CN110045256A - 一种shf频段局部放电信号接收电路 - Google Patents

一种shf频段局部放电信号接收电路 Download PDF

Info

Publication number
CN110045256A
CN110045256A CN201910412012.8A CN201910412012A CN110045256A CN 110045256 A CN110045256 A CN 110045256A CN 201910412012 A CN201910412012 A CN 201910412012A CN 110045256 A CN110045256 A CN 110045256A
Authority
CN
China
Prior art keywords
signal
frequency
shf
circuit
local discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910412012.8A
Other languages
English (en)
Inventor
薛峰
徐卫东
李通
魏东亮
王植
陈江添
陈家荣
刘从聪
戴喜良
林伯琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Power Grid Co Ltd
Dongguan Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Guangdong Power Grid Co Ltd
Dongguan Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Power Grid Co Ltd, Dongguan Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Guangdong Power Grid Co Ltd
Priority to CN201910412012.8A priority Critical patent/CN110045256A/zh
Publication of CN110045256A publication Critical patent/CN110045256A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Abstract

本发明实施例公开了一种SHF频段局部放电信号接收电路,包括位于SHF信号接收机前端的混频降频模块,以及连接在SHF信号接收机端的电磁波接收模块,将信号划分为UHF,UHF混合SHF和SHF三段,进而捕捉瞬态信号,准确记录3GHz~30GHz频率带宽信号的特性,通过对SHF接收机的电磁辐射的接收和屏蔽,分段信号进行降频补偿,并通过对所接收信号的分析,反演局部放电的特性和绝缘缺陷的状态,需要综合局部放电特高频检测和超高频信号检测的手段,对特高频SHF局部放电信号进行有针对性地设计、试验与调试。

Description

一种SHF频段局部放电信号接收电路
技术领域
本发明属于局部放电研究技术领域,具体涉及一种SHF频段局部放电信号接收电路。
背景技术
以应用最为普遍的特高频(Ultra High Frequency,UHF)检测方法为例,UHF方法检测局部放电信号主要集中在300MHz到3GHz范围的频率带宽,实现对局放信号的有效检测。然而在实际应用中,电晕干扰、开关干扰、通信干扰等众多干扰源的信号频带已经远大于300MHz,高频段的噪声干扰和真实地局部放电信号一起被检测到,因此干扰信号的识别和去除依然是UHF法局放检测工作的重点。在现场工作环境中,通常需要大量的精力来排除干扰,而由于干扰源的随机性和不确定性,更多需要依靠专家经验来判断。
作为电力设备绝缘状况的主要表征参量,如何采用新的技术手段实现对局放信号的有效、自动检测和定位将是整个电力行业面临和必须解决的问题。关于局部放电电流脉冲特性与其放电原理的关系的研究表明局部放电脉冲脉宽在ps级和ns级,这说明局部放电所激发电磁波信号的主成分在UHF频段(GHz附近),超高频(Super High Frequency,SHF)也是其一个成份(主要集中在10GHz附近及更高频率)。
但当前基于特高频(UHF)方法的局部放电带电检测与在线检测技术还不能完全达到电力设备状态检测要求,有待改进的地方包括:
(1)信号实际检测灵敏度有待提高。现有特高频局部放电检测用内置式传感器检测灵敏度一般到-80dBm,外置式传感器为-65dBm,但是实际现场检测中噪声以下的信号很难检测出来;
(2)局部放电信号的确认和定位周期长。由于局部放电干扰信号的存在,要在含有干扰信号的局部放电中获取真实地局部放电信号难度非常大,有时为了确认一个局部放电信号,需要反复检测,综合运用时域、频域、图谱、时差定位结果等多方面的信息进行判断,技术难度高、判断时间长,准确率有限,这就直接导致了发现一个疑似缺陷之后,需要长时间的多次测量才能最后确定;
(3)局部放电特高频信号与绝缘缺陷劣化程度之间关联关系还需进一步研究。这里面最难解释的就是信号幅值与劣化程度的关系,因受传播路径复杂性、绝缘缺陷类型的多样性与放电机理与放电环境的非一致性影响,目前还没有一个合理的模型能够进行描述。
发明内容
为此,本发明实施例提供一种SHF频段局部放电信号接收电路,以解决以上技术问题。
为了实现上述目的,本发明的实施方式提供如下技术方案:
一种SHF频段局部放电信号接收电路,包括位于SHF信号接收机前端的混频降频模块,以及连接在SHF信号接收机端的电磁波接收模块。
作为本发明的一种优选方案,混频降频模块分两段覆盖射频工作频率的宽带天线和标准增益天线,宽带天线和标准增益天线均通过网络测试线连接相应的低噪前放,同时将经过差分放大器处理的100mt晶振信号分别与低噪前放处理的后的信号传输至混频器,将混频器混频后的信号传递至带通滤波器,随后通过对数检波电路,100mt晶振的一路信号直接连接带通滤波器,并通过定时器控制100mt晶振的起振,在混频器与带通滤波器之间设置单刀双掷开关,同时在带通滤波器与对数检波电路之间设置中频电路。
作为本发明的一种优选方案,所述电磁波接收模块包括在SHF信号接收机旁设置的电磁波接收天线以及低频放大器,电磁波接收信号后输送至低频放大器,经过低频放大器处理后通过检波器进行检波,后传输至中频放大器,将中频放大器处理后的信号传输至差分放大器。
作为本发明的一种优选方案,宽带天线的射频工作频率为2~18GHz,标准增益天线的射频工作频率为18~26.5GHz,两者输入的最小电平为-110dBm,对数检波电路的对数斜率为20mV/dB,检波电压0.2~3V,最小脉宽50ns,最大脉宽50ms,且检波电压视频带宽不小于5MHz。
作为本发明的一种优选方案,宽带天线信号与第一级混频模块进行混频,标准增益天线的信号与第二级混频模块,第一级混频中频中心频率f0=5500Mhz,带宽BW=2000MHz;第二级混频中频f0=600MHz,BW=200MHz,并将中频电路的中频输出设定在f0=600MHz。
作为本发明的一种优选方案,所述1000mt晶振包括一级本振源电路和二级本振源电路,其中一级本振源电路的本振信号接入混频器,二级本振源电路的本振信号直接接入带通滤波器,所述电磁接收模块还包括高频信号采集模块和声发射信号采集模块,以声发射信号采集模块的时钟为基准对SHF信号接收机进行同步采集数据校准,声发射信号采集模块的时钟先与一级本振源电路1~2ms进行二级本振源电路的启振。
作为本发明的一种优选方案,声发射信号采集模块的时钟没10ms归零一次,归零时通过声发射信号采集模块的GPIO接口发出下降沿信号,特高频信号采集模块通过GPIO接口检测到下降沿信号后时钟归零。
作为本发明的一种优选方案,特高频信号采集模块与声发射信号采集模块通过信号比较器进行比较输出特征信号,再通过电磁波接收模块中设置的混频器与带通滤波器的输出信号进行叠加得出带有同步联合向量的中频信号。
本发明的实施方式具有如下优点:
本发明专利针对电力设备绝缘状况状态进行局部放电信号检测,利用SHF频段对局部放电信号进行提取,尽可能的将干扰信号排除,研究成果有利在变电站复杂情况下避开干扰源的工作频率,进而达到快速准确识别局放信号的目的,保障电网的安全稳定运行,预计的研究成果具有较强的适用性,可用于电力设备绝缘状态检测的快速检测和在线监测,优于目前已实施的局部放电检测方法,可及时监测设备的潜在隐患,大大提高设备的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明提供的一种SHF频段局部放电信号接收电路的前端接收混频降频电路图;
图2为本发明提供的一种SHF频段局部放电信号接收电路的原理图;
图3为本发明提供的一种SHF频段局部放电信号接收电路的原理流程图;
图4为本发明提供的一种SHF频段局部放电信号接收电路的超外差接收机原理图;
图5为本发明提供的一种SHF频段局部放电信号接收电路的低噪前放电路图;
图6为本发明提供的一种SHF频段局部放电信号接收电路的第一级混频中频电路图;
图7为本发明提供的一种SHF频段局部放电信号接收电路的第二级混频中频电路图;
图8为本发明提供的一种SHF频段局部放电信号接收电路的对数检波电路图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图2所示,一种SHF频段局部放电信号接收电路,包括位于SHF信号接收机前端的混频降频模块,以及连接在SHF信号接收机端的电磁波接收模块。
如图1和图3至图8所示混频降频模块分两段覆盖射频工作频率的宽带天线和标准增益天线,宽带天线和标准增益天线均通过网络测试线连接相应的低噪前放,同时将经过差分放大器处理的100mt晶振信号分别与低噪前放处理的后的信号传输至混频器,将混频器混频后的信号传递至带通滤波器,随后通过对数检波电路,100mt晶振的一路信号直接连接带通滤波器,并通过定时器控制100mt晶振的起振,在混频器与带通滤波器之间设置单刀双掷开关,同时在带通滤波器与对数检波电路之间设置中频电路。
本发明公开了一种SHF频段局部放电信号接收电路设计。本发明将对如何捕捉瞬态信号,准确记录3GHz~30GHz频率带宽信号的特性,并通过对所接收信号的分析,反演局部放电的特性和绝缘缺陷的状态,需要综合局部放电特高频检测和超高频信号检测的手段,对特高频SHF局部放电信号进行有针对性地设计、试验与调试。
为满足对超高频SHF信号的采集,同时与UHF频段进行对比,射频工作频率需在300MHz~30GHz之间,对于如此宽带信号的处理只用一个频带的话,带宽过宽,信号噪声、信号增益的平坦度以及系统成本均存在问题。因此将信号划分为UHF,UHF混合SHF和SHF三段,具体分为300MHz~3G,1G~8G,6GHz~18.5GHz及以上。电路采用超外差、对数检波形式,动态检波范围不小于70dB。为配合后级的数据采集及处理,检波电压为0.2-3V,脉冲宽度在50ns到50μs之间,检测灵敏度达到-80dbm,输出信号小于17dbm,5V以下。此外还需尽量减少检测脉冲信号的上升时间理想50ns以内,提高脉冲的起始陡度,为测多通道信号的时间差提供方便,根据需要延长或不延迟脉冲下降时间,100ns至100us,若选择延长,可降低仅获取脉冲信号峰值而需要的采样速率。
对于SHF频段局部放电信号接收电路,要求:检测频率信号范围分为200MHz~1GHz,1~8GHz,6GHz~18.5GHz,检测动态范围不小于50dB,信号增益不小于60dB,信号中心频率可调范围不小于6G,频率分段数不少于12段,使用信号带宽不小于500MHz,输出信号幅度不超过5V,脉冲响应时间不大于1us,调理输出信号脉冲保持不小于5us,脉冲时刻检测误差不大于50ns。电路设计方案采用超外差接收机降频后对数检波形式,并采用固态电路研制了多级本振、中频输出等关键模块。
目前特高频技术能检测6GHz频率以下的局部放电信号,本发明主要阐述检测6GHz~18.5GHz频段的设计方案。
采用超外差结构的混频降频模块实现对脉冲频率的接收,超外差因其造价便宜、原理简单以及高敏特性,得到广泛的运用,其外差过程在接收机中是从天线接收的信号与本地振荡器产生的信号一起输入到一非线性器件得到中频信号,或在发射机中将中频变为射频信号。这个执行外差过程的非线性器件称为混频器或者变频器。在超外差收发机中,频率的搬移过程可能不止发生一次,因此它或将拥有多个中频频率和多个中频模块。
所述电磁波接收模块包括在SHF信号接收机旁设置的电磁波接收天线以及低频放大器,电磁波接收信号后输送至低频放大器,经过低频放大器处理后通过检波器进行检波,后传输至中频放大器,将中频放大器处理后的信号传输至差分放大器。
宽带天线的射频工作频率为2~18GHz,标准增益天线的射频工作频率为18~26.5GHz,两者输入的最小电平为-110dBm,对数检波电路的对数斜率为20mV/dB,检波电压0.2~3V,最小脉宽50ns,最大脉宽50ms,且检波电压视频带宽不小于5MHz。
宽带天线信号与第一级混频模块进行混频,标准增益天线的信号与第二级混频模块,第一级混频中频中心频率f0=5500Mhz,带宽BW=2000MHz;第二级混频中频f0=600MHz,BW=200MHz,并将中频电路的中频输出设定在f0=600MHz。
所述1000mt晶振包括一级本振源电路和二级本振源电路,其中一级本振源电路的本振信号接入混频器,二级本振源电路的本振信号直接接入带通滤波器,所述电磁接收模块还包括高频信号采集模块和声发射信号采集模块,以声发射信号采集模块的时钟为基准对SHF信号接收机进行同步采集数据校准,声发射信号采集模块的时钟先与一级本振源电路1~2ms进行二级本振源电路的启振。
声发射信号采集模块的时钟没10ms归零一次,归零时通过声发射信号采集模块的GPIO接口发出下降沿信号,特高频信号采集模块通过GPIO接口检测到下降沿信号后时钟归零。
特高频信号采集模块与声发射信号采集模块通过信号比较器进行比较输出特征信号,再通过电磁波接收模块中设置的混频器与带通滤波器的输出信号进行叠加得出带有同步联合向量的中频信号。
(1)局部放电信号接收方案采用下混频降频的方式,整个频段均采用下变频方式。
(2)电路设计方案采用超外差接收机降频后对数检波形式,并采用固态电路研制了多级本振、中频输出等关键模块。
(3)接收部分采用超外差结构对脉冲频率的接收,其外差过程在接收机中是从天线接收的信号与本地振荡器产生的信号一起输入到一非线性器件得到中频信号,或在发射机中将中频变为射频信号。
(4)采用两级下混频接收的结构来实现6GHz-18.5GHz频率段的接收。第一级混频中频f0=5500MHz,BW=2000MHz;第二级混频中频f0=600MHz,BW=200MHz,并且为了达到良好的经济性,将1-8GHz的中频输出也设定在F0=600MHz,该方案中两个接收频段最后一级的中频模块可以互用,节约了成本。
本发明的一种SHF频段局部放电信号接收电路设计,是针对现有的特高频UHF局部放电检测中存在的干扰大,精确性低等缺点,提出的一种新的基于超高频SHF局部放电信号接收电路。基于超高频SHF的局部放电检测方法能有效降低传统特高频UHF局部放电检测中存在电晕干扰、通信干扰等远大于300MHz的干扰信号带来的影响,进而达到快速准确识别局放信号的目的,保障电网的安全稳定运行,该方案可用于电力设备绝缘状态检测的快速检测和在线监测,优于目前已实施的局部放电检测方法,可及时监测设备的潜在隐患,大大提高设备的可靠性。
该SHF频段局部放电信号接收电路设计核心是采用下混频多级处理方式进行局部放电信号采集电路的设计。
采用超外差结构实现对脉冲频率的接收。
采用两级下混频接收的结构来实现6GHZ-18.5GHz频率段的接收。第一级混频中频频率为f0=5500MHz,带宽BW=2000MHz;第二级混频中频为f0=600MHz,BW=200MHz。
本发明采用超高频SHF局部放电检测技术,选取局部放电所激发电磁波信号中的次主要成分10GHz附近及更高频率成分作为主要研究对象,以6GHz~18.5GHz作为SHF的信号检测频带,有利于在变电站复杂情况下避开干扰源的工作频率,实现局放信号的快速准确识别,提高局部放电检测的精确性。
本发明未详细说明的部分属于本领域技术人员的公知常识。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种SHF频段局部放电信号接收电路,其特征在于,包括位于SHF信号接收机前端的混频降频模块,以及连接在SHF信号接收机端的电磁波接收模块。
2.根据权利要求1所述的一种SHF频段局部放电信号接收电路,其特征在于,混频降频模块分两段覆盖射频工作频率的宽带天线和标准增益天线,宽带天线和标准增益天线均通过网络测试线连接相应的低噪前放,同时将经过差分放大器处理的100mt晶振信号分别与低噪前放处理的后的信号传输至混频器,将混频器混频后的信号传递至带通滤波器,随后通过对数检波电路,100mt晶振的一路信号直接连接带通滤波器,并通过定时器控制100mt晶振的起振,在混频器与带通滤波器之间设置单刀双掷开关,同时在带通滤波器与对数检波电路之间设置中频电路。
3.根据权利要求2所述的一种SHF频段局部放电信号接收电路,其特征在于,所述电磁波接收模块包括在SHF信号接收机旁设置的电磁波接收天线以及低频放大器,电磁波接收信号后输送至低频放大器,经过低频放大器处理后通过检波器进行检波,后传输至中频放大器,将中频放大器处理后的信号传输至差分放大器。
4.根据权利要求3所述的一种SHF频段局部放电信号接收电路,其特征在于,宽带天线的射频工作频率为2~18GHz,标准增益天线的射频工作频率为18~26.5GHz,两者输入的最小电平为-110dBm,对数检波电路的对数斜率为20mV/dB,检波电压0.2~3V,最小脉宽50ns,最大脉宽50ms,且检波电压视频带宽不小于5MHz。
5.根据权利要求4所述的一种SHF频段局部放电信号接收电路,其特征在于,宽带天线信号与第一级混频模块进行混频,标准增益天线的信号与第二级混频模块,第一级混频中频中心频率f0=5500Mhz,带宽BW=2000MHz;第二级混频中频f0=600MHz,BW=200MHz,并将中频电路的中频输出设定在f0=600MHz。
6.根据权利要求5所述的一种SHF频段局部放电信号接收电路,其特征在于,所述1000mt晶振包括一级本振源电路和二级本振源电路,其中一级本振源电路的本振信号接入混频器,二级本振源电路的本振信号直接接入带通滤波器,所述电磁接收模块还包括高频信号采集模块和声发射信号采集模块,以声发射信号采集模块的时钟为基准对SHF信号接收机进行同步采集数据校准,声发射信号采集模块的时钟先与一级本振源电路1~2ms进行二级本振源电路的启振。
7.根据权利要求6所述的一种SHF频段局部放电信号接收电路,其特征在于,声发射信号采集模块的时钟没10ms归零一次,归零时通过声发射信号采集模块的GPIO接口发出下降沿信号,特高频信号采集模块通过GPIO接口检测到下降沿信号后时钟归零。
8.根据权利要7所述的一种SHF频段局部放电信号接收电路,其特征在于,特高频信号采集模块与声发射信号采集模块通过信号比较器进行比较输出特征信号,再通过电磁波接收模块中设置的混频器与带通滤波器的输出信号进行叠加得出带有同步联合向量的中频信号。
CN201910412012.8A 2019-05-17 2019-05-17 一种shf频段局部放电信号接收电路 Pending CN110045256A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910412012.8A CN110045256A (zh) 2019-05-17 2019-05-17 一种shf频段局部放电信号接收电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910412012.8A CN110045256A (zh) 2019-05-17 2019-05-17 一种shf频段局部放电信号接收电路

Publications (1)

Publication Number Publication Date
CN110045256A true CN110045256A (zh) 2019-07-23

Family

ID=67282428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910412012.8A Pending CN110045256A (zh) 2019-05-17 2019-05-17 一种shf频段局部放电信号接收电路

Country Status (1)

Country Link
CN (1) CN110045256A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077416A (zh) * 2019-12-10 2020-04-28 云南电网有限责任公司曲靖供电局 一种低成本超宽带放电信号检测装置及其检测方法
CN112838843A (zh) * 2020-12-30 2021-05-25 北京千方科技股份有限公司 信号调理装置及信号调理方法
CN113055102A (zh) * 2021-02-26 2021-06-29 北京国电通网络技术有限公司 用于超高频局部放电检测的接收机及方法
CN116346197A (zh) * 2023-02-28 2023-06-27 北京扬铭科技发展有限责任公司 Uhf频段特定卫星信号分析设备和分析方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201540350U (zh) * 2009-09-01 2010-08-04 江苏省电力公司常州供电公司 一种局部放电检测用超高频信号接收装置
US20100321228A1 (en) * 2009-06-23 2010-12-23 Radix. Inc. Radar detector
CN202013403U (zh) * 2011-04-19 2011-10-19 陕西边沿科技有限公司 电力设备局部放电特高频检测诊断系统
CN202583398U (zh) * 2012-02-16 2012-12-05 安徽理工大学 基于混频技术的局部放电信号采集装置
CN104135299A (zh) * 2014-07-18 2014-11-05 中国电子科技集团公司第四十一研究所 一种双通道两级变频宽带接收机及其自动增益控制方法
CN104320150A (zh) * 2014-10-24 2015-01-28 上海无线电设备研究所 一种超宽带微波接收机及其信号分段处理方法
CN205038299U (zh) * 2015-10-22 2016-02-17 国网河南禹州市供电公司 一种变压器局部放电超高频检测装置
CN205643611U (zh) * 2016-04-29 2016-10-12 广州供电局有限公司 变电站电气设备局部放电检测装置
CN106556780A (zh) * 2016-10-27 2017-04-05 中国电力科学研究院 一种局部放电类型确定方法及系统
CN106919880A (zh) * 2015-12-28 2017-07-04 北京聚利科技股份有限公司 射频信号监听设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100321228A1 (en) * 2009-06-23 2010-12-23 Radix. Inc. Radar detector
CN201540350U (zh) * 2009-09-01 2010-08-04 江苏省电力公司常州供电公司 一种局部放电检测用超高频信号接收装置
CN202013403U (zh) * 2011-04-19 2011-10-19 陕西边沿科技有限公司 电力设备局部放电特高频检测诊断系统
CN202583398U (zh) * 2012-02-16 2012-12-05 安徽理工大学 基于混频技术的局部放电信号采集装置
CN104135299A (zh) * 2014-07-18 2014-11-05 中国电子科技集团公司第四十一研究所 一种双通道两级变频宽带接收机及其自动增益控制方法
CN104320150A (zh) * 2014-10-24 2015-01-28 上海无线电设备研究所 一种超宽带微波接收机及其信号分段处理方法
CN205038299U (zh) * 2015-10-22 2016-02-17 国网河南禹州市供电公司 一种变压器局部放电超高频检测装置
CN106919880A (zh) * 2015-12-28 2017-07-04 北京聚利科技股份有限公司 射频信号监听设备
CN205643611U (zh) * 2016-04-29 2016-10-12 广州供电局有限公司 变电站电气设备局部放电检测装置
CN106556780A (zh) * 2016-10-27 2017-04-05 中国电力科学研究院 一种局部放电类型确定方法及系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H.E.LIN: "Discharge performance of zinc coating prepared by pulse electroplating with different frequencies for application in zinc-air battery", 《SURFACE AND COATINGS TECHNOLOGY》 *
岳增祥: "射频收发机实验平台的设计实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张健: "VHF_UHF无线电频谱监测接收机设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张博: "超宽带接收通道的设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
王培章: "《微波射频技术电路设计与分析》", 31 August 2012 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077416A (zh) * 2019-12-10 2020-04-28 云南电网有限责任公司曲靖供电局 一种低成本超宽带放电信号检测装置及其检测方法
CN112838843A (zh) * 2020-12-30 2021-05-25 北京千方科技股份有限公司 信号调理装置及信号调理方法
CN112838843B (zh) * 2020-12-30 2024-02-27 北京千方科技股份有限公司 信号调理装置及信号调理方法
CN113055102A (zh) * 2021-02-26 2021-06-29 北京国电通网络技术有限公司 用于超高频局部放电检测的接收机及方法
WO2022179021A1 (zh) * 2021-02-26 2022-09-01 北京国电通网络技术有限公司 用于超高频局部放电检测的接收机及方法
CN116346197A (zh) * 2023-02-28 2023-06-27 北京扬铭科技发展有限责任公司 Uhf频段特定卫星信号分析设备和分析方法
CN116346197B (zh) * 2023-02-28 2024-03-19 北京扬铭科技发展有限责任公司 Uhf频段特定卫星信号分析设备和分析方法

Similar Documents

Publication Publication Date Title
CN110045256A (zh) 一种shf频段局部放电信号接收电路
CN111183741B (zh) 宽带雷达目标模拟方法及系统
Hovinen et al. Ultra wideband indoor radio channel models: preliminary results
CN106771668A (zh) 一种电磁辐射参数测试系统
CN104993887B (zh) 一体化脉冲状态噪声系数测试方法及测试仪
CN102752061B (zh) 毫米波衰减测量系统锁相放大器参考信号产生装置及方法
CN104459348B (zh) 基于软件无线电的高功率微波辐射场测量装置及其方法
CN109975772B (zh) 一种多体制雷达干扰性能检测系统
Harris et al. The DST group ionospheric sounder replacement for JORN
Karthik et al. EMI developed test methodologies for short duration noises
CN109116302A (zh) 一种到达时刻检测方法、装置及定位装置
CN105137306B (zh) 特高频局放主动噪声跟踪抑制测量系统及其工作方法
US10725164B1 (en) System and method for detecting vehicles and structures including stealth aircraft
US11303366B2 (en) Passive harmonic test system and method
RU136183U1 (ru) Устройство для измерения величины реального затухания электромагнитного поля и оценки эффективности экранирования
CN110034831A (zh) 一种低复杂度的频谱监测装置及方法
Bosi et al. Common-and Differential-Mode Conducted Emissions Measurements using Conventional Receivers versus FFT-Based Receivers
Spindelberger et al. Out-of-the-Box Performance of popular SDRs for EMC pre-compliance Measurements
CN101344548A (zh) 一种天线端子互调敏感度测量方法
Peng et al. Investigation of the roles of filters for a harmonic FMCW radar
CN104901753A (zh) 两路同源射频信号的幅度相位比值测试方法和装置
Keller A New Concept for a Wideband FFT-Based EMI Receiver
Takada et al. Measurement techniques of emissions from ultra wideband devices
CN109782237B (zh) 一种雷达模拟回波及干扰信号测量装置
CN113472387A (zh) 一种w波段空间场幅相测试系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190723