空回归克里金模型估算地面PM2.5的系统300还可以包括辅助数据匹配单元350和PM2.5残差值获取单元360。其中,辅助数据匹配单元350用于将辅助变量数据重采样到创建的网格中并进行匹配;其中,辅助变量数据包括气象数据、DEM以及土地利用数据;PM2.5残差值获取单元360用于根据提取的待估算地区每个PM2.5站点对应的辅助变量数据,建立各个PM2.5站点的PM2.5观测数据与各个辅助变量数据之间的多元线性回归模型,根据多元线性回归模型的计算结果与PM2.5观测数据,获取待估算地区的地面PM2.5残差值。Further, in order to improve the estimation accuracy, the system 300 for estimating ground PM2.5 based on the space-time regression kriging model provided by the present invention may further include an auxiliary data matching unit 350 and a PM2.5 residual value obtaining unit 360 . Wherein, the auxiliary data matching unit 350 is used to resample the auxiliary variable data into the created grid and perform matching; wherein, the auxiliary variable data includes meteorological data, DEM and land use data; the PM2.5 residual value acquisition unit 360 uses Based on the extracted auxiliary variable data corresponding to each PM2.5 station in the area to be estimated, a multiple linear regression model between the PM2.5 observation data of each PM2.5 station and each auxiliary variable data was established. According to the multiple linear regression model The calculation results and PM2.5 observation data are used to obtain the ground PM2.5 residual value of the area to be estimated.
具体地,当辅助数据匹配单元350有辅助变量数据匹配时,利用PM2.5残差值获取单元360获取待估算地区的地面PM2.5残差值,进而在PM2.5浓度值估算单元340中根据时空变异函数模型拟合单元330的拟合结果,将采用时空回归克里金模型估算得到的插值结果与PM2.5残差值获取单元360获取待估算地区的地面PM2.5残差值进行求和汇总,以估算出待估算地区的PM2.5浓度值。Specifically, when the auxiliary data matching unit 350 has auxiliary variable data matching, the PM2.5 residual value acquisition unit 360 is used to obtain the ground PM2.5 residual value of the area to be estimated, and then in the PM2.5 concentration value estimation unit 340 According to the fitting result of the spatio-temporal variogram model fitting unit 330, the interpolation result estimated by the spatio-temporal regression kriging model and the PM2.5 residual value acquisition unit 360 to obtain the ground PM2.5 residual value of the area to be estimated are carried out. Sum up and summarize to estimate the PM2.5 concentration value of the area to be estimated.
通过上述能够看出,本发明提供的基于时空回归克里金模型估算地面PM2.5的方法及系统,通过加入不同的辅助变量数据,建立PM2.5数据与辅助变量之间的多元线性回归模型,可以反映PM2.5的影响因子;然后通过计算回归后残差的时空变异函数,选取合适的时空变异函数模型,该模型中加入了时间特征信息,因此可以更好的提高PM2.5的估算精度。It can be seen from the above that the method and system for estimating ground PM2.5 based on the spatio-temporal regression kriging model provided by the present invention can establish a multiple linear regression model between PM2.5 data and auxiliary variables by adding different auxiliary variable data , which can reflect the impact factor of PM2.5; then, by calculating the spatio-temporal variogram of the residual after regression, an appropriate spatio-temporal variogram model is selected, which adds time characteristic information, so it can better improve the estimation of PM2.5 precision.
如上参照附图以示例的方式描述了根据本发明的基于时空回归克里金模型估算地面PM2.5的方法及系统。但是,本领域技术人员应当理解,对于上述本发明所提出的基于时空回归克里金模型估算地面PM2.5的方法及系统,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。The method and system for estimating ground PM2.5 based on the spatio-temporal regression Kriging model according to the present invention are described above by way of example with reference to the accompanying drawings. However, those skilled in the art should understand that for the method and system for estimating ground PM2.5 based on the spatio-temporal regression Kriging model proposed in the present invention, various improvements can be made without departing from the content of the present invention. Therefore, the protection scope of the present invention should be determined by the contents of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510461379.0A CN106407633B (en) | 2015-07-30 | 2015-07-30 | Method and system based on space regression Kriging model estimation ground PM2.5 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510461379.0A CN106407633B (en) | 2015-07-30 | 2015-07-30 | Method and system based on space regression Kriging model estimation ground PM2.5 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106407633A true CN106407633A (en) | 2017-02-15 |
CN106407633B CN106407633B (en) | 2019-08-13 |
Family
ID=58007366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510461379.0A Active CN106407633B (en) | 2015-07-30 | 2015-07-30 | Method and system based on space regression Kriging model estimation ground PM2.5 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106407633B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107194054A (en) * | 2017-05-16 | 2017-09-22 | 武汉大学 | A kind of kriging analysis model for taking Soil Organic Carbon Density special heterogeneity into account |
CN107610021A (en) * | 2017-07-21 | 2018-01-19 | 华中农业大学 | The comprehensive analysis method of environmental variance spatial and temporal distributions |
CN108920655A (en) * | 2018-07-03 | 2018-11-30 | 山东大学 | A kind of road Weather information system space-time coverage area quantization method and device |
CN109523066A (en) * | 2018-10-29 | 2019-03-26 | 东华理工大学 | A kind of newly-increased mobile site site selecting method of the PM2.5 based on Kriging regression |
CN109766637A (en) * | 2019-01-12 | 2019-05-17 | 太原科技大学 | Reliability optimization method of bridge crane structure based on Krigng surrogate model |
CN109784557A (en) * | 2019-01-07 | 2019-05-21 | 深圳航天智慧城市系统技术研究院有限公司 | The method, system and medium of PM2.5 are estimated based on Empirical Bayes Kriging model |
CN110046771A (en) * | 2019-04-25 | 2019-07-23 | 河南工业大学 | A kind of PM2.5 concentration prediction method and apparatus |
CN110727916A (en) * | 2019-08-20 | 2020-01-24 | 广州地理研究所 | A long-term forecasting method and system for large-scale offshore wind energy |
CN110929225A (en) * | 2019-11-25 | 2020-03-27 | 暨南大学 | Near-surface sulfur dioxide concentration estimation method based on geographical weighted regression model |
CN111340288A (en) * | 2020-02-25 | 2020-06-26 | 武汉墨锦创意科技有限公司 | Urban air quality time sequence prediction method considering space-time correlation |
CN112434935A (en) * | 2020-11-20 | 2021-03-02 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Selectable PM2.5 concentration estimation method |
CN112484776A (en) * | 2020-11-18 | 2021-03-12 | 成都信息工程大学 | Method for estimating hourly near-ground atmospheric fine particles by using geostationary satellite |
CN113553551A (en) * | 2021-07-28 | 2021-10-26 | 生态环境部华南环境科学研究所 | Ozone concentration prediction model of coupling view pattern |
CN114019139A (en) * | 2021-10-26 | 2022-02-08 | 复旦大学 | Detection method for soil heavy metal abnormal data of agricultural land |
CN117388850A (en) * | 2023-10-13 | 2024-01-12 | 广东省科学院广州地理研究所 | Space downscaling method for sea surface wind field microwave remote sensing inversion data |
CN119201925A (en) * | 2024-11-07 | 2024-12-27 | 崂山国家实验室 | A full-process data aggregation system for geological survey of paleo-ocean environmental evolution |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103353923A (en) * | 2013-06-26 | 2013-10-16 | 中山大学 | Adaptive Spatial Interpolation Method and System Based on Spatial Feature Analysis |
CN103413272A (en) * | 2013-07-22 | 2013-11-27 | 中国科学院遥感与数字地球研究所 | Low-spatial-resolution multisource remote sensing image space consistency correction method |
CN103473408A (en) * | 2013-08-28 | 2013-12-25 | 河南大学 | A Method for Reconstructing Missing Air Temperature Records by Fusion of Spatiotemporal Information |
CN103674794A (en) * | 2013-12-16 | 2014-03-26 | 中国科学院遥感与数字地球研究所 | Multiple regression method for remote sensing to monitor the mass concentration of fine particulate matter PM2.5 near the surface |
CN103810376A (en) * | 2014-01-17 | 2014-05-21 | 浙江大学 | Ground daily rainfall predicting method based on satellite remote sensing and regression Kriging |
CN103954974A (en) * | 2014-04-21 | 2014-07-30 | 山东科技大学 | Particulate matter optical thickness remote sensing monitoring method used in urban area |
CN104573155A (en) * | 2013-10-17 | 2015-04-29 | 中国科学院地理科学与资源研究所 | Method and system for efficiently estimating near-surface PM2.5 (particulate matter 2.5) concentration |
-
2015
- 2015-07-30 CN CN201510461379.0A patent/CN106407633B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103353923A (en) * | 2013-06-26 | 2013-10-16 | 中山大学 | Adaptive Spatial Interpolation Method and System Based on Spatial Feature Analysis |
CN103413272A (en) * | 2013-07-22 | 2013-11-27 | 中国科学院遥感与数字地球研究所 | Low-spatial-resolution multisource remote sensing image space consistency correction method |
CN103473408A (en) * | 2013-08-28 | 2013-12-25 | 河南大学 | A Method for Reconstructing Missing Air Temperature Records by Fusion of Spatiotemporal Information |
CN104573155A (en) * | 2013-10-17 | 2015-04-29 | 中国科学院地理科学与资源研究所 | Method and system for efficiently estimating near-surface PM2.5 (particulate matter 2.5) concentration |
CN103674794A (en) * | 2013-12-16 | 2014-03-26 | 中国科学院遥感与数字地球研究所 | Multiple regression method for remote sensing to monitor the mass concentration of fine particulate matter PM2.5 near the surface |
CN103810376A (en) * | 2014-01-17 | 2014-05-21 | 浙江大学 | Ground daily rainfall predicting method based on satellite remote sensing and regression Kriging |
CN103954974A (en) * | 2014-04-21 | 2014-07-30 | 山东科技大学 | Particulate matter optical thickness remote sensing monitoring method used in urban area |
Non-Patent Citations (7)
Title |
---|
LIRONG DENG: "Estimation of PM2.5 Spatial Distribution Based on Kriging Interpolation", 《ICISMME 2015》 * |
XUEFEI HU等: "Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model", 《REMOTE SENSING OF ENVIRONMENT》 * |
XUEFEI HU等: "Improving satellite-driven PM2.5 models with Moderate Resolution Imaging Spectroradiometer fire counts in the southeastern U.S", 《J GEOPHYS RES ATMOS.》 * |
YANG LIU等: "Estimating regional spatial and temporal variability of PM(2.5) concentrations using satellite data, meteorology, and land use information", 《ENVIRON HEALTH PERSPECT》 * |
ZONGWEI MA等: "Estimating Ground-Level PM2.5in China Using Satellite Remote Sensing", 《ENVIRONMENTAL SCIENCE & TECHNOLOGY》 * |
刘二永等: "基于环境因子和R-STPS的林地土壤有机质预测模型", 《农业机械学报》 * |
王建民等: "时空Kriging插值在边坡变形监测中的应用", 《煤炭学报》 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107194054B (en) * | 2017-05-16 | 2019-10-11 | 武汉大学 | A Kriging Interpolation Model Construction Method Considering the Spatial Heterogeneity of SOCD |
CN107194054A (en) * | 2017-05-16 | 2017-09-22 | 武汉大学 | A kind of kriging analysis model for taking Soil Organic Carbon Density special heterogeneity into account |
CN107610021A (en) * | 2017-07-21 | 2018-01-19 | 华中农业大学 | The comprehensive analysis method of environmental variance spatial and temporal distributions |
CN108920655A (en) * | 2018-07-03 | 2018-11-30 | 山东大学 | A kind of road Weather information system space-time coverage area quantization method and device |
CN108920655B (en) * | 2018-07-03 | 2022-07-22 | 山东大学 | Method and device for quantifying space-time coverage range of road weather information system |
CN109523066A (en) * | 2018-10-29 | 2019-03-26 | 东华理工大学 | A kind of newly-increased mobile site site selecting method of the PM2.5 based on Kriging regression |
CN109784557A (en) * | 2019-01-07 | 2019-05-21 | 深圳航天智慧城市系统技术研究院有限公司 | The method, system and medium of PM2.5 are estimated based on Empirical Bayes Kriging model |
CN109766637B (en) * | 2019-01-12 | 2022-06-10 | 太原科技大学 | Reliability optimization method of bridge crane structure based on Krigng surrogate model |
CN109766637A (en) * | 2019-01-12 | 2019-05-17 | 太原科技大学 | Reliability optimization method of bridge crane structure based on Krigng surrogate model |
CN110046771A (en) * | 2019-04-25 | 2019-07-23 | 河南工业大学 | A kind of PM2.5 concentration prediction method and apparatus |
CN110727916A (en) * | 2019-08-20 | 2020-01-24 | 广州地理研究所 | A long-term forecasting method and system for large-scale offshore wind energy |
CN110929225B (en) * | 2019-11-25 | 2023-03-28 | 暨南大学 | Near-surface sulfur dioxide concentration estimation method based on geographical weighted regression model |
CN110929225A (en) * | 2019-11-25 | 2020-03-27 | 暨南大学 | Near-surface sulfur dioxide concentration estimation method based on geographical weighted regression model |
CN111340288A (en) * | 2020-02-25 | 2020-06-26 | 武汉墨锦创意科技有限公司 | Urban air quality time sequence prediction method considering space-time correlation |
CN111340288B (en) * | 2020-02-25 | 2024-04-05 | 武汉墨锦创意科技有限公司 | Urban air quality time sequence prediction method considering time-space correlation |
CN112484776A (en) * | 2020-11-18 | 2021-03-12 | 成都信息工程大学 | Method for estimating hourly near-ground atmospheric fine particles by using geostationary satellite |
CN112434935B (en) * | 2020-11-20 | 2022-04-22 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Selectable PM2.5 concentration estimation method |
CN112434935A (en) * | 2020-11-20 | 2021-03-02 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Selectable PM2.5 concentration estimation method |
CN113553551B (en) * | 2021-07-28 | 2024-02-02 | 生态环境部华南环境科学研究所 | Ozone concentration prediction system of coupling landscape pattern |
CN113553551A (en) * | 2021-07-28 | 2021-10-26 | 生态环境部华南环境科学研究所 | Ozone concentration prediction model of coupling view pattern |
CN114019139A (en) * | 2021-10-26 | 2022-02-08 | 复旦大学 | Detection method for soil heavy metal abnormal data of agricultural land |
CN114019139B (en) * | 2021-10-26 | 2024-03-26 | 复旦大学 | A method for detecting abnormal data of heavy metals in agricultural soil |
CN117388850A (en) * | 2023-10-13 | 2024-01-12 | 广东省科学院广州地理研究所 | Space downscaling method for sea surface wind field microwave remote sensing inversion data |
CN117388850B (en) * | 2023-10-13 | 2024-10-29 | 广东省科学院广州地理研究所 | Space downscaling method for sea surface wind field microwave remote sensing inversion data |
CN119201925A (en) * | 2024-11-07 | 2024-12-27 | 崂山国家实验室 | A full-process data aggregation system for geological survey of paleo-ocean environmental evolution |
Also Published As
Publication number | Publication date |
---|---|
CN106407633B (en) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106407633B (en) | Method and system based on space regression Kriging model estimation ground PM2.5 | |
Banks et al. | Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign | |
CN106404620B (en) | The method and system of geo-statistic interpolation and satellite remote sensing joint inversion ground PM2.5 | |
Wu et al. | Spatiotemporal mapping and assessment of daily ground NO2 concentrations in China using high-resolution TROPOMI retrievals | |
Li et al. | Identification of long-range transport pathways and potential sources of PM2. 5 and PM10 in Beijing from 2014 to 2015 | |
Banks et al. | Performance evaluation of the boundary-layer height from lidar and the Weather Research and Forecasting model at an urban coastal site in the north-east Iberian Peninsula | |
Ratti et al. | Analysis of 3-D urban databases with respect to pollution dispersion for a number of European and American cities | |
Singh et al. | A cokriging based approach to reconstruct air pollution maps, processing measurement station concentrations and deterministic model simulations | |
CN112513896B (en) | Atmospheric pollution prediction method | |
Madsen et al. | Modeling the intra-urban variability of outdoor traffic pollution in Oslo, Norway—A GA2LEN project | |
CN105117610B (en) | A kind of method of the real-time estimation fine particle concentration based on space-time characteristic | |
Mozumder et al. | Air pollution modeling from remotely sensed data using regression techniques | |
Uddin et al. | Performance assessment of spatial interpolation methods for the estimation of atmospheric carbon dioxide in the wider geographic extent | |
Forest et al. | Inferring climate system properties using a computer model | |
Ghassoun et al. | Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling | |
CN110046771A (en) | A kind of PM2.5 concentration prediction method and apparatus | |
CN110095587A (en) | A kind of regional ecological risk assessment method based on Hyperspectral imaging | |
CN110632680A (en) | A method and system for estimating wind speed in micro-area of transmission line | |
CN116577252B (en) | Method, device, equipment and medium for measuring concentration of fine particles in the atmosphere | |
Ye et al. | Constraining fossil fuel CO 2 emissions from urban area using OCO-2 observations of total column CO 2 | |
Chen et al. | A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land use regression and Bayesian maximum entropy | |
Grant et al. | Modelling canopy flows over complex terrain | |
Ridzuan et al. | Visualising urban air quality using AERMOD, CALPUFF and CFD models: A critical review | |
US11467147B2 (en) | Method for mapping the concentration of an analyte in an environment | |
CN105302980A (en) | Urban aerodynamic roughness inversion method based on SAR data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |