CN110028446A - 一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用 - Google Patents

一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用 Download PDF

Info

Publication number
CN110028446A
CN110028446A CN201910283791.6A CN201910283791A CN110028446A CN 110028446 A CN110028446 A CN 110028446A CN 201910283791 A CN201910283791 A CN 201910283791A CN 110028446 A CN110028446 A CN 110028446A
Authority
CN
China
Prior art keywords
fluorescence
concentration
surfactant
aggregation
fluorescence probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910283791.6A
Other languages
English (en)
Other versions
CN110028446B (zh
Inventor
朱为宏
王琪
郭志前
李强
刘振兴
徐益升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201910283791.6A priority Critical patent/CN110028446B/zh
Publication of CN110028446A publication Critical patent/CN110028446A/zh
Application granted granted Critical
Publication of CN110028446B publication Critical patent/CN110028446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/60Quinoline or hydrogenated quinoline ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用,所述聚集诱导发光染料具有式Ⅰ所示结构。本发明开拓性地将荧光探针应用到表面活性剂的临界胶束浓度检测,可以快速测定近似值。本发明的AIE荧光探针在检测表面活性剂临界胶束浓度时操作步骤简单,使用的范围广,可以准确的确定阴离子表面活性剂和非离子表面活性剂的临界胶束浓度。式Ⅰ中,R1独立选自:C1~C8的羧基、磺酸基、磷酸基或亚磷酸基中的任意一种,其中n=0、1、2、3、4、5、6或7;R2独立选自:甲基、甲氧基、N,N‑二甲基、N,N‑二甲苯胺、三苯胺、羟基、氨基或巯基中的任意一种。

Description

一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓 度的方法和应用
技术领域
本发明属于精细化工技术领域,具体涉及一种基于聚集诱导发光(AIE)特征的荧光探针快速简便测定临界胶束浓度的应用。
背景技术
表面活性剂具有多种特性,如润湿、乳化、发泡、溶解、分散、洗涤、耐腐蚀、抗静电等,被广泛应用于多种领域,如药物化学、合成化学、材料科学、生物学等(J.Am.Chem.Soc.,2009,131,1628;ACS Nano,2012,6,1677)。在一定的浓度下,即临界胶束浓度(criticalmicelle concentration,CMC)下,表面活性剂开始形成热力学稳定的胶束,同时,各种性质发生显著的变化。另外,CMC值还会受各种环境因素影响,如受pH、溶剂、温度、无机盐等因素影响(J.Colloid Interface Sci.,2006,301,267),因此,在实际应用中经常需要测定CMC值。CMC并不是一个确切的浓度,而是一个窄小的浓度范围,并且CMC值受测定方法影响,如用电导法和荧光法的测定结果常常会有所差别;即便是用同一种方法,如用荧光探针法,用不同荧光探针测定的结果也常常有所差别;用同一种荧光探针,其浓度不同也会影响CMC值。
目前报道的CMC测定方法基本需要配制一系列不同浓度的表面活性剂溶液,并用精密仪器测定各溶液的表面张力、吸收波长、荧光强度等物理参数,并通过物理参数与表面活性剂浓度的关系图确定CMC值(J.Am.Chem.Soc.,2003,125,1602;Chem.Commun.,2011,47,5527)。此类方法操作复杂,耗时过长,而且所涉及到的溶剂为易燃有机试剂,不利于安全、快速、简便的测试表面活性剂的CMC值。
在报道的CMC测定方法中,荧光光谱法具有操作简单、灵敏度高等优点,因此备受多种研究领域的关注(Inorg.Chim.Acta,2012,381,181)。目前广泛使用的荧光探针芘,有一定毒性,急性中毒会引起痉挛、四肢轻瘫等症状,水溶性差。此外,配置芘的荧光探针溶液,需要使用易燃的有机溶剂,并且操作复杂,耗时过长,还需要借助精密仪器测定荧光强度的变化,不利于快速、简便的检测(Chem.Phys.Lett.,2012,547,110)。
聚集诱导发光(AIE)化合物,相对于传统的荧光资料,其优势主要体现在:低背景、信噪比高、灵敏度好、抗光漂白能力强等方面(Angew.Chem.Int.Ed.,2015,54,7275)。水溶性的AIE化合物,是一种很好的CMC测定荧光探针。式Ⅰ所示的AIE荧光探针具有很好的水溶性,配置其溶液简单、快速。通过配制一系列不同浓度的表面活性剂溶液,然后通过荧光仪测定与表面活性剂浓度相关的荧光强度,再根据表面活性剂浓度与测定的荧光强度的线性关系图得出CMC值;最重要的是,可以现场快速、简便、高效的测试表面活性剂的CMC值:于波长365nm的紫外灯下观察随浓度从小到大变化时,荧光发生从无到强的突变,对应荧光强度突变处的检测溶液,所含表面活性剂浓度即为表面活性剂的临界胶束浓度。这种AIE荧光探针来测定表面活性剂的CMC值是一种简便、即时、消耗样品少的方法。
发明内容
针对上述现有技术存在的问题,本发明的目的是为了克服现有技术的不足,提供一种AIE荧光探针测试表面活性剂的临界胶束浓度。
本发明首要目的在于提供一类基于聚集诱导发光(aggregation-inducedemission,AIE)的荧光探针。该类荧光探针以苯并喹啉结构单元为主要母体基团,磺酸基结构单元为主要的水溶基团,具有发射波长长、光稳定性强以及水溶性好等诸多优点,结合荧光分光光度计,能够实现根据表面活性剂浓度与测定的荧光强度的线性关系图得出CMC值;同时,于波长365nm的紫外灯下观察随浓度从小到大变化时,荧光发生从无到最强的突变,对应荧光强度最强点处的突变点的检测溶液所含表面活性剂浓度即为表面活性剂的临界胶束浓度。
实现本发明的技术解决方案是:一种基于聚集诱导发光(AIE)特征的荧光探针在测定表面活性剂临界胶束浓度上的应用,所述的荧光探针具有如式I结构:
其中,所述的表面活性剂包括阴离子表面活性剂和非离子表面活性剂,具体为十二烷基硫酸钠(SDS)、脂肪醇聚氧乙烯醚(AEO)、普朗尼克(F127)、聚丙烯酸钠(PAANa)。结构式中包含聚集诱导发光性质的荧光团喹啉腈和具有水溶性特征的基团。
上述荧光探针的制备方法,参考文献(Chem.Sci.,2014,5,1383)。
本发明基于聚集诱导发光特征荧光探针的测定方法,是在一定温度下,用溶剂配制不同浓度的表面活性剂溶液,然后加入权利要求1所述的荧光探针液,测定其荧光强度的数值,检测强度突变点,确定临界胶束浓度值;同时于紫外照射下拍照,观察荧光从弱到强的突变,根据荧光强度突变点,确定表面活性剂的临界胶束浓度。
所述表面活性剂包括阴离子表面活性剂和非离子表面活性剂;
其中,阴离子表面活性剂包括十二烷基硫酸钠、聚丙烯酸钠、十二烷基苯磺酸、脂肪醇酰硫酸钠、乙氧基化脂肪酸甲酯磺酸钠、仲烷基磺酸钠或醇醚羧酸盐;
其中,非离子表面活性剂包括脂肪醇聚氧乙烯醚、普朗尼克、聚丙烯酰胺、壬基酚聚氧乙烯醚、脂肪酸聚氧乙烯酯、脂肪酸甲酯乙氧基化物或聚丙二醇的环氧乙烷加成物。
进一步的,所述表面活性剂在溶剂中形成分散介质的浓度为0.01~50%(w/v)。
进一步的,所述的荧光探针液浓度为10~1*10-1mol·L-1;荧光探针的测试浓度为1*10-2~1*10-6mol·L-1。
进一步的,所述溶剂包括去离子水、PBS缓冲液、生理盐水或HEPES缓冲液。
进一步的,所述温度范围是5-80℃。
进一步的,采用的荧光检测仪器,包括荧光分光光度计、酶联免疫检测仪测定荧光强度;荧光波长范围550-700纳米,最大荧光波长在600-630纳米。
与现有技术相比,本发明的优点是:
(1)本发明检测方法操作安全,使用方便。相比于传统的测试CMC的荧光探针芘,需要使用有毒易燃的有机溶剂。本AIE探针只需要使用去离子水、PBS缓冲液等无危害的溶剂就可以配制测试溶液;
(2)本发明检测方法操作简单,快速有效。传统的测试CMC的荧光探针芘,配制测试溶液复杂,耗时过长,需要两天时间;本AIE探针,配制简单,只需要10分钟左右,属于即配即用类型;
(3)本发明检测方法,测试简便快速。传统的测试CMC的荧光探针芘,需要借助精密仪器(如荧光分光光度计等)测定荧光强度的变化;本AIE探针,只需要简单的紫外光(如提式紫外灯、便携式紫外手电等)照射,即可观察到明显的变化,荧光从无到有的突变,即为临界胶束浓度;
(4)本发明可以适用于阴离子表面活性剂以及非离子表面活性剂;可以准确的确定表面活性剂的临界胶束浓度。
附图说明
图1.AIE探针I(浓度为2.5*10-5mol·L-1)在测试不同浓度的表面活性剂SDS的荧光光谱图;其中,横坐标为波长(nm),纵坐标为荧光强度。
图2.AIE探针I在测试不同浓度的表面活性剂SDS的溶液中,最大发射波长处的荧光强度与SDS浓度的关系图;其中,横坐标为SDS的浓度,纵坐标为荧光强度。
图3.在365nm的紫外灯下,AIE探针I在不同浓度的表面活性剂SDS中,呈现的荧光图像。
图4.AIE探针I(浓度为2.5*10-5mol·L-1)在测试不同浓度的表面活性剂AEO的荧光光谱图;
其中,横坐标为波长(nm),纵坐标为荧光强度。
图5.AIE探针I在测试不同浓度的表面活性剂AEO的溶液中,最大发射波长处的荧光强度与AEO浓度的关系图;其中,横坐标为AEO的浓度,纵坐标为荧光强度。
图6.在365nm的紫外灯下,AIE探针I在不同浓度的表面活性剂AEO中,呈现的荧光图像。
图7.AIE探针I(浓度为2.5*10-5mol·L-1)在测试不同浓度的表面活性剂F127的荧光光谱图;其中,横坐标为波长(nm),纵坐标为荧光强度。
图8.AIE探针I在测试不同浓度的表面活性剂F127的溶液中,最大发射波长处的荧光强度与F127浓度的关系图;其中,横坐标为F127的浓度,纵坐标为荧光强度。
图9.在365nm的紫外灯下,AIE探针I在不同浓度的表面活性剂F127中,呈现的荧光图像。
图10.AIE探针I(浓度为2.5*10-5mol·L-1)在测试不同浓度的表面活性剂PAANa的荧光光谱图;其中,横坐标为波长(nm),纵坐标为荧光强度。
图11.AIE探针I在测试不同浓度的表面活性剂PAANa的溶液中,最大发射波长处的荧光强度与PAANa浓度的关系图;其中,横坐标为PAANa的浓度,纵坐标为荧光强度。
图12.在365nm的紫外灯下,AIE探针I在不同浓度的表面活性剂PAANa中,呈现的荧光图像。
具体实施方式
下面通过实施例对本发明作进一步的阐述,其目的仅在于更好地理解本发明的内容。因此,所举之例并不限制本发明的保护范围:
实施例1
(1)将AIE探针I用水溶液配置成浓度为2.5*10-3mol·L-1的储备溶液;
(2)称取阴离子表面活性剂十二烷基硫酸钠(SDS)(分子量288)288.00mg于100mL容量瓶中,加双蒸水至样品溶解,采用双蒸水进行定容,使得到浓度为10mM的SDS储备液;
(3)室温下,分别取4、5、6、6.5、7、7.5、8、9、10mL的(2)制备得到的SDS储备液于九个10mL的容量瓶中,同时加入0.1mL的(1)制备得到的AIE探针I储备液,采用双蒸水进行定容,摇匀,使得到浓度分别为4、5、6、6.5、7、7.5、8、9、10mM的SDS样品液;
(4)测定上述待测液的荧光发射光谱(λex=415nm),以最大发射波长处的荧光强度与对应的SDS浓度作图,如图2所示,在SDS的浓度为7mM时候,有明显的突变,据此判断,SDS的CMC为7mM左右。
(5)于波长为365nm的紫外灯下观察随浓度从小到大变化时,荧光发生从无到最强的突变,对应荧光强度的突变点的检测溶液所含表面活性剂浓度即为表面活性剂的临界胶束浓度。如图3所示,当SDS浓度从6.5mM到7.5mM时,荧光强度发生了明显的突变。
实施例2
(1)将AIE探针I用水溶液配置成浓度为2.5*10-3mol·L-1的储备溶液;
(2)称取非离子表面活性剂脂肪醇聚氧乙烯醚(AEO)(分子量312)312.00mg于100mL容量瓶中,加双蒸水至样品溶解,采用双蒸水进行定容,使得到浓度为10mM的AEO储备液;
(3)室温下,分别取0.25、0.5、1、1.2、1.4、1.6、1.8、2、2.5mL的(2)制备得到的AEO储备液于九个10mL的容量瓶中,同时加入0.1mL的(1)制备得到的AIE探针I储备液,采用双蒸水进行定容,摇匀,使得到浓度分别为0.25、0.5、1、1.2、1.4、1.6、1.8、2、2.5mM的AEO样品液;
(4)测定上述待测液的荧光发射光谱(λex=415nm),以最大发射波长处的荧光强度与对应的AEO浓度作图,如图5所示在AEO的浓度为1.4-1.8mM时候,有明显的突变,据此判断,AEO的CMC为1.4-1.8mM之间。
(5)于波长为365nm的紫外灯下观察随浓度从小到大变化时,荧光发生从无到最强的突变,对应荧光强度的突变点的检测溶液所含表面活性剂浓度即为表面活性剂的临界胶束浓度。如图6所示,当AEO浓度从1.4mM到1.8mM时,荧光强度发生了明显的突变。
实施例3
(1)将AIE探针I用水溶液配置成浓度为2.5*10-3mol·L-1的储备溶液;
(2)称取非离子表面活性剂普朗尼克(F127)10g于100mL容量瓶中,加双蒸水至样品溶解,采用双蒸水进行定容,使得到浓度为10mg/mL的F127储备液;
(3)室温下,分别取5,10,20,50,100,150,200,400,800μL的(2)制备得到的F127储备液于九个10mL的容量瓶中,同时加入0.1mL的(1)制备得到的AIE探针I储备液,采用双蒸水进行定容,摇匀,使得到浓度分别为0.05,0.1,0.2,0.5,1.0,1.5,2.0,4.0,8.0mg/mL的F127样品液;
(4)测定上述待测液的荧光发射光谱(λex=415nm),以最大发射波长处的荧光强度与对应的F127浓度作图,如图8所示在F127的浓度为1-2mg/mL时候,有明显的突变,据此判断,F127的CMC为1-2mg/mL之间。
(5)于波长为365nm的紫外灯下观察随浓度从小到大变化时,荧光发生从无到最强的突变,对应荧光强度的突变点的检测溶液所含表面活性剂浓度即为表面活性剂的临界胶束浓度。如图9所示,当F127浓度从1到2mg/mL时,荧光强度发生了明显的突变。
实施例4
(1)将AIE探针I用水溶液配置成浓度为2.5*10-3mol·L-1的储备溶液;
(2)称取阴离子表面活性剂聚丙烯酸纳(PAANa)10g于100mL容量瓶中,加双蒸水至样品溶解,采用双蒸水进行定容,使得到浓度为10mg/mL的F127储备液;
(3)室温下,分别取50,100,200,400,600,800,1000,1200,1600μL的(2)制备得到的PAANa储备液于九个10mL的容量瓶中,同时加入0.1mL的(1)制备得到的AIE探针I储备液,采用双蒸水进行定容,摇匀,使得到浓度分别为0.5,1,2,4,6,8,10,12,16mg/mL的PAANa样品液;
(4)测定上述待测液的荧光发射光谱(λex=415nm),以最大发射波长处的荧光强度与对应的PAANa浓度作图,如图11所示在PAANa的浓度为8mg/mL时候,有明显的突变,据此判断,PAANa的CMC为8-10mg/mL之间。
(5)于波长为365nm的紫外灯下观察随浓度从小到大变化时,荧光发生从无到最强的突变,对应荧光强度的突变点的检测溶液所含表面活性剂浓度即为表面活性剂的临界胶束浓度。如图12所示,当PAANa浓度从6到10mg/mL时,荧光强度发生了明显的突变。

Claims (10)

1.一种基于聚集诱导发光特征的荧光探针,其特征在于,所述的荧光探针结构如式Ⅰ所示:
式Ⅰ中,
R1独立选自:C1~C8的羧基、磺酸基、磷酸基或亚磷酸基中的任意一种,其中n=0、1、2、3、4、5、6或7;
R2独立选自:甲基、甲氧基、N,N-二甲基、N,N-二甲苯胺、三苯胺、羟基、氨基或巯基中的任意一种。
2.如权利要求1所述的基于聚集诱导发光特征荧光探针的测定方法,其特征在于,在一定温度下,用溶剂配制不同浓度的表面活性剂溶液,然后加入权利要求1所述的荧光探针液,测定其荧光强度的数值,检测强度突变点,确定临界胶束浓度值;同时于紫外照射下拍照,观察荧光从弱到强的突变,根据荧光强度突变点,确定表面活性剂的临界胶束浓度。
3.如权利要求1所述的一种基于聚集诱导发光特征的荧光探针,其特征在于,结构式中包含聚集诱导发光性质的荧光团喹啉腈和具有水溶性特征的基团。
4.如权利要求2所述的测定方法,其特征在于,所述表面活性剂包括阴离子表面活性剂和非离子表面活性剂;
其中,阴离子表面活性剂包括十二烷基硫酸钠、聚丙烯酸钠、十二烷基苯磺酸、脂肪醇酰硫酸钠、乙氧基化脂肪酸甲酯磺酸钠、仲烷基磺酸钠或醇醚羧酸盐;
其中,非离子表面活性剂包括脂肪醇聚氧乙烯醚、普朗尼克、聚丙烯酰胺、壬基酚聚氧乙烯醚、脂肪酸聚氧乙烯酯、脂肪酸甲酯乙氧基化物或聚丙二醇的环氧乙烷加成物。
5.如权利要求2或4所述的测定方法,其特征在于,所述表面活性剂在溶剂中形成分散介质的浓度为0.01~50%(w/v)。
6.如权利要求2所述的测定方法,其特征在于,所述的荧光探针液浓度为10~1*10- 1mol·L-1;荧光探针的测试浓度为1*10-2~1*10-6mol·L-1
7.如权利要求2所述的测定方法,其特征在于,所述溶剂包括去离子水、PBS缓冲液、生理盐水或HEPES缓冲液。
8.如权利要求2所述的测定方法,其特征在于,所述温度范围是5-80℃。
9.如权利要求2所述的测定方法,其特征在于,采用的荧光检测仪器,包括荧光分光光度计、酶联免疫检测仪测定荧光强度;荧光波长范围550-700纳米,最大荧光波长在600-630纳米。
10.一种如权利要求1所述的基于聚集诱导发光特征的荧光探针测定临界胶束浓度的应用。
CN201910283791.6A 2019-04-10 2019-04-10 一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用 Active CN110028446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283791.6A CN110028446B (zh) 2019-04-10 2019-04-10 一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283791.6A CN110028446B (zh) 2019-04-10 2019-04-10 一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用

Publications (2)

Publication Number Publication Date
CN110028446A true CN110028446A (zh) 2019-07-19
CN110028446B CN110028446B (zh) 2021-06-25

Family

ID=67237786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283791.6A Active CN110028446B (zh) 2019-04-10 2019-04-10 一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用

Country Status (1)

Country Link
CN (1) CN110028446B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426672A (zh) * 2020-05-27 2020-07-17 北京化工大学 一种多维度荧光纳米粒子快速制备及其动态分散状态原位定量表征的方法
CN111504961A (zh) * 2020-03-31 2020-08-07 南昌大学 一种基于谷胱甘肽金纳米簇的荧光传感器及其应用
CN112710838A (zh) * 2020-11-26 2021-04-27 华东理工大学 喹啉腈衍生物在蛋白质印记法检测蛋白质的应用及其制备方法
CN113004886A (zh) * 2019-12-20 2021-06-22 湖南超亟化学科技有限公司 一种苯并喹啉类可用于氟离子检测的比率型近红外荧光分子探针的制备方法及其应用
CN113176239A (zh) * 2021-04-27 2021-07-27 国家纳米科学中心 一种确定荧光多肽自组装临界组装浓度的方法及其应用
CN113278412A (zh) * 2021-05-19 2021-08-20 天津大学 聚集诱导发光纳米粒子的制备方法、纳米粒子和应用
CN116400068A (zh) * 2023-02-13 2023-07-07 泉州圣源警用侦察设备有限公司 一种用于含dna的潜在生物痕迹显现的试剂及显现方法
WO2023142326A1 (zh) 2022-01-30 2023-08-03 月亮小屋(中国)有限公司 AIE荧光探针组合物、表面活性剂溶液的cmc测定方法及装置、cmc判断方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185041A (ja) * 2011-03-04 2012-09-27 Saitama Univ ウィルス、微生物類及び毒素の検出方法
CN102702096A (zh) * 2012-06-15 2012-10-03 华东理工大学 具有聚集诱导发光性能的喹啉腈衍生物
CN104193666A (zh) * 2014-07-30 2014-12-10 南方医科大学 一种1,3-二取代马来酰亚胺化合物及其作为表面活性剂临界胶束浓度荧光探针的应用
CN106905389A (zh) * 2017-01-24 2017-06-30 华东理工大学 一种具有细胞内滞留能力的β‑半乳糖苷酶荧光探针

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185041A (ja) * 2011-03-04 2012-09-27 Saitama Univ ウィルス、微生物類及び毒素の検出方法
CN102702096A (zh) * 2012-06-15 2012-10-03 华东理工大学 具有聚集诱导发光性能的喹啉腈衍生物
CN104193666A (zh) * 2014-07-30 2014-12-10 南方医科大学 一种1,3-二取代马来酰亚胺化合物及其作为表面活性剂临界胶束浓度荧光探针的应用
CN106905389A (zh) * 2017-01-24 2017-06-30 华东理工大学 一种具有细胞内滞留能力的β‑半乳糖苷酶荧光探针

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDONG SHAO ET AL.: "Insight into aggregation-induced emission characteristics of red-emissive quinolinemalononitrile by cell tracking and real-time trypsin detection", 《CHEMICAL SCIENCE》 *
金佳科: "聚集诱导发光分子的合成及其在化学传感与检测领域的应用", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004886A (zh) * 2019-12-20 2021-06-22 湖南超亟化学科技有限公司 一种苯并喹啉类可用于氟离子检测的比率型近红外荧光分子探针的制备方法及其应用
CN113004886B (zh) * 2019-12-20 2022-07-08 湖南超亟检测技术有限责任公司 一种苯并喹啉类可用于氟离子检测的比率型近红外荧光分子探针的制备方法及其应用
CN111504961A (zh) * 2020-03-31 2020-08-07 南昌大学 一种基于谷胱甘肽金纳米簇的荧光传感器及其应用
CN111426672A (zh) * 2020-05-27 2020-07-17 北京化工大学 一种多维度荧光纳米粒子快速制备及其动态分散状态原位定量表征的方法
CN111426672B (zh) * 2020-05-27 2021-12-21 北京化工大学 一种多维度荧光纳米粒子快速制备及其动态分散状态原位定量表征的方法
CN112710838A (zh) * 2020-11-26 2021-04-27 华东理工大学 喹啉腈衍生物在蛋白质印记法检测蛋白质的应用及其制备方法
CN113176239A (zh) * 2021-04-27 2021-07-27 国家纳米科学中心 一种确定荧光多肽自组装临界组装浓度的方法及其应用
CN113278412A (zh) * 2021-05-19 2021-08-20 天津大学 聚集诱导发光纳米粒子的制备方法、纳米粒子和应用
WO2023142326A1 (zh) 2022-01-30 2023-08-03 月亮小屋(中国)有限公司 AIE荧光探针组合物、表面活性剂溶液的cmc测定方法及装置、cmc判断方法及装置
CN116400068A (zh) * 2023-02-13 2023-07-07 泉州圣源警用侦察设备有限公司 一种用于含dna的潜在生物痕迹显现的试剂及显现方法
CN116400068B (zh) * 2023-02-13 2023-09-22 泉州圣源警用侦察设备有限公司 一种用于含dna的潜在生物痕迹显现的试剂及显现方法

Also Published As

Publication number Publication date
CN110028446B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN110028446A (zh) 一种基于聚集诱导发光特征的荧光探针及其测定临界胶束浓度的方法和应用
Kim et al. A two‐photon fluorescent probe for lipid raft imaging: C‐Laurdan
Li et al. Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells
Peng et al. Fluorescent probes based on nucleophilic substitution–cyclization for hydrogen sulfide detection and bioimaging
Li et al. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH
Miao et al. A general method to develop highly environmentally sensitive fluorescent probes and AIEgens
Koenig et al. A fluorescent molecular rotor showing vapochromism, aggregation-induced emission, and environmental sensing in living cells
Shi et al. Novel cationic meso-CF 3 BODIPY-based AIE fluorescent rotors for imaging viscosity in mitochondria
Mukherjee et al. Live-cell imaging of the nucleolus and mapping mitochondrial viscosity with a dual function fluorescent probe
Deng et al. A general strategy to develop cell membrane fluorescent probes with location-and target-specific fluorogenicities: a case of a Zn2+ probe with cellular selectivity
Liu et al. Conversion of a surfactant-based microemulsion to a surfactant-free microemulsion by CO 2
Pan et al. Assessment of cancer cell migration using a viscosity-sensitive fluorescent probe
Yu et al. A novel fluorescent pH probe with valuable p K a based on a twisted intramolecular charge transfer mechanism, and its applications in cell imaging
Vandevyver et al. Luminescent lanthanide bimetallic triple-stranded helicates as potential cellular imaging probes
CN108333162B (zh) 一种荧光氧探针及其制备方法和用途
Despa et al. Fluorescence lifetime microscopy of the Na+ indicator Sodium Green in HeLa cells
Niu et al. A benzoperylene self-assembly complex with turn-on excimer emission for wash-free cell membrane fluorescence imaging
Signore et al. Imaging the static dielectric constant in vitro and in living cells by a bioconjugable GFP chromophore analog
Rozamliana et al. Interaction of metanil yellow dye with cationic surfactants: Conductometric and spectroscopic studies
Guo et al. Highly selective naphthalimide-based fluorescent probe for direct hydrogen sulfide detection in the environment
Saha et al. Homo-FRET imaging highlights the nanoscale organization of cell surface molecules
WO2023184998A1 (zh) 荧光法测定微乳液拟合三元相图的方法
Wawrezinieck et al. Fluorescence correlation spectroscopy to determine diffusion laws: application to live cell membranes
Xu et al. Surfactant-free microemulsions of 1-butyl-3-methylimidazolium hexafluorophosphate, propylamine nitrate, and water
Zhao et al. An environmentally friendly AIE probe for CMC determination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant