CN110038557A - 一种电催化GOx/MnCO3复合材料及其制备和应用 - Google Patents
一种电催化GOx/MnCO3复合材料及其制备和应用 Download PDFInfo
- Publication number
- CN110038557A CN110038557A CN201910417313.XA CN201910417313A CN110038557A CN 110038557 A CN110038557 A CN 110038557A CN 201910417313 A CN201910417313 A CN 201910417313A CN 110038557 A CN110038557 A CN 110038557A
- Authority
- CN
- China
- Prior art keywords
- mnco
- catalysis
- electro
- composite material
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000011656 manganese carbonate Substances 0.000 claims abstract description 47
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims abstract description 47
- 239000002131 composite material Substances 0.000 claims abstract description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000000975 co-precipitation Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 claims description 12
- 229960000935 dehydrated alcohol Drugs 0.000 claims description 12
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 12
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 12
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 12
- 229940099596 manganese sulfate Drugs 0.000 claims description 10
- 235000007079 manganese sulphate Nutrition 0.000 claims description 10
- 239000011702 manganese sulphate Substances 0.000 claims description 10
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000002086 nanomaterial Substances 0.000 claims description 9
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 8
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 5
- 238000005253 cladding Methods 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 230000002045 lasting effect Effects 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims 1
- 230000003373 anti-fouling effect Effects 0.000 abstract description 8
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 239000004964 aerogel Substances 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 230000001954 sterilising effect Effects 0.000 abstract description 3
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 3
- 229910002804 graphite Inorganic materials 0.000 abstract description 2
- 239000010439 graphite Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 37
- 229910000975 Carbon steel Inorganic materials 0.000 description 10
- 239000010962 carbon steel Substances 0.000 description 10
- 230000010287 polarization Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 240000001439 Opuntia Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明属于材料催化领域,具有设计一种电催化GOx/MnCO3复合材料及其制备和在防污中的应用。本发明GOx/MnCO3复合材料通过一步共沉淀法制备的,制备得到的材料呈现出氧化石墨烯气凝胶(GO,1wt%)均匀的包裹在MnCO3方块的表面,结构规整,具有良好的杀菌防污性能。该材料对于海水环境中的建筑设施具有很好的应用价值。
Description
技术领域
本发明属于材料催化领域,具有设计一种电催化GOx/MnCO3复合材料及其制备和在防污中的应用。
背景技术
电催化产活性氧的电极材料及其机理已经被广泛研究,特别是锰氧化物电极催化材料已经发展得比较成熟,其它的电催化材料包括硼掺杂的金刚石电极、纳米金属颗粒等在燃料电池氧还原研究、电化学高级氧化废水有机物和光电化学氧化消毒技术研究等方面有着很多的研究应用。电催化材料在电化学氧化技术中应用于水体消毒等方面已经有广泛研究,但在海水的生物污损防护技术方面的研究仍明显不足。因此,可以结合海洋电化学防污的特点和需求,开展新型导电防污材料在海洋防污领域的研究十分重要。
发明内容
针对上述电催化材料在海洋防污中应用问题,本发明目的在于提供一种电催化GOx/MnCO3复合材料及其制备和在防污中的应用。
为实现上述目的,本发明采取以下技术方案为:
一种电催化GOx/MnCO3复合材料,GOx/MnCO3为GO均匀包覆在MnCO3纳米材料表面,形成3-5nm厚度的氧化石墨烯包覆的MnCO3纳米材料,即GOx/MnCO3;其中,x=0.05-1;优选为x=0.05-0.5。
一种电催化GOx/MnCO3复合材料的制备,将GO与MnCO3方块纳米材料,按质量比例值为0.05-1混合,而后溶于过量的去离子水中,在超声清洗仪中,超声混合30-50min,即得到GOx/MnCO3复合材料。
所述MnCO3方块纳米为:通过一步共沉淀法将硫酸锰溶于含聚乙烯吡咯烷酮的溶液中,通过加入碳酸氢钠进行沉淀反应,反应持续搅拌下沉淀10-15h,将反应后的溶液洗涤干燥得到结构为规则的立方体的MnCO3材料。
所述溶液为水和无水乙醇,水和无水乙醇体积比为1:0-0:1;
所述含聚乙烯吡咯烷酮的溶液中聚乙烯吡咯烷酮的终浓度为15-25mg/mL。
所述硫酸锰溶于含聚乙烯吡咯烷酮的溶液中的终浓度为6-8mM;
所述碳酸氢钠与硫酸锰的质量比为10:1-50:1。
一种电催化GOx/MnCO3复合材料的应用,所述电催化GOx/MnCO3复合材料在生物污损防护中的应用。
本发明的有益效果在于:
本发明将具有良好导电性和催化活性的氧化石墨烯气凝胶和具有强的催化产生活性氧的碳酸锰纳米材料复合,进而增加其材料的电催化产生活性氧的性能,使其能在模拟海水中具有较强的抗菌防污性能。
本发明通过简单的共沉淀超声的方法合成GOx/MnCO3电催化复合材料,可用于模拟海水中设施的防护,绿色无二次污染,对于海洋设施的污损防污具有重要的意义,具体在于:
(1)将电催化材料引入到海洋污损生物防护上,扩宽了生物污损防护的技术方法。
(2)电催化防污损生物方法,可降低防护成本,应用的范围广。
附图说明
图1为本发明实施例提供的MnCO3(a)与GOx/MnCO3(b)复合材料的扫描电镜(SEM)照片。
图2为本发明实施例提供的电催化GOx/MnCO3复合材料在防污中应用的照片,其中,(a)碳钢没有修饰催化剂进行阴极极化后的荧光照片,(b)碳钢修饰催化剂进行阴极极化后的荧光照片。
具体实施方式
以下通过具体的实施例对本发明作进一步说明,有助于本领域的普通技术人员更全面的理解本发明,但不以任何方式限制本发明。
本发明GOx/MnCO3复合材料通过一步共沉淀法制备的,制备得到的材料呈现出氧化石墨烯气凝胶(GO,1wt%)均匀的包裹在MnCO3方块的表面,结构规整,具有良好的杀菌防污性能。该材料对于海水环境中的建筑设施具有很好的应用价值。
实施例1:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌15h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品的形貌图和如图1a一样,MnCO3为规则的为方块状纳米结构。
实施例2:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌12h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品如图1a所示,MnCO3为方块状的纳米结构。
将合成的MnCO3纳米方块与GO按质量比1:0.2,溶于去离子水中,在超声清洗仪中,超声混合30min。得到GO0.2/MnCO3复合材料的溶液,如图1b所示。图1b表明GO薄层均匀的包裹着方块状的MnCO3,这种结构不仅有利于增加MnCO3的导电性,又能防止MnCO3在溶液中降解,增加了其稳定性。
实施例3:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌12h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品如图1a所示,MnCO3为方块状的纳米结构。
将合成的MnCO3纳米方块与GO按质量比1:0.1,溶于去离子水中,在超声清洗仪中,超声混合30min。得到GO0.1/MnCO3复合材料的溶液。随着GO量的减少,相对于图1b,GO包覆方块状的MnCO3的层数减少。对防止MnCO3在溶液中降解作用减弱,稳定性相应减弱。
实施例4:
0.6g的聚乙烯吡咯烷酮溶于30mL无水乙醇和10mL去离子水的混合溶剂中,然后,向上述溶液中加入0.045g的硫酸锰,室温搅拌45分钟,得到溶液A。将0.35g的碳酸氢钠溶于10mL离子水中,得到溶液B。将B溶液在搅拌的条件下滴加到溶液B中,持续搅拌12h。反应完成后,将溶液进行抽滤,并分别用去离子水和无水乙醇洗涤数次。最后得到的样品于60℃真空干燥箱中过夜干燥。得到样品如图1a所示,MnCO3为方块状的纳米结构。
将合成的MnCO3纳米方块与GO按质量比1:0.05,溶于去离子水中,在超声清洗仪中,超声混合30min。得到GO0.05/MnCO3复合材料的溶液。随着GO量进一步减少,相对于图1b,GO包覆方块状的MnCO3的层数变的稀薄。使得防止MnCO3降解能力变差,稳定性相应变差。
应用例:
首先准备细菌悬液,将大肠杆菌储存液接种到灭菌的LB培养基中,然后将其置于37℃、150rpm的恒温摇床中,过夜培养。培养得到的细菌悬液离心后分散于3.5%的NaCl中,溶液用3.5%的NaCl作为模拟海水,得到浓度为1.0×108cfu/mL的大肠杆菌悬液。
以上述实施例2合成的GOx/MnCO3复合材料为例,将其修饰在海洋设施常用材料碳钢表面,而以无GOx/MnCO3复合材料修饰的碳钢作为空白对照。取上述细菌浓度为1.0×108cfu/mL的悬液100mL作为电解质溶液,然后分别对两种不同处理的碳钢进行阴极极化4h,极化电压为-0.2V,通过荧光显微镜观察碳钢表面大肠杆菌的附着量。结果如图2所示。从图2a空白对照图中可以明显看出,即碳钢没有修饰催化剂进行阴极极化后的,碳钢表面生物的附着量较多。而进行电催化材料修饰并进行阴极极化后,碳钢材料表面生物的附着量很少,如图2b所示。
同时,上述的复合材料由其它实施例合成的GOx/MnCO3复合材料进行替换,复合材料均为包覆结构,而这种结构不仅有利于增加MnCO3的导电性,又能防止MnCO3在溶液中降解,进而增加了其催化性能,均能得到相应的杀菌效果,使得碳钢表面没有细菌的浮着,或附着量很少。
Claims (6)
1.一种电催化GOx/MnCO3复合材料,其特征在于:GOx/MnCO3为GO均匀包覆在MnCO3纳米材料表面,形成3-5nm厚度的氧化石墨烯包覆的MnCO3纳米材料,即GOx/MnCO3;其中,x=0.05-1。
2.一种权利要求1所述的电催化GOx/MnCO3复合材料的制备,其特征在于:将GO与MnCO3方块纳米材料,按质量比例值为0.05-1混合,而后溶于过量的去离子水中,在超声清洗仪中,超声混合30-50min,即得到GOx/MnCO3复合材料。
3.按权利要求2所述的电催化GOx/MnCO3复合材料的制备,其特征在于:所述MnCO3方块纳米为:通过一步共沉淀法将硫酸锰溶于含聚乙烯吡咯烷酮的溶液中,通过加入碳酸氢钠进行沉淀反应,反应持续搅拌下沉淀10-15h,将反应后的溶液洗涤干燥得到结构为规则的立方体的MnCO3材料。
4.按权利要求3所述的电催化GOx/MnCO3复合材料的制备,其特征在于:所述溶液为水和无水乙醇,水和无水乙醇体积比为1:0-0:1;
所述含聚乙烯吡咯烷酮的溶液中聚乙烯吡咯烷酮的终浓度为15-25mg/mL。
5.按权利要求3所述的电催化GOx/MnCO3复合材料的制备,其特征在于:所述硫酸锰溶于含聚乙烯吡咯烷酮的溶液中的终浓度为6-8mM;
所述碳酸氢钠与硫酸锰的质量比为10:1-50:1。
6.一种权利要求1所述的电催化GOx/MnCO3复合材料的应用,其特征在于:所述电催化GOx/MnCO3复合材料在生物污损防护中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910417313.XA CN110038557B (zh) | 2019-05-20 | 2019-05-20 | 一种电催化GOx/MnCO3复合材料及其制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910417313.XA CN110038557B (zh) | 2019-05-20 | 2019-05-20 | 一种电催化GOx/MnCO3复合材料及其制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110038557A true CN110038557A (zh) | 2019-07-23 |
CN110038557B CN110038557B (zh) | 2022-02-11 |
Family
ID=67282665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910417313.XA Active CN110038557B (zh) | 2019-05-20 | 2019-05-20 | 一种电催化GOx/MnCO3复合材料及其制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110038557B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102757096A (zh) * | 2012-07-09 | 2012-10-31 | 南京理工大学 | 一种纳米碳酸锰/石墨烯水凝胶复合物及其制备方法 |
US20130161570A1 (en) * | 2011-12-22 | 2013-06-27 | Ewha University - Industry Collaboration Foundation | Manganese oxide/graphene nanocomposite and producing method of the same |
CN105148964A (zh) * | 2015-08-06 | 2015-12-16 | 南昌航空大学 | 一种三维还原氧化石墨烯-Mn3O4/MnCO3纳米复合材料及其制备方法 |
JP2016525790A (ja) * | 2013-07-30 | 2016-08-25 | マイクロン テクノロジー, インク. | 半導電性グラフェン構造、このような構造の形成方法およびこのような構造を含む半導体デバイス |
CN106006745A (zh) * | 2016-05-19 | 2016-10-12 | 烟台佳隆纳米产业有限公司 | 一种连续制备软团聚纳米碳酸锰的方法 |
CN107910525A (zh) * | 2017-11-16 | 2018-04-13 | 中山大学 | 一种氮掺杂碳酸锰及其复合物的制备方法 |
CN108714426A (zh) * | 2018-06-15 | 2018-10-30 | 武汉理工大学 | 一种纳米立方体钙钛矿型催化剂及其制备方法和应用 |
-
2019
- 2019-05-20 CN CN201910417313.XA patent/CN110038557B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130161570A1 (en) * | 2011-12-22 | 2013-06-27 | Ewha University - Industry Collaboration Foundation | Manganese oxide/graphene nanocomposite and producing method of the same |
CN102757096A (zh) * | 2012-07-09 | 2012-10-31 | 南京理工大学 | 一种纳米碳酸锰/石墨烯水凝胶复合物及其制备方法 |
JP2016525790A (ja) * | 2013-07-30 | 2016-08-25 | マイクロン テクノロジー, インク. | 半導電性グラフェン構造、このような構造の形成方法およびこのような構造を含む半導体デバイス |
CN105148964A (zh) * | 2015-08-06 | 2015-12-16 | 南昌航空大学 | 一种三维还原氧化石墨烯-Mn3O4/MnCO3纳米复合材料及其制备方法 |
CN106006745A (zh) * | 2016-05-19 | 2016-10-12 | 烟台佳隆纳米产业有限公司 | 一种连续制备软团聚纳米碳酸锰的方法 |
CN107910525A (zh) * | 2017-11-16 | 2018-04-13 | 中山大学 | 一种氮掺杂碳酸锰及其复合物的制备方法 |
CN108714426A (zh) * | 2018-06-15 | 2018-10-30 | 武汉理工大学 | 一种纳米立方体钙钛矿型催化剂及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
KANG WANG ET AL.: ""Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries"", 《ELECTROCHIMICA ACTA》 * |
MINGWEN GAO ET AL.: ""Graphene-wrapped mesoporous MnCO3 single crystals synthesized by a dynamic floating electrodeposition method for high performance lithium-ion storage"", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
Also Published As
Publication number | Publication date |
---|---|
CN110038557B (zh) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Noori et al. | Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation | |
Noori et al. | Enhancing the performance of microbial fuel cell using AgPt bimetallic alloy as cathode catalyst and anti-biofouling agent | |
Hao et al. | Preparation and characterization of Fe2O3 nanoparticles by solid-phase method and its hydrogen peroxide sensing properties | |
Mashkour et al. | Application of wet nanostructured bacterial cellulose as a novel hydrogel bioanode for microbial fuel cells | |
Mohamed et al. | Bioelectricity generation using iron (II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell | |
Kugarajah et al. | Investigation of a cation exchange membrane comprising sulphonated poly ether ether ketone and sulphonated titanium nanotubes in microbial fuel cell and preliminary insights on microbial adhesion | |
Guo et al. | Achieving superior anticorrosion and antibiofouling performance of polyaniline/graphitic carbon nitride composite coating | |
Tabish Noori et al. | Highly porous FexMnOy microsphere as an efficient cathode catalyst for microbial electrosynthesis of volatile fatty acids from CO2 | |
Luo et al. | Stabilizing Ultrasmall Ceria‐Cluster Nanozyme for Antibacterial and Antibiofouling Applications | |
Song et al. | Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2 | |
CN109860643B (zh) | 一种芳香重氮盐表面修饰MXene负载铂的氧还原电催化剂及其制备方法 | |
Luo et al. | Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater | |
Chen et al. | In situ ion exchange synthesis of Ag2S/AgVO3 graphene aerogels for enhancing photocatalytic antifouling efficiency | |
Xing et al. | MXene@ Poly (diallyldimethylammonium chloride) decorated carbon cloth for highly electrochemically active biofilms in microbial fuel cells | |
CN111463441B (zh) | 一种氨基化Fe3O4@SiO2纳米颗粒及其在聚吡咯修饰微生物燃料电池阳极中的应用 | |
Kolajo et al. | Impact of cathode biofouling in microbial fuel cells and mitigation techniques | |
CN109321954A (zh) | 一种不锈钢表面聚合聚苯胺-TiO2镀层的制备方法 | |
Wang et al. | Morphology regulation and application of nano cobalt oxide (Co3O4) electrocatalysts for chlorine evolution toward marine anti-biofouling | |
Shang et al. | Electrochemical oxidation degradation of fungicide 5-chloro-2-methyl-4-isothiazoline-3-one (CMIT) in brine of reverse osmosis by a novel Ti/CB@ MXene anode | |
Li et al. | The electrochemical oxidation of chloride on Pt-Ni-Co-G electrodes and its application in in-situ disinfection of water | |
Brahimi et al. | Efficient removal of the antibiotic Cefixime on Mg0. 3Zn0. 7O under solar light: kinetic and mechanism studies | |
Lyu et al. | Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis: a brief synopsis | |
Mukherjee et al. | Perspective view on materialistic, mechanistic and operating challenges of microbial fuel cell on commercialisation and their way ahead | |
Alvarado-Ávila et al. | Cerium oxide on a fluorinated carbon-based electrode as a promising catalyst for hypochlorite production | |
Zhang et al. | Investigation of electrocatalytic activity of nanostructure Ce-doped MnO x sol–gel coating deposited on porous Ti membrane electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |