CN110038557A - 一种电催化GOx/MnCO3复合材料及其制备和应用 - Google Patents

一种电催化GOx/MnCO3复合材料及其制备和应用 Download PDF

Info

Publication number
CN110038557A
CN110038557A CN201910417313.XA CN201910417313A CN110038557A CN 110038557 A CN110038557 A CN 110038557A CN 201910417313 A CN201910417313 A CN 201910417313A CN 110038557 A CN110038557 A CN 110038557A
Authority
CN
China
Prior art keywords
mnco
catalysis
electro
composite material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910417313.XA
Other languages
English (en)
Other versions
CN110038557B (zh
Inventor
段继周
王楠
翟晓凡
侯保荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN201910417313.XA priority Critical patent/CN110038557B/zh
Publication of CN110038557A publication Critical patent/CN110038557A/zh
Application granted granted Critical
Publication of CN110038557B publication Critical patent/CN110038557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于材料催化领域,具有设计一种电催化GOx/MnCO3复合材料及其制备和在防污中的应用。本发明GOx/MnCO3复合材料通过一步共沉淀法制备的,制备得到的材料呈现出氧化石墨烯气凝胶(GO,1wt%)均匀的包裹在MnCO3方块的表面,结构规整,具有良好的杀菌防污性能。该材料对于海水环境中的建筑设施具有很好的应用价值。

Description

一种电催化GOx/MnCO3复合材料及其制备和应用
技术领域
本发明属于材料催化领域,具有设计一种电催化GOx/MnCO3复合材料及其制备和在防污中的应用。
背景技术
电催化产活性氧的电极材料及其机理已经被广泛研究,特别是锰氧化物电极催化材料已经发展得比较成熟,其它的电催化材料包括硼掺杂的金刚石电极、纳米金属颗粒等在燃料电池氧还原研究、电化学高级氧化废水有机物和光电化学氧化消毒技术研究等方面有着很多的研究应用。电催化材料在电化学氧化技术中应用于水体消毒等方面已经有广泛研究,但在海水的生物污损防护技术方面的研究仍明显不足。因此,可以结合海洋电化学防污的特点和需求,开展新型导电防污材料在海洋防污领域的研究十分重要。
发明内容
针对上述电催化材料在海洋防污中应用问题,本发明目的在于提供一种电催化GOx/MnCO3复合材料及其制备和在防污中的应用。
为实现上述目的,本发明采取以下技术方案为:
一种电催化GOx/MnCO3复合材料,GOx/MnCO3为GO均匀包覆在MnCO3纳米材料表面,形成3-5nm厚度的氧化石墨烯包覆的MnCO3纳米材料,即GOx/MnCO3;其中,x=0.05-1;优选为x=0.05-0.5。
一种电催化GOx/MnCO3复合材料的制备,将GO与MnCO3方块纳米材料,按质量比例值为0.05-1混合,而后溶于过量的去离子水中,在超声清洗仪中,超声混合30-50min,即得到GOx/MnCO3复合材料。
所述MnCO3方块纳米为:通过一步共沉淀法将硫酸锰溶于含聚乙烯吡咯烷酮的溶液中,通过加入碳酸氢钠进行沉淀反应,反应持续搅拌下沉淀10-15h,将反应后的溶液洗涤干燥得到结构为规则的立方体的MnCO3材料。
所述溶液为水和无水乙醇,水和无水乙醇体积比为1:0-0:1;
所述含聚乙烯吡咯烷酮的溶液中聚乙烯吡咯烷酮的终浓度为15-25mg/mL。
所述硫酸锰溶于含聚乙烯吡咯烷酮的溶液中的终浓度为6-8mM;
所述碳酸氢钠与硫酸锰的质量比为10:1-50:1。
一种电催化GOx/MnCO3复合材料的应用,所述电催化GOx/MnCO3复合材料在生物污损防护中的应用。
本发明的有益效果在于:
本发明将具有良好导电性和催化活性的氧化石墨烯气凝胶和具有强的催化产生活性氧的碳酸锰纳米材料复合,进而增加其材料的电催化产生活性氧的性能,使其能在模拟海水中具有较强的抗菌防污性能。
本发明通过简单的共沉淀超声的方法合成GOx/MnCO3电催化复合材料,可用于模拟海水中设施的防护,绿色无二次污染,对于海洋设施的污损防污具有重要的意义,具体在于:
(1)将电催化材料引入到海洋污损生物防护上,扩宽了生物污损防护的技术方法。
(2)电催化防污损生物方法,可降低防护成本,应用的范围广。
附图说明
图1为本发明实施例提供的MnCO3(a)与GOx/MnCO3(b)复合材料的扫描电镜(SEM)照片。
图2为本发明实施例提供的电催化GOx/MnCO3复合材料在防污中应用的照片,其中,(a)碳钢没有修饰催化剂进行阴极极化后的荧光照片,(b)碳钢修饰催化剂进行阴极极化后的荧光照片。
具体实施方式
以下通过具体的实施例对本发明作进一步说明,有助于本领域的普通技术人员更全面的理解本发明,但不以任何方式限制本发明。
本发明GOx/MnCO3复合材料通过一步共沉淀法制备的,制备得到的材料呈现出氧化石墨烯气凝胶(GO,1wt%)均匀的包裹在MnCO3方块的表面,结构规整,具有良好的杀菌防污性能。该材料对于海水环境中的建筑设施具有很好的应用价值。
实施例1:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌15h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品的形貌图和如图1a一样,MnCO3为规则的为方块状纳米结构。
实施例2:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌12h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品如图1a所示,MnCO3为方块状的纳米结构。
将合成的MnCO3纳米方块与GO按质量比1:0.2,溶于去离子水中,在超声清洗仪中,超声混合30min。得到GO0.2/MnCO3复合材料的溶液,如图1b所示。图1b表明GO薄层均匀的包裹着方块状的MnCO3,这种结构不仅有利于增加MnCO3的导电性,又能防止MnCO3在溶液中降解,增加了其稳定性。
实施例3:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌12h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品如图1a所示,MnCO3为方块状的纳米结构。
将合成的MnCO3纳米方块与GO按质量比1:0.1,溶于去离子水中,在超声清洗仪中,超声混合30min。得到GO0.1/MnCO3复合材料的溶液。随着GO量的减少,相对于图1b,GO包覆方块状的MnCO3的层数减少。对防止MnCO3在溶液中降解作用减弱,稳定性相应减弱。
实施例4:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌12h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品如图1a所示,MnCO3为方块状的纳米结构。
将合成的MnCO3纳米方块与GO按质量比1:0.05,溶于去离子水中,在超声清洗仪中,超声混合30min。得到GO0.05/MnCO3复合材料的溶液。随着GO量进一步减少,相对于图1b,GO包覆方块状的MnCO3的层数变的稀薄。使得防止MnCO3降解能力变差,稳定性相应变差。
应用例:
首先准备细菌悬液,将大肠杆菌储存液接种到灭菌的LB培养基中,然后将其置于37℃、150rpm的恒温摇床中,过夜培养。培养得到的细菌悬液离心后分散于3.5%的NaCl中,溶液用3.5%的NaCl作为模拟海水,得到浓度为1.0×108cfu/mL的大肠杆菌悬液。
以上述实施例2合成的GOx/MnCO3复合材料为例,将其修饰在海洋设施常用材料碳钢表面,而以无GOx/MnCO3复合材料修饰的碳钢作为空白对照。取上述细菌浓度为1.0×108cfu/mL的悬液100mL作为电解质溶液,然后分别对两种不同处理的碳钢进行阴极极化4h,极化电压为-0.2V,通过荧光显微镜观察碳钢表面大肠杆菌的附着量。结果如图2所示。从图2a空白对照图中可以明显看出,即碳钢没有修饰催化剂进行阴极极化后的,碳钢表面生物的附着量较多。而进行电催化材料修饰并进行阴极极化后,碳钢材料表面生物的附着量很少,如图2b所示。
同时,上述的复合材料由其它实施例合成的GOx/MnCO3复合材料进行替换,复合材料均为包覆结构,而这种结构不仅有利于增加MnCO3的导电性,又能防止MnCO3在溶液中降解,进而增加了其催化性能,均能得到相应的杀菌效果,使得碳钢表面没有细菌的浮着,或附着量很少。

Claims (6)

1.一种电催化GOx/MnCO3复合材料,其特征在于:GOx/MnCO3为GO均匀包覆在MnCO3纳米材料表面,形成3-5nm厚度的氧化石墨烯包覆的MnCO3纳米材料,即GOx/MnCO3;其中,x=0.05-1。
2.一种权利要求1所述的电催化GOx/MnCO3复合材料的制备,其特征在于:将GO与MnCO3方块纳米材料,按质量比例值为0.05-1混合,而后溶于过量的去离子水中,在超声清洗仪中,超声混合30-50min,即得到GOx/MnCO3复合材料。
3.按权利要求2所述的电催化GOx/MnCO3复合材料的制备,其特征在于:所述MnCO3方块纳米为:通过一步共沉淀法将硫酸锰溶于含聚乙烯吡咯烷酮的溶液中,通过加入碳酸氢钠进行沉淀反应,反应持续搅拌下沉淀10-15h,将反应后的溶液洗涤干燥得到结构为规则的立方体的MnCO3材料。
4.按权利要求3所述的电催化GOx/MnCO3复合材料的制备,其特征在于:所述溶液为水和无水乙醇,水和无水乙醇体积比为1:0-0:1;
所述含聚乙烯吡咯烷酮的溶液中聚乙烯吡咯烷酮的终浓度为15-25mg/mL。
5.按权利要求3所述的电催化GOx/MnCO3复合材料的制备,其特征在于:所述硫酸锰溶于含聚乙烯吡咯烷酮的溶液中的终浓度为6-8mM;
所述碳酸氢钠与硫酸锰的质量比为10:1-50:1。
6.一种权利要求1所述的电催化GOx/MnCO3复合材料的应用,其特征在于:所述电催化GOx/MnCO3复合材料在生物污损防护中的应用。
CN201910417313.XA 2019-05-20 2019-05-20 一种电催化GOx/MnCO3复合材料及其制备和应用 Active CN110038557B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910417313.XA CN110038557B (zh) 2019-05-20 2019-05-20 一种电催化GOx/MnCO3复合材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910417313.XA CN110038557B (zh) 2019-05-20 2019-05-20 一种电催化GOx/MnCO3复合材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN110038557A true CN110038557A (zh) 2019-07-23
CN110038557B CN110038557B (zh) 2022-02-11

Family

ID=67282665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910417313.XA Active CN110038557B (zh) 2019-05-20 2019-05-20 一种电催化GOx/MnCO3复合材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN110038557B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757096A (zh) * 2012-07-09 2012-10-31 南京理工大学 一种纳米碳酸锰/石墨烯水凝胶复合物及其制备方法
US20130161570A1 (en) * 2011-12-22 2013-06-27 Ewha University - Industry Collaboration Foundation Manganese oxide/graphene nanocomposite and producing method of the same
CN105148964A (zh) * 2015-08-06 2015-12-16 南昌航空大学 一种三维还原氧化石墨烯-Mn3O4/MnCO3纳米复合材料及其制备方法
JP2016525790A (ja) * 2013-07-30 2016-08-25 マイクロン テクノロジー, インク. 半導電性グラフェン構造、このような構造の形成方法およびこのような構造を含む半導体デバイス
CN106006745A (zh) * 2016-05-19 2016-10-12 烟台佳隆纳米产业有限公司 一种连续制备软团聚纳米碳酸锰的方法
CN107910525A (zh) * 2017-11-16 2018-04-13 中山大学 一种氮掺杂碳酸锰及其复合物的制备方法
CN108714426A (zh) * 2018-06-15 2018-10-30 武汉理工大学 一种纳米立方体钙钛矿型催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161570A1 (en) * 2011-12-22 2013-06-27 Ewha University - Industry Collaboration Foundation Manganese oxide/graphene nanocomposite and producing method of the same
CN102757096A (zh) * 2012-07-09 2012-10-31 南京理工大学 一种纳米碳酸锰/石墨烯水凝胶复合物及其制备方法
JP2016525790A (ja) * 2013-07-30 2016-08-25 マイクロン テクノロジー, インク. 半導電性グラフェン構造、このような構造の形成方法およびこのような構造を含む半導体デバイス
CN105148964A (zh) * 2015-08-06 2015-12-16 南昌航空大学 一种三维还原氧化石墨烯-Mn3O4/MnCO3纳米复合材料及其制备方法
CN106006745A (zh) * 2016-05-19 2016-10-12 烟台佳隆纳米产业有限公司 一种连续制备软团聚纳米碳酸锰的方法
CN107910525A (zh) * 2017-11-16 2018-04-13 中山大学 一种氮掺杂碳酸锰及其复合物的制备方法
CN108714426A (zh) * 2018-06-15 2018-10-30 武汉理工大学 一种纳米立方体钙钛矿型催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG WANG ET AL.: ""Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries"", 《ELECTROCHIMICA ACTA》 *
MINGWEN GAO ET AL.: ""Graphene-wrapped mesoporous MnCO3 single crystals synthesized by a dynamic floating electrodeposition method for high performance lithium-ion storage"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Also Published As

Publication number Publication date
CN110038557B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Noori et al. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation
Noori et al. Enhancing the performance of microbial fuel cell using AgPt bimetallic alloy as cathode catalyst and anti-biofouling agent
Hao et al. Preparation and characterization of Fe2O3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties
Mashkour et al. Application of wet nanostructured bacterial cellulose as a novel hydrogel bioanode for microbial fuel cells
Mohamed et al. Bioelectricity generation using iron (II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell
Kugarajah et al. Investigation of a cation exchange membrane comprising sulphonated poly ether ether ketone and sulphonated titanium nanotubes in microbial fuel cell and preliminary insights on microbial adhesion
Guo et al. Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating
Tabish Noori et al. Highly porous FexMnOy microsphere as an efficient cathode catalyst for microbial electrosynthesis of volatile fatty acids from CO2
Luo et al. Stabilizing Ultrasmall Ceria‐Cluster Nanozyme for Antibacterial and Antibiofouling Applications
Song et al. Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2
CN109860643B (zh) 一种芳香重氮盐表面修饰MXene负载铂的氧还原电催化剂及其制备方法
Luo et al. Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater
Chen et al. In situ ion exchange synthesis of Ag2S/AgVO3 graphene aerogels for enhancing photocatalytic antifouling efficiency
Xing et al. MXene@ Poly (diallyldimethylammonium chloride) decorated carbon cloth for highly electrochemically active biofilms in microbial fuel cells
CN111463441B (zh) 一种氨基化Fe3O4@SiO2纳米颗粒及其在聚吡咯修饰微生物燃料电池阳极中的应用
Kolajo et al. Impact of cathode biofouling in microbial fuel cells and mitigation techniques
CN109321954A (zh) 一种不锈钢表面聚合聚苯胺-TiO2镀层的制备方法
Wang et al. Morphology regulation and application of nano cobalt oxide (Co3O4) electrocatalysts for chlorine evolution toward marine anti-biofouling
Shang et al. Electrochemical oxidation degradation of fungicide 5-chloro-2-methyl-4-isothiazoline-3-one (CMIT) in brine of reverse osmosis by a novel Ti/CB@ MXene anode
Li et al. The electrochemical oxidation of chloride on Pt-Ni-Co-G electrodes and its application in in-situ disinfection of water
Brahimi et al. Efficient removal of the antibiotic Cefixime on Mg0. 3Zn0. 7O under solar light: kinetic and mechanism studies
Lyu et al. Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis: a brief synopsis
Mukherjee et al. Perspective view on materialistic, mechanistic and operating challenges of microbial fuel cell on commercialisation and their way ahead
Alvarado-Ávila et al. Cerium oxide on a fluorinated carbon-based electrode as a promising catalyst for hypochlorite production
Zhang et al. Investigation of electrocatalytic activity of nanostructure Ce-doped MnO x sol–gel coating deposited on porous Ti membrane electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant