CN110018993A - A kind of data analysis system, method and monitoring analysis system - Google Patents
A kind of data analysis system, method and monitoring analysis system Download PDFInfo
- Publication number
- CN110018993A CN110018993A CN201711490187.8A CN201711490187A CN110018993A CN 110018993 A CN110018993 A CN 110018993A CN 201711490187 A CN201711490187 A CN 201711490187A CN 110018993 A CN110018993 A CN 110018993A
- Authority
- CN
- China
- Prior art keywords
- data
- module
- monitoring
- analysis
- hidden danger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 130
- 238000004458 analytical method Methods 0.000 title claims abstract description 86
- 238000007405 data analysis Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000012545 processing Methods 0.000 claims abstract description 55
- 238000004140 cleaning Methods 0.000 claims abstract description 22
- 230000002776 aggregation Effects 0.000 claims abstract description 18
- 238000004220 aggregation Methods 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 238000013499 data model Methods 0.000 claims description 35
- 238000007418 data mining Methods 0.000 claims description 28
- 238000003860 storage Methods 0.000 claims description 18
- 238000007726 management method Methods 0.000 claims description 8
- 238000013507 mapping Methods 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims 1
- 238000010921 in-depth analysis Methods 0.000 abstract description 11
- 230000004044 response Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 23
- 230000006870 function Effects 0.000 description 14
- 230000001360 synchronised effect Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 241001080526 Vertica Species 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/11—File system administration, e.g. details of archiving or snapshots
- G06F16/122—File system administration, e.g. details of archiving or snapshots using management policies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/16—File or folder operations, e.g. details of user interfaces specifically adapted to file systems
- G06F16/162—Delete operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/17—Details of further file system functions
- G06F16/176—Support for shared access to files; File sharing support
- G06F16/1767—Concurrency control, e.g. optimistic or pessimistic approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2216/00—Indexing scheme relating to additional aspects of information retrieval not explicitly covered by G06F16/00 and subgroups
- G06F2216/03—Data mining
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
一种数据分析系统、方法及监控分析系统,用以提供对大数据量的监控数据的统计、深层次分析以及快速响应。该系统包括:ETL模块、Hadoop模块以及MPP数据库。ETL模块用于采集监控数据,并对监控数据执行数据清洗,得到有效第一数据,并将第一数据发送至Hadoop模块,Hadoop模块用于备份第一数据,并对第一数据执行数据转换、聚合处理得到第二数据,并发送至MPP数据库,ETL模块还用于调用MPP数据库执行:根据预先设置的预警规则对第二数据进行预警分析,输出预警数据,进而生成预警数据模式,并根据预先设置的隐患告警规则对第二数据进行隐患告警分析,输出隐患告警数据,进而生成隐患告警数据模式。
A data analysis system, method and monitoring and analysis system are used to provide statistics, in-depth analysis and rapid response to monitoring data of large data volume. The system includes: ETL module, Hadoop module and MPP database. The ETL module is used to collect monitoring data, perform data cleaning on the monitoring data, obtain valid first data, and send the first data to the Hadoop module. The Hadoop module is used to back up the first data, and perform data conversion, The second data is obtained by aggregation processing and sent to the MPP database, and the ETL module is also used to call the MPP database to execute: carry out early warning analysis on the second data according to the preset early warning rules, output the early warning data, and then generate the early warning data pattern, and according to the pre-warning rules. The set hidden danger alarm rule performs a hidden danger alarm analysis on the second data, outputs the hidden danger alarm data, and then generates a hidden danger alarm data pattern.
Description
技术领域technical field
本申请涉及监控数据分析技术领域,尤其涉及一种数据分析系统、方法及监控分析系统。The present application relates to the technical field of monitoring data analysis, and in particular, to a data analysis system, method, and monitoring and analysis system.
背景技术Background technique
随着监控手段的完善以及网络技术的发展,监控系统能够采集到的监控数据越来越丰富,使得监控系统面临海量数据的处理需求以及深层次分析需求,而现有大部分监控系统以实时监控为主,只具备简单的统计分析功能,无法提供复杂的统计和深层次的分析功能,且,不具备大数据处理分析的特点,不能快速对传来的数据进行响应。With the improvement of monitoring methods and the development of network technology, the monitoring data that can be collected by the monitoring system is becoming more and more abundant, which makes the monitoring system face the processing needs of massive data and the need for in-depth analysis. Most of the existing monitoring systems use real-time monitoring Mainly, it only has simple statistical analysis functions, and cannot provide complex statistical and in-depth analysis functions. Moreover, it does not have the characteristics of big data processing and analysis, and cannot quickly respond to incoming data.
为了推进支撑系统的集中化和一体化,探索云计算、大数据等新技术满足系统的持续发展,结合以上需求,有必要提出一种对现有监控系统的数据进行集中处理和深层次分析的行之有效的系统。In order to promote the centralization and integration of the support system, explore new technologies such as cloud computing and big data to meet the continuous development of the system, combined with the above requirements, it is necessary to propose a centralized processing and in-depth analysis of the data of the existing monitoring system. A system that works.
发明内容SUMMARY OF THE INVENTION
本申请的实施例提供了一种数据分析系统、方法及监控分析系统,用以提供对大数据量的监控数据的统计、深层次分析以及快速响应。Embodiments of the present application provide a data analysis system, method, and monitoring and analysis system, which are used to provide statistics, in-depth analysis, and rapid response to monitoring data with a large amount of data.
本申请的目的是通过以下技术方案实现的:The purpose of this application is achieved through the following technical solutions:
第一方面,提供一种数据分析系统,该数据分析系统包括:数据清洗(Extract-Transform-Load,ETL)模块、分布式计算(Hadoop)模块以及大规模并行处理(MassivelyParallel Processor,MPP)数据库。所述ETL模块,用于根据预设的周期采集至少一个监控系统中的监控数据,并根据预先设置的清洗规则对所述监控数据执行数据清洗,得到供所述数据分析系统使用的有效第一数据,并将所述第一数据发送至所述Hadoop模块,所述Hadoop模块,用于备份所述第一数据,并对所述第一数据执行数据转换、聚合处理得到第二数据,将所述第二数据发送至所述MPP数据库,所述ETL模块,还用于调用所述MPP数据库执行:根据预先设置的预警规则对所述第二数据进行预警分析,输出预警数据,并根据所述预警数据、预先存储的相关第一历史数据以及预先设置的第一数据模型生成预警数据模式,并根据预先设置的隐患告警规则对所述第二数据进行隐患告警分析,输出隐患告警数据,并根据所述隐患告警数据、预先存储的相关第二历史数据以及预先设置的第二数据模型生成隐患告警数据模式。In a first aspect, a data analysis system is provided. The data analysis system includes a data cleaning (Extract-Transform-Load, ETL) module, a distributed computing (Hadoop) module, and a Massively Parallel Processor (MPP) database. The ETL module is used to collect monitoring data in at least one monitoring system according to a preset period, and perform data cleaning on the monitoring data according to a preset cleaning rule, so as to obtain effective first data for use by the data analysis system. data, and send the first data to the Hadoop module, where the Hadoop module is used to back up the first data, perform data conversion and aggregation processing on the first data to obtain second data, The second data is sent to the MPP database, and the ETL module is also used to call the MPP database to execute: carry out early warning analysis on the second data according to a preset early warning rule, output early warning data, and The early-warning data, the pre-stored relevant first historical data, and the pre-set first data model generate an early-warning data model, and perform a hidden-risk alarm analysis on the second data according to the preset hidden-risk alarm rules, output the hidden-risk alarm data, and according to the hidden danger alarm rules. The hidden danger warning data, the pre-stored relevant second historical data, and the pre-set second data model generate a hidden danger warning data pattern.
其中,所述第一数据模型以及所述第二数据模型用于表征数据之间的约束规则。Wherein, the first data model and the second data model are used to represent constraint rules between data.
本申请实施例中,充分利用Hadoop的集群特征,将数据分析系统中需要巨大计算能力的各个模块的计算和存储要求扩展到Hadoop集群中的各个节点上,利用集群的并行计算和存储能力来进行监控数据挖掘处理工作,使用Hadoop来存储、分析和处理巨大的数据量,结合可并行处理的MPP数据库实现对大数据量的监控数据的统计、深层次分析以及快速响应。In the embodiment of the present application, the cluster features of Hadoop are fully utilized, and the computing and storage requirements of each module in the data analysis system that require huge computing power are extended to each node in the Hadoop cluster, and the parallel computing and storage capabilities of the cluster are used to carry out Monitoring data mining processing work, using Hadoop to store, analyze and process huge amounts of data, combined with MPP database that can be processed in parallel to achieve statistics, in-depth analysis and rapid response to monitoring data of large amounts of data.
在一种可能的实现方式中,所述Hadoop模块包括数据源层、操作数据存储(Operational Data Store,ODS)层以及数据处理层,所述数据源层包括至少一个数据服务器,所述ODS层包括分布式文件系统HDFS,所述数据处理层包括hive子模块和Mapreduce子模块。其中,所述Hadoop模块通过所述至少一个数据服务器获取所述第一数据,并通过所述HDFS备份所述第一数据、存储所述MPP数据库中历史数据,支持所述MPP数据库中历史数据的归档;所述Hadoop模块还通过所述hive子模块加载所述HDFS中的第一数据,并通过所述Mapreduce子模块对所述第一数据执行数据转换、聚合处理得到第二数据,将所述第二数据存储至所述HDFS。In a possible implementation manner, the Hadoop module includes a data source layer, an Operational Data Store (ODS) layer, and a data processing layer, the data source layer includes at least one data server, and the ODS layer includes In the distributed file system HDFS, the data processing layer includes a hive submodule and a Mapreduce submodule. The Hadoop module obtains the first data through the at least one data server, backs up the first data through the HDFS, stores the historical data in the MPP database, and supports the historical data in the MPP database. archiving; the Hadoop module also loads the first data in the HDFS through the hive sub-module, and performs data conversion and aggregation processing on the first data through the Mapreduce sub-module to obtain second data, and the The second data is stored in the HDFS.
通过上述方法,利用Hadoop在海量数据处理上具有的高效、高容错、高扩展和高可靠性以及开源的特点,采用HDFS的高容错性、高伸缩性优点,允许用户将Hadoop部署在普通低廉的硬件上,形成分布式系统,Mapreduce提供开发并行应用程序,在集群上实现分布式计算和并行任务处理,HDFS在Mapreduce任务处理过程中提供了文件操作和存储等支持。Through the above method, using the characteristics of high efficiency, high fault tolerance, high expansion, high reliability and open source of Hadoop in massive data processing, and using the advantages of high fault tolerance and high scalability of HDFS, users are allowed to deploy Hadoop in ordinary and low-cost On the hardware, a distributed system is formed. Mapreduce provides the development of parallel applications, and realizes distributed computing and parallel task processing on the cluster. HDFS provides support for file operations and storage in the process of Mapreduce task processing.
在一种可能的实现方式中,所述数据分析系统还包括接口模块以及分析与展示模块。In a possible implementation manner, the data analysis system further includes an interface module and an analysis and display module.
所述接口模块,用于提供访问所述ETL模块、MPP数据库以及所述Hadoop模块的接口,将所述预警数据模式以及所述隐患告警数据模式发送至所述分析与展示模块。所述分析与展示模块,用于根据预先设置的第一数据挖掘规则以及所述预警数据模式,进行数据挖掘分析,根据数据挖掘分析结果输出被挖掘出的关联于所述监控数据的预警统计结果,并根据预先设置的第二数据挖掘规则以及所述隐患告警数据模式,进行数据挖掘分析,根据数据挖掘分析结果输出被挖掘出的关联于所述监控数据的隐患告警统计结果,并向用户展示所述预警统计结果以及所述隐患告警统计结果。The interface module is configured to provide an interface for accessing the ETL module, the MPP database and the Hadoop module, and send the early warning data pattern and the hidden danger warning data pattern to the analysis and display module. The analysis and display module is used to perform data mining analysis according to the preset first data mining rule and the early warning data pattern, and output the early warning statistical results that are mined and related to the monitoring data according to the data mining analysis results. , and perform data mining analysis according to the preset second data mining rules and the hidden danger warning data pattern, output the hidden danger warning statistics results that are mined related to the monitoring data according to the data mining analysis results, and display to the user The early warning statistical results and the hidden danger warning statistical results.
通过上述方法,数据分析系统可将分析得到的结果通过接口模块发送至分析与展示模块,进而使得分析与展示模块根据分析结果作进一步的数据挖掘处理,得到可向用户直接呈现的统计结果(例如,图表、web界面等),使得用户能够更直观的查看数据分析结果,进一步提高用户体验。Through the above method, the data analysis system can send the results obtained by the analysis to the analysis and display module through the interface module, so that the analysis and display module can perform further data mining processing according to the analysis results, and obtain statistical results that can be directly presented to the user (for example, , charts, web interface, etc.), enabling users to view data analysis results more intuitively and further improve user experience.
在一种可能的实现方式中,所述数据分析系统还包括全文检索数据库。In a possible implementation manner, the data analysis system further includes a full-text search database.
所述全文检索数据库,用于提供对所述第一数据中包括的非结构化数据的查询功能。The full-text search database is configured to provide a query function for the unstructured data included in the first data.
通过上述方法,对于从监控数据中得到的一些非结构化数据(例如,PDF文档),数据分析系统不能对这部分数据进行深层次的分析,但是可通过全文检索数据库对这部分数据进行查询。Through the above method, for some unstructured data (eg, PDF documents) obtained from monitoring data, the data analysis system cannot perform in-depth analysis on this part of the data, but can query this part of the data through the full-text search database.
需要说明的是,本申请中可通过在全文检索数据库中设置ElasticSearch搜索服务器的方式实现非结构化数据的检索,当然也可以通过在全文检索数据库中设置其它搜索服务器的方式实现非结构化数据的检索,本申请不做限定。It should be noted that, in this application, the retrieval of unstructured data can be realized by setting an ElasticSearch search server in the full-text search database, and of course, the retrieval of unstructured data can also be realized by setting other search servers in the full-text search database. Search, this application is not limited.
在一种可能的实现方式中,所述数据分析系统还包括自监控模块。In a possible implementation manner, the data analysis system further includes a self-monitoring module.
所述自监控模块,用于对所述数据分析系统内部执行任务的运行时间、当前状态以及运行是否成功进行监控,还用于对所述ETL模块、Hadoop模块以及MPP数据库进行硬件监控。The self-monitoring module is used to monitor the running time, current state and whether the operation is successful within the data analysis system, and is also used to monitor the hardware of the ETL module, the Hadoop module and the MPP database.
通过上述方法,使得数据分析系统可根据自监控模块实时的监控自身硬件以及软件的运行状况,进而可在自身软件和硬件发生异常的情况下,及时针对发生的异常给出解决方案。Through the above method, the data analysis system can monitor the running status of its own hardware and software in real time according to the self-monitoring module, and then can provide a solution for the abnormality in time when its own software and hardware are abnormal.
在一种可能的实现方式中,所述数据分析系统还包括配置模块。In a possible implementation manner, the data analysis system further includes a configuration module.
所述配置模块,用于提供对所述数据分析系统创建的不同类型角色的权限配置,并提供使用所述数据分析系统的不同类型用户与所述不同类型角色的映射配置。The configuration module is configured to provide permission configuration for different types of roles created by the data analysis system, and to provide mapping configurations between different types of users who use the data analysis system and the different types of roles.
其中,所述不同类型角色是根据所述不同类型用户创建的,且所述不同类型角色与所述不同类型用户是一一对应的。The different types of roles are created according to the different types of users, and the different types of roles are in one-to-one correspondence with the different types of users.
通过上述方法,对所述数据分析系统针对不同类型用户创建的角色进行配置,使得能够满足不同类型用户的需求。例如,假设数据分析系统分别支持普通业务人员(包括业务分析员、部门管理者、公司管理者、集团管理者)、高级业务人员、数据分析专家以及系统管理人员四种类型的用户,数据分析系统会针对这四种类型的用户一一对应的创建四种类型的角色,通过该配置模块可实现分别对这四类角色的权限配置,例如,可以配置普通业务人员的权限只能查看分析与展现模块展现的内容,可配置高级业务人员的权限在查看分析与展现模块展现的内容的基础上,可定制化分析与展现模块的个性化报表的内容,可配置数据分析专家的权限为能同时查看分析与展现模块展现的内容以及所述接口模块接收到的原始数据,可配置系统管理人员的权限为能够执行配置管理。Through the above method, the roles created by the data analysis system for different types of users are configured, so that the needs of different types of users can be met. For example, suppose that the data analysis system supports four types of users: ordinary business personnel (including business analysts, department managers, company managers, and group managers), senior business personnel, data analysis experts, and system administrators. The data analysis system Four types of roles will be created one by one for these four types of users. Through this configuration module, the rights configuration of these four types of roles can be realized. For example, the rights of ordinary business personnel can only be configured to view analysis and display. The content displayed by the module can be configured with the authority of senior business personnel. On the basis of viewing the content displayed by the analysis and display module, the content of the personalized report of the analysis and display module can be customized, and the authority of data analysis experts can be configured to be able to view at the same time. The content displayed by the analysis and presentation module and the original data received by the interface module can be configured with the authority of the system administrator to be able to perform configuration management.
在一种可能的实现方式中,所述数据分析系统还包括管理模块。In a possible implementation manner, the data analysis system further includes a management module.
所述管理模块,用于对所述不同类型用户、与不同类型用户对应的不同用户权限进行管理。The management module is configured to manage the different types of users and different user rights corresponding to the different types of users.
通过上述方法,可使得系统管理人员对所述不同类型用户、与不同类型用户对应的不同用户权限进行管理,可根据不同类型的用户需求灵活设置针对不同类型用户的权限。Through the above method, the system administrator can manage the different types of users and different user rights corresponding to the different types of users, and can flexibly set the rights for different types of users according to the needs of different types of users.
第二方面,本申请实施例提供一种数据分析方法,该方法包括:通过ETL模块,根据预设的周期采集至少一个监控系统中的监控数据,并根据预先设置的清洗规则对所述监控数据执行数据清洗,得到供所述数据分析系统使用的有效第一数据,并将所述第一数据发送至分布式计算Hadoop模块;通过所述Hadoop模块备份所述第一数据,并对所述第一数据执行数据转换、聚合处理得到第二数据,将所述第二数据发送至大规模并行处理MPP数据库;通过ETL模块调用所述MPP数据库执行:根据预先设置的预警规则对所述第二数据进行预警分析,输出预警数据,并根据所述预警数据、预先存储的相关第一历史数据以及预先设置的第一数据模型生成预警数据模式,并根据预先设置的隐患告警规则对所述第二数据进行隐患告警分析,输出隐患告警数据,并根据所述隐患告警数据、预先存储的相关第二历史数据以及预先设置的第二数据模型生成隐患告警数据模式。In a second aspect, an embodiment of the present application provides a data analysis method, the method includes: collecting monitoring data in at least one monitoring system according to a preset period through an ETL module, and analyzing the monitoring data according to a preset cleaning rule Perform data cleaning to obtain valid first data for use by the data analysis system, and send the first data to the distributed computing Hadoop module; back up the first data through the Hadoop module, and perform a Perform data conversion and aggregation processing on data to obtain second data, and send the second data to the massively parallel processing MPP database; call the MPP database through the ETL module to execute: the second data is processed according to the preset warning rules Perform early warning analysis, output early warning data, and generate early warning data patterns according to the early warning data, the pre-stored relevant first historical data, and the pre-set first data model, and analyze the second data according to the pre-set hidden danger warning rules. The hidden danger alarm analysis is performed, the hidden danger alarm data is output, and the hidden danger alarm data pattern is generated according to the hidden danger alarm data, the pre-stored relevant second historical data and the preset second data model.
其中,所述第一数据模型以及所述第二数据模型用于表征数据之间的约束规则。Wherein, the first data model and the second data model are used to represent constraint rules between data.
第三方面,本申请实施例提供一种监控分析系统,包括上述第一方面以及第一方面中包括的任一种可能的实现方式中的数据分析系统,以及至少一个监控系统。In a third aspect, embodiments of the present application provide a monitoring and analysis system, including the first aspect and the data analysis system in any possible implementation manner included in the first aspect, and at least one monitoring system.
第四方面,本申请实施例提供一种计算机可读存储介质,包括程序代码,当所述程序代码在监控分析系统上运行时,使所述监控分析系统执行上述第二方面中所述方法的步骤。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, including program code, which, when the program code runs on a monitoring and analysis system, enables the monitoring and analysis system to execute the method described in the second aspect above. step.
本申请上述实施例中,充分利用Hadoop的集群特征,将数据分析系统中需要巨大计算能力的各个模块的计算和存储要求扩展到Hadoop集群中的各个节点上,利用集群的并行计算和存储能力来进行监控数据挖掘处理工作,使用Hadoop来存储、分析和处理巨大的数据量,结合可并行处理的MPP数据库实现对大数据量的监控数据的统计、深层次分析以及快速响应。In the above-mentioned embodiments of the present application, the cluster features of Hadoop are fully utilized to extend the computing and storage requirements of each module in the data analysis system that requires huge computing power to each node in the Hadoop cluster, and the parallel computing and storage capabilities of the cluster are used to Perform monitoring data mining and processing work, use Hadoop to store, analyze and process huge amounts of data, and combine with MPP database that can be processed in parallel to achieve statistics, in-depth analysis and rapid response to monitoring data of large amounts of data.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本申请实施例提供的一种数据分析系统结构示意图;1 is a schematic structural diagram of a data analysis system according to an embodiment of the present application;
图2为本申请实施例提供的一种Hadoop模块结构示意图;2 is a schematic structural diagram of a Hadoop module provided by an embodiment of the present application;
图3为将数据备份至HDFS的示意图;Figure 3 is a schematic diagram of backing up data to HDFS;
图4为本申请实施例提供的另一种数据分析系统结构示意图;4 is a schematic structural diagram of another data analysis system provided by an embodiment of the present application;
图5为本申请实施例提供的预警流程示意图;5 is a schematic diagram of an early warning process provided in an embodiment of the present application;
图6为本申请实施例提供的隐患告警流程示意图;FIG. 6 is a schematic flowchart of a hidden danger alarm provided by an embodiment of the present application;
图7为本申请实施例提供的用户操作流程示意图;FIG. 7 is a schematic diagram of a user operation flow provided by an embodiment of the present application;
图8为本申请实施例提供的用户进行数据模型维护的示意图;8 is a schematic diagram of a user performing data model maintenance according to an embodiment of the present application;
图9为本申请实施例提供的用户进行数据模型监控的示意图;9 is a schematic diagram of a user performing data model monitoring according to an embodiment of the present application;
图10为本申请实施例提供的Hadoop模块处理Capes数据的流程示意图;10 is a schematic flowchart of processing Capes data by a Hadoop module provided by an embodiment of the present application;
图11为本申请实施例提供的全网监控数据同步流程示意图;11 is a schematic flowchart of a network-wide monitoring data synchronization process provided by an embodiment of the present application;
图12为本申请实施例提供的流量监控数据同步流程示意图;12 is a schematic flowchart of a flow monitoring data synchronization process provided by an embodiment of the present application;
图13A为本申请实施例提供的Capes数据同步流程示意图;FIG. 13A is a schematic diagram of a Capes data synchronization flowchart provided by an embodiment of the present application;
图13B为本申请实施例提供的Capes明细数据处理流程示意图;FIG. 13B is a schematic diagram of a Capes detailed data processing flow diagram provided by an embodiment of the present application;
图14为本申请实施例提供的配置项数据同步流程示意图;FIG. 14 is a schematic diagram of a configuration item data synchronization process provided by an embodiment of the present application;
图15为本申请实施例提供的又一种数据分析系统结构示意图;FIG. 15 is a schematic structural diagram of another data analysis system provided by an embodiment of the present application;
图16为本申请实施例提供的又一种数据分析系统结构示意图;16 is a schematic structural diagram of another data analysis system provided by an embodiment of the present application;
图17为本申请实施例提供的一种数据分析方法流程图。FIG. 17 is a flowchart of a data analysis method provided by an embodiment of the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In order to make the objectives, technical solutions and advantages of the present application clearer, the present application will be further described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
为实现对大数据量的监控数据的统计、深层次分析以及快速响应,本申请实施例提供了一种数据分析系统、方法及监控分析系统。In order to realize statistics, in-depth analysis and quick response to monitoring data of large amount of data, the embodiments of the present application provide a data analysis system, method and monitoring and analysis system.
图1所示为本申请实施例提供的一种数据分析系统结构示意图,参阅图1所示,该系统包括:ETL模块、Hadoop模块以及MPP数据库。FIG. 1 is a schematic structural diagram of a data analysis system provided by an embodiment of the present application. Referring to FIG. 1 , the system includes: an ETL module, a Hadoop module, and an MPP database.
ETL模块用于根据预设的周期采集至少一个监控系统中的监控数据,并根据预先设置的清洗规则对监控数据执行数据清洗,得到供数据分析系统使用的有效第一数据,并将第一数据发送至Hadoop模块。The ETL module is used to collect monitoring data in at least one monitoring system according to a preset period, and perform data cleaning on the monitoring data according to a preset cleaning rule to obtain valid first data for use by the data analysis system, and convert the first data into Sent to the Hadoop module.
本申请实施例中,以下以通信领域的监控场景为例进行说明。在通信领域中,所述至少一个监控系统可以是全网监控系统、客户感知监控系统等,其中,全网监控系统用于监控整个通信网络的运营情况,客户感知监控系统用于监控用户的网络行为习惯等。In the embodiments of the present application, a monitoring scenario in the communication field is used as an example for description below. In the communication field, the at least one monitoring system may be a network-wide monitoring system, a customer-aware monitoring system, etc., wherein the network-wide monitoring system is used to monitor the operation of the entire communication network, and the customer-aware monitoring system is used to monitor the user's network behavioral habits, etc.
本申请实施例中,上述采集至少一个监控系统中的监控数据的预设的周期可以根据实际需求设置,例如,可按天采集,也可按固定的某一时间频度进行采集,当然,针对不同的监控系统可以设置相同的采集周期,也可以设置不同的采集周期,本申请不做限定。In the embodiment of the present application, the above-mentioned preset period for collecting monitoring data in at least one monitoring system can be set according to actual needs, for example, it can be collected on a daily basis, or can be collected on a fixed time frequency. Of course, for Different monitoring systems can be set with the same collection period or with different collection periods, which is not limited in this application.
本申请实施例中,从不同监控系统采集到的数据类型、结构各不相同,可通过ETL模块根据预先设置的清洗规则对监控数据执行数据清洗,主要是对监控数据进行一致性处理,最终得到处理后的有效第一数据。In the embodiment of the present application, the types and structures of data collected from different monitoring systems are different, and data cleaning can be performed on the monitoring data through the ETL module according to the preset cleaning rules, mainly performing consistency processing on the monitoring data, and finally obtaining The processed valid first data.
本申请实施例中,ETL模块可以采用datastage平台,本申请不做限定。当ETL模块采用datastage平台时,使用datastage中的quality stage对监控数据进行清洗处理,得到有效第一数据。In the embodiment of the present application, the ETL module may adopt the datastage platform, which is not limited in the present application. When the ETL module adopts the datastage platform, use the quality stage in the datastage to clean the monitoring data to obtain valid first data.
Hadoop模块用于备份第一数据,并对第一数据执行数据转换、聚合处理得到第二数据,将第二数据发送至MPP数据库。The Hadoop module is used to back up the first data, perform data conversion and aggregation processing on the first data to obtain second data, and send the second data to the MPP database.
本申请实施例中,Hadoop模块具备两种功能。一种功能是对第一数据进行备份,以备后续使用。另一种功能是对第一数据执行预处理计算,例如,可对第一数据执行数据转换,将不同编码格式的监控数据进行格式统一,可对第一数据执行聚合处理,进行汇总得到第二数据。In the embodiment of the present application, the Hadoop module has two functions. One function is to back up the first data for subsequent use. Another function is to perform preprocessing calculation on the first data. For example, data conversion can be performed on the first data, the formats of monitoring data in different encoding formats can be unified, and the first data can be aggregated to obtain the second data. data.
下面以对流量监测明细数据执行聚合处理,进行汇总为例进行说明。首先对流量监测明细数据进行解释说明,流量监测明细数据主要具有如下用途:The following is an example of performing aggregation processing and summarizing on the detailed data of traffic monitoring. First, the detailed data of flow monitoring is explained. The detailed data of flow monitoring mainly has the following purposes:
业务特征分析:主要针对业务量、性能、浏览器做分析。Business feature analysis: mainly for business volume, performance, and browser analysis.
预警/隐患告警分析:主要通过比较业务办理成功量和业务办理量来做分析。Early warning/hidden danger alarm analysis: The analysis is mainly done by comparing the success of business processing and the volume of business processing.
由于流量监测明细数据都是毫秒级别的,且数据量很大,故,需要Hadoop针对流量监测明细数据执行1秒的聚合处理,进行汇总,得到第二数据供ETL使用。Since the detailed data of traffic monitoring is at the millisecond level and the amount of data is large, Hadoop needs to perform 1-second aggregation processing on the detailed data of traffic monitoring, and aggregate it to obtain the second data for ETL use.
需要说明的是,在对数据执行聚合处理时,并不限定聚合粒度,例如,上述可对毫秒级别的流量监测明细数据执行1秒的聚合处理,当然也可执行2秒的聚合处理,本申请对该聚合粒度不做限定。It should be noted that, when performing aggregation processing on data, the aggregation granularity is not limited. For example, the above-mentioned aggregation processing can be performed for 1 second of millisecond-level traffic monitoring detailed data, and of course, 2 seconds of aggregation processing can also be performed. This application The aggregate particle size is not limited.
ETL模块还用于调用MPP数据库执行:根据预先设置的预警规则对第二数据进行预警分析,输出预警数据,并根据预警数据、预先存储的相关第一历史数据以及预先设置的第一数据模型生成预警数据模式,并根据预先设置的隐患告警规则对第二数据进行隐患告警分析,输出隐患告警数据,并根据隐患告警数据、预先存储的相关第二历史数据以及预先设置的第二数据模型生成隐患告警数据模式。The ETL module is also used to call the MPP database to perform early warning analysis on the second data according to the preset early warning rules, output the early warning data, and generate the early warning data according to the early warning data, the pre-stored relevant first historical data and the pre-set first data model. Early warning data mode, and carry out hidden danger alarm analysis on the second data according to the preset hidden danger alarm rules, output the hidden danger alarm data, and generate hidden dangers according to the hidden danger alarm data, the pre-stored relevant second historical data and the preset second data model. Alarm data mode.
其中,第一数据模型以及第二数据模型用于表征数据之间的约束规则。Wherein, the first data model and the second data model are used to represent constraint rules between data.
本申请实施例中,由于MPP数据库存储容量有限,不能够用于存储全部的第二数据,因此,本申请中选取与预警,隐患告警相关的预警数据以及隐患告警数据进行存储。而本申请实施例中为了供上层应用方便使用,在MMP数据库中采用预警数据模式以及隐患告警数据模式存储预警数据以及隐患告警数据。In this embodiment of the present application, since the MPP database has a limited storage capacity, it cannot be used to store all the second data. Therefore, in the present application, early warning data related to early warning, hidden danger warning and hidden danger warning data are selected for storage. However, in the embodiment of the present application, for the convenience of the upper-layer application, the early warning data mode and the hidden danger alarm data mode are adopted in the MMP database to store the early warning data and the hidden danger alarm data.
参阅图2所示,为本申请实施例提供的一种Hadoop模块结构示意图,如图2所示,在该种结构中Hadoop模块包括数据源层、ODS层以及数据处理层,数据源层包括至少一个数据服务器,图2中以包括ETL数据服务器、MPP数据服务器为例进行说明,ODS层包括HDFS,数据处理层包括hive子模块和Mapreduce子模块。Hadoop模块通过ETL数据服务器获取第一数据,通过MPP数据服务器获取MPP数据库中历史数据,并通过HDFS备份第一数据、存储MPP数据库中历史数据,支持MPP数据库中历史数据的归档。Hadoop模块还通过hive子模块加载HDFS中的第一数据,并通过Mapreduce子模块对第一数据执行数据转换、聚合处理得到第二数据,将第二数据存储至HDFS。Referring to FIG. 2, a schematic structural diagram of a Hadoop module provided by an embodiment of the present application, as shown in FIG. 2, in this structure, the Hadoop module includes a data source layer, an ODS layer, and a data processing layer, and the data source layer includes at least A data server, as shown in Figure 2, includes the ETL data server and the MPP data server as an example, the ODS layer includes HDFS, and the data processing layer includes the hive sub-module and the Mapreduce sub-module. The Hadoop module obtains the first data through the ETL data server, obtains the historical data in the MPP database through the MPP data server, backs up the first data through HDFS, stores the historical data in the MPP database, and supports the archiving of the historical data in the MPP database. The Hadoop module also loads the first data in HDFS through the hive submodule, and performs data transformation and aggregation processing on the first data through the Mapreduce submodule to obtain second data, and stores the second data in HDFS.
本申请实施例中,数据源层的数据服务器还可包括ES数据服务器,ES数据服务器也可将数据备份至HDFS中,具体的,参阅图3所示,通过在MPP数据服务器上配置HadoopClient(非Hadoop集群),通过hadoop fs put命令上传文件到HDFS,ETL数据服务器可通过DataStage自带的BDFS组件把历史数据直接写入HDFS,ES数据服务器通过自带的GateWay组件把数据直接写入HDFS,ES备份做全量备份,只保留一个历史版本,每次备份成功后删除之前(例如前一个月)的备份数据。In this embodiment of the present application, the data server at the data source layer may further include an ES data server, and the ES data server may also back up data to HDFS. Specifically, as shown in FIG. 3 , by configuring a Hadoop Client (not a Hadoop cluster), upload files to HDFS through hadoop fs put command, ETL data server can directly write historical data to HDFS through DataStage's own BDFS component, ES data server can directly write data to HDFS through its own GateWay component, ES The backup is a full backup, only one historical version is retained, and the previous (for example, the previous month) backup data is deleted after each successful backup.
本申请实施例中,在将以预警数据模式存储的预警数据,以及以隐患告警数据模式存储的隐患告警数据呈现给用户之前,还需要对这些数据web进行挖掘分析,最终以图表或者web的形式直观的呈现给用户。In the embodiment of the present application, before presenting the early warning data stored in the early warning data mode and the hidden danger warning data stored in the hidden danger warning data mode to the user, it is necessary to mine and analyze these data webs, and finally display the data in the form of charts or web pages. Intuitively presented to the user.
本申请实施例中,数据分析系统还包括分析与展示模块以及接口模块,参阅图4所示,接口模块用于为分析与展示模块提供访问ETL模块、MPP数据库以及Hadoop模块的接口,将预警数据模式以及隐患告警数据模式发送至分析与展示模块,分析与展示模块用于根据预先设置的第一数据挖掘规则以及预警数据模式,进行数据挖掘分析,根据数据挖掘分析结果输出被挖掘出的关联于监控数据的预警统计结果,并根据预先设置的第二数据挖掘规则以及隐患告警数据模式,进行数据挖掘分析,根据数据挖掘分析结果输出被挖掘出的关联于监控数据的隐患告警统计结果,并向用户展示预警统计结果以及所述隐患告警统计结果。In the embodiment of the present application, the data analysis system further includes an analysis and display module and an interface module. Referring to FIG. 4 , the interface module is used to provide the analysis and display module with an interface to access the ETL module, the MPP database and the Hadoop module, and the early warning data The pattern and the hidden danger warning data pattern are sent to the analysis and display module, and the analysis and display module is used to perform data mining analysis according to the preset first data mining rules and early warning data patterns, and output the mined related data according to the data mining analysis results. Monitor the early warning statistics of the data, and perform data mining analysis according to the preset second data mining rules and hidden danger alarm data patterns, and output the mined hidden danger alarm statistics related to the monitoring data according to the data mining analysis results, and send them to the monitoring data. The user displays the warning statistics and the hidden danger alarm statistics.
需要说明的是,预警统计结果以及所述隐患告警统计结果可以是图表形式,也可以是web形式。It should be noted that the early warning statistical results and the hidden danger warning statistical results may be in the form of a graph or a web form.
本申请实施例中,以下以一个完整的预警流程为例对本申请中的数据分析系统的功能进行说明,参阅图5所示,图5为本申请实施例提供的预警流程示意图。假设ETL模块从监控系统采集到的监控数据包括平台性能数据、Capes业务量数据、流量监测业务量数据,ETL模块采集到这些数据之后,根据预先设置的清洗规则对这些数据执行数据清洗,得到供数据分析系统使用的有效数据,并将有效数据发送至Hadoop模块,进行备份和聚合、转换等处理,将处理之后的数据发送至MPP数据库进行存储,ETL模块通过调用MPP数据库执行如下操作:根据预先设置的预警规则对MPP数据库中数据进行预警分析,输出预警数据,并根据预警数据、预先存储的相关第一历史数据以及预先设置的第一数据模型生成预警数据模式,将预警数据模式通过接口模块发送至分析与展示模块,分析与展示模块根据预先设置的第一数据挖掘规则以及预警数据模式,进行数据挖掘分析,根据数据挖掘分析结果输出被挖掘出的关联于监控数据的预警统计结果,并向用户展示预警统计结果。In the embodiment of the present application, the following takes a complete early warning process as an example to describe the function of the data analysis system in the present application. Referring to FIG. 5 , FIG. 5 is a schematic diagram of the early warning process provided by the embodiment of the present application. It is assumed that the monitoring data collected by the ETL module from the monitoring system includes platform performance data, Capes traffic data, and traffic monitoring traffic data. After the ETL module collects these data, it performs data cleaning on these data according to the pre-set cleaning rules, and obtains data for supply. The valid data used by the data analysis system, and send the valid data to the Hadoop module for backup, aggregation, conversion and other processing, and send the processed data to the MPP database for storage. The ETL module calls the MPP database to perform the following operations: The set pre-warning rules perform pre-warning analysis on the data in the MPP database, output the pre-warning data, and generate the pre-warning data pattern according to the pre-warning data, the pre-stored relevant first historical data and the pre-set first data model, and pass the pre-warning data pattern through the interface module. Send it to the analysis and display module, and the analysis and display module performs data mining analysis according to the preset first data mining rules and early warning data patterns, and outputs the mined early warning statistical results related to the monitoring data according to the data mining analysis results, and Display the warning statistics to users.
需要说明的是,Capes数据是指与通信业务支撑系统的运营管理指标相关的数据。It should be noted that the Capes data refers to data related to the operation management indicators of the communication service support system.
本申请实施例中,以下以一个完整的隐患告警流程为例对本申请中的数据分析系统的功能进行说明,参阅图6所示,图6为本申请实施例提供的隐患告警流程示意图。假设ETL模块从监控系统采集到的监控数据包括平台性能数据、Capes业务量数据、流量监测业务量数据,ETL模块采集到这些数据之后,根据预先设置的清洗规则对这些数据执行数据清洗,得到供数据分析系统使用的有效数据,并将有效数据发送至Hadoop模块,进行备份和聚合、转换等处理,将处理之后的数据发送至MPP数据库进行存储,ETL模块通过调用MPP数据库执行如下操作:根据预先设置的隐患告警规则对MPP数据库中数据进行隐患告警分析,输出隐患告警数据,并根据隐患告警数据、预先存储的相关第二历史数据以及预先设置的第二数据模型生成隐患告警数据模式,将隐患告警数据模式通过接口模块发送至分析与展示模块,分析与展示模块根据预先设置的第二数据挖掘规则以及隐患告警数据模式,进行数据挖掘分析,根据数据挖掘分析结果输出被挖掘出的关联于监控数据的隐患告警统计结果,并向用户展示隐患告警统计结果。In the embodiment of the present application, the following takes a complete hidden danger alarm process as an example to describe the functions of the data analysis system in the present application. Referring to FIG. 6 , FIG. 6 is a schematic diagram of the hidden danger alarm process provided by the embodiment of the application. It is assumed that the monitoring data collected by the ETL module from the monitoring system includes platform performance data, Capes traffic data, and traffic monitoring traffic data. After the ETL module collects these data, it performs data cleaning on these data according to the pre-set cleaning rules, and obtains data for supply. The valid data used by the data analysis system, and send the valid data to the Hadoop module for backup, aggregation, conversion and other processing, and send the processed data to the MPP database for storage. The ETL module calls the MPP database to perform the following operations: The set hidden danger alarm rules perform hidden danger alarm analysis on the data in the MPP database, output the hidden danger alarm data, and generate the hidden danger alarm data pattern according to the hidden danger alarm data, the pre-stored relevant second historical data, and the pre-set second data model. The alarm data pattern is sent to the analysis and display module through the interface module. The analysis and display module conducts data mining analysis according to the preset second data mining rules and hidden danger alarm data pattern, and outputs the mined data related to the monitoring according to the data mining analysis results. The statistics of hidden danger alarms of data are displayed to users.
本申请实施例中,分析与展示模块可以web页面的形式向用户展示统计结果,参阅图7所示,图7为本申请实施例提供的用户操作流程示意图,分析与展示模块向用户展示web界面之后,用户可在web界面的主菜单选择用户想要了解的信息对应的模块,例如,图7中用户在主菜单中选择“监控运营”下的“隐患告警分析”,进而向用户展示隐患告警分析入口界面,进入隐患告警分析界面之后,在该界面中可向用户展示的内容包括:隐患告警统计界面以及隐患告警明细展示界面,通过点击隐患告警明细展示界面可进一步查看隐患告警明细相关信息界面,通过隐患告警统计界面可进行隐患告警统计查询,通过隐患告警明细展示界面可进行隐患告警明细查询。In the embodiment of the present application, the analysis and display module may display the statistical results to the user in the form of a web page. Referring to FIG. 7 , FIG. 7 is a schematic diagram of the user operation process provided by the embodiment of the present application. The analysis and display module displays the web interface to the user. After that, the user can select the module corresponding to the information the user wants to know in the main menu of the web interface. For example, in Figure 7, the user selects "Hazardous Alarm Analysis" under "Monitoring and Operation" in the main menu, and then displays the hidden danger alarm to the user. After entering the hidden danger alarm analysis interface, the content that can be displayed to the user in this interface includes: hidden danger alarm statistics interface and hidden danger alarm details display interface. By clicking the hidden danger alarm details display interface, you can further view the information interface of the hidden danger alarm details. , through the hidden danger alarm statistics interface, you can query the hidden danger alarm statistics, and through the hidden danger alarm details display interface, you can query the hidden danger alarm details.
本申请实施例中,分析与展示模块还可支持与用户交互,用户可通过该模块上传数据模型,也可通过该模块部署数据模型。参阅图8所示,图8为本申请实施例提供的用户进行数据模型维护的示意图,分析与展示模块向用户展示web界面之后,用户在主菜单中选择“分析建模”下的“模型维护”,进而向用户展示模型上传界面以及模型查询结果界面,用户可通过点击模型查询结果界面进一步查看模型参数配置界面以及模型查询筛选界面,通过上述界面支持用户可视化的处理,例如,用户可通过模型参数配置界面设置模型的运行开始日期、结束日期、周期、固定的参数及参数值、模型类别等参数。In this embodiment of the present application, the analysis and presentation module can also support interaction with users, and users can upload data models through this module, and can also deploy data models through this module. Referring to FIG. 8, FIG. 8 is a schematic diagram of a user performing data model maintenance according to an embodiment of the present application. After the analysis and display module displays the web interface to the user, the user selects “Model Maintenance” under “Analysis and Modeling” in the main menu. ”, and then display the model upload interface and model query result interface to the user. Users can click the model query result interface to further view the model parameter configuration interface and model query filter interface. The above interfaces support user visualization processing. The parameter configuration interface sets the model's running start date, end date, period, fixed parameters and parameter values, model types and other parameters.
本申请实施例中,分析与展示模块还可支持监控数据模型,参阅图9所示,图9为本申请实施例提供的用户进行数据模型监控的示意图,分析与展示模块向用户展示web界面之后,用户在主菜单中选择“分析建模”下的“模型监控”,进而向用户展示模型状态监控界面以及模型历史结果查询界面,用户可通过点击对应的界面查看需要的内容,例如,用户能够监控查看数据模型当前的发布以及运行状态,包括有模型发布时间、状态,模型运行开始时间、结束时间、成功标志等,可激活或停止模型。In this embodiment of the present application, the analysis and display module may also support monitoring data models. Referring to FIG. 9 , FIG. 9 is a schematic diagram of data model monitoring performed by a user according to an embodiment of the present application. After the analysis and display module displays the web interface to the user , the user selects "Model Monitoring" under "Analysis and Modeling" in the main menu, and then displays the model status monitoring interface and the model historical result query interface to the user. The user can click the corresponding interface to view the required content. For example, the user can Monitor and view the current release and running status of the data model, including model release time, status, model running start time, end time, success flag, etc., and the model can be activated or stopped.
本申请实施例中,下面以Hadoop模块对Capes明细数据处理为例对Hadoop模块功能进行说明,参阅图10所示,图10为本申请实施例提供的Hadoop模块处理Capes数据的流程示意图,通过Mapreduce子模块编写Map/Reduce程序用于计算各环节时长及工单时长,首先将Capes原始数据输入Map/Reduce程序,按行读取Capes原始数据,解析每一行Capes原始数据的内容,获取各字段的值,计算各环节时长及工单时长,将计算结果保存到HDFS。MPP数据库可通过EXTERNAL TABLE的方式把HDFS上的数据导入MPP数据库。In the embodiment of the present application, the function of the Hadoop module is described below by taking the processing of the detailed data of the Capes by the Hadoop module as an example. Referring to FIG. 10 , FIG. The sub-module writes a Map/Reduce program to calculate the duration of each link and the duration of a work order. First, input the original Capes data into the Map/Reduce program, read the original Capes data line by line, parse the content of each line of the original Capes data, and obtain the data of each field. value, calculate the duration of each link and the duration of the work order, and save the calculation results to HDFS. The MPP database can import the data on HDFS into the MPP database through EXTERNAL TABLE.
需要说明的是,ETL模块根据预设的周期采集至少一个监控系统中的监控数据,实质是对数据分析系统中与监控系统中的数据进行同步。本申请实施例中主要是对结构化数据进行处理,以下以四种典型的结构化数据为例对数据同步过程进行说明。It should be noted that the ETL module collects monitoring data in at least one monitoring system according to a preset period, which is essentially to synchronize the data in the data analysis system and the monitoring system. In the embodiments of the present application, structured data is mainly processed, and the data synchronization process is described below by taking four typical structured data as examples.
下面描述全网监控数据的同步过程,参阅图11所示,图11为本申请实施例提供的全网监控数据同步流程示意图,ETL模块以预设的第一周期将全网监控数据从全网监控系统同步至ETL模块,并将同步的数据同时备份至Hadoop模块,并将全网监控数据同步存储至MPP数据库进行存储,以备ETL模块对其进行后续处理。The synchronization process of network-wide monitoring data is described below. Referring to FIG. 11 , FIG. 11 is a schematic diagram of a network-wide monitoring data synchronization process provided by an embodiment of the present application. The ETL module synchronizes network-wide monitoring data from the entire network in a preset first cycle. The monitoring system is synchronized to the ETL module, and the synchronized data is backed up to the Hadoop module at the same time, and the entire network monitoring data is synchronously stored in the MPP database for storage, ready for subsequent processing by the ETL module.
需要说明的是,本申请中MPP数据库可以是Vertica数据库,当然也可以是其它可并行处理的数据库,本申请实施例中不做限定。It should be noted that, the MPP database in this application may be a Vertica database, and certainly may be other databases that can be processed in parallel, which is not limited in this embodiment of the application.
下面描述流量监控数据的同步过程,参阅图12所示,图12为本申请实施例提供的流量监控数据同步流程示意图,ETL模块以预设的第二周期将流量监控数据从流量监控数据源同步至ETL模块,并将同步的数据同时备份至Hadoop模块,并将流量监控数据同步存储至MPP数据库进行存储,以备ETL模块对其进行后续处理。The synchronization process of traffic monitoring data is described below. Referring to FIG. 12, FIG. 12 is a schematic diagram of a flow monitoring data synchronization process provided by an embodiment of the present application. The ETL module synchronizes the traffic monitoring data from the traffic monitoring data source in a preset second cycle. To the ETL module, the synchronized data is backed up to the Hadoop module at the same time, and the flow monitoring data is synchronously stored in the MPP database for storage for subsequent processing by the ETL module.
需要说明的是,上述预设的第二周期可根据实际需求进行设置,例如,可以是十五分钟,若该第二周期为十五分钟,则每十五分钟ETL模块从流量监控数据源同步上十五分钟的流量监控数据,例如,在00:16-00:30需要同步00:00-00:15的流量监控数据。由于流量监控数据比较复杂,故ETL模块在获取到流量监控数据之后,可通过ETL模块上的HadoopClient使用Hadoop命令将流量监控数据上传至Hadoop模块中的HDFS进行加工计算,并将计算结果保存在HDFS,MPP数据库再通过动态创建临时虚拟表映射到结果文件,然后复制虚拟表的数据到业务表,供分析与展示模块使用和分析。It should be noted that the above-mentioned preset second period can be set according to actual needs. For example, it can be fifteen minutes. If the second period is fifteen minutes, the ETL module is synchronized from the traffic monitoring data source every fifteen minutes. The traffic monitoring data of the last fifteen minutes, for example, needs to be synchronized with the traffic monitoring data of 00:00-00:15 at 00:16-00:30. Due to the complexity of the traffic monitoring data, after the ETL module obtains the traffic monitoring data, the Hadoop Client on the ETL module can use the Hadoop command to upload the traffic monitoring data to HDFS in the Hadoop module for processing and calculation, and save the calculation results in HDFS , the MPP database maps to the result file by dynamically creating a temporary virtual table, and then copies the data of the virtual table to the business table for the analysis and display module to use and analyze.
进一步需要说明的是,本申请中可通过RUM Oracle数据库存储流量监控数据,当然也可通过其它数据库存储,本申请不做限定。It should be further noted that, in this application, the traffic monitoring data can be stored through the RUM Oracle database, and of course, it can also be stored through other databases, which is not limited in this application.
下面描述Capes数据的同步过程,参阅图13A所示,图13A为本申请实施例提供的Capes数据同步流程示意图,ETL模块以预设的第三周期将Capes数据从全网监控系统同步至ETL模块,并将同步的数据同时备份至Hadoop模块,并将Capes数据同步存储至MPP数据库进行存储,以备ETL模块对其进行后续处理。The synchronization process of the Capes data is described below. Referring to FIG. 13A, FIG. 13A is a schematic flowchart of the Capes data synchronization process provided by the embodiment of the application. The ETL module synchronizes the Capes data from the network-wide monitoring system to the ETL module in a preset third cycle. , and back up the synchronized data to the Hadoop module at the same time, and store the Capes data synchronously in the MPP database for storage, ready for subsequent processing by the ETL module.
需要说明的是,Capes数据可包括Capes变量数据和/或Capes明细数据,若Capes数据为Capes变量数据,则上述预设的第三周期可设置为十五分钟,若Capes数据为Capes明细数据,则上述预设的第三周期可设置为一天。It should be noted that the Capes data may include Capes variable data and/or Capes detailed data. If the Capes data is Capes variable data, the preset third period can be set to fifteen minutes. If the Capes data is Capes detailed data, Then, the above-mentioned preset third period may be set as one day.
需要说明的是,若Capes数据为Capes明细数据,ETL模块在将Capes明细数据从Capes数据源同步至ETL模块之后,需要将其发送至Hadoop模块做进一步处理,参阅图13B所示,图13B为本申请实施例提供的Capes明细数据处理流程示意图,如图13B所示,ETL模块在将Capes明细数据从Capes数据源同步至ETL模块之后,将同步的数据同时备份至Hadoop模块,由于Capes明细数据比较复杂,故ETL模块在获取到Capes明细数据之后,可通过ETL模块上的Hadoop Client使用Hadoop命令将Capes明细数据上传至Hadoop模块中的HDFS进行加工计算,并将计算结果保存在HDFS,MPP数据库再通过动态创建临时虚拟表映射到结果文件,然后复制虚拟表的数据到业务表,供分析与展示模块使用和分析。It should be noted that if the Capes data is Capes detailed data, after the ETL module synchronizes the Capes detailed data from the Capes data source to the ETL module, it needs to be sent to the Hadoop module for further processing, as shown in Figure 13B, Figure 13B is As shown in FIG. 13B, the ETL module synchronizes the Capes detailed data from the Capes data source to the ETL module, and then backs up the synchronized data to the Hadoop module at the same time. Because the Capes detailed data It is more complicated, so after the ETL module obtains the detailed data of the Capes, it can upload the detailed data of the Capes to the HDFS in the Hadoop module through the Hadoop Client on the ETL module for processing and calculation, and save the calculation results in the HDFS and MPP databases. Then dynamically create a temporary virtual table to map to the result file, and then copy the data of the virtual table to the business table for the analysis and display module to use and analyze.
下面描述配置项数据的同步过程,参阅图14所示,图14为本申请实施例提供的配置项数据同步流程示意图,ETL模块以预设的第四周期将配置项数据从全网监控系统同步至ETL模块,并将同步的数据同时备份至Hadoop模块,并将配置项数据同步存储至MPP数据库进行存储,以备ETL模块对其进行后续处理。The synchronization process of configuration item data is described below. Referring to FIG. 14, FIG. 14 is a schematic diagram of the configuration item data synchronization process provided by the embodiment of the application. The ETL module synchronizes the configuration item data from the network-wide monitoring system in a preset fourth cycle. To the ETL module, and back up the synchronized data to the Hadoop module at the same time, and store the configuration item data in the MPP database synchronously for storage for subsequent processing by the ETL module.
需要说明的是,上述预设的第四周期可根据实际需求进行设置,例如,可将第四周期设置为一个月,例如,假设每月11日对该类数据进行同步操作,同步方式可采用全量同步方式。It should be noted that the above-mentioned preset fourth period can be set according to actual needs. For example, the fourth period can be set to one month. For example, if the synchronization operation is performed on this type of data on the 11th of each month, the synchronization method can be adopted. Full synchronization.
本申请实施例中,数据分析系统还包括全文检索数据库,参阅图15所示,全文检索数据库用于提供对第一数据中包括的非结构化数据的查询功能。In this embodiment of the present application, the data analysis system further includes a full-text search database. Referring to FIG. 15 , the full-text search database is used to provide a query function for the unstructured data included in the first data.
需要说明的是,本申请实施例中,非结构化数据主要是指PDF文档。针对这类数据,数据分析系统不能进行深层次的分析,但是可通过全文检索数据库对这部分数据进行查询。It should be noted that, in the embodiments of this application, unstructured data mainly refers to PDF documents. For this kind of data, the data analysis system cannot carry out in-depth analysis, but this part of the data can be queried through the full-text search database.
需要说明的是,本申请中可通过在全文检索数据库中设置ElasticSearch搜索服务器的方式实现非结构化数据的检索,当然也可以通过在全文检索数据库中设置其它搜索服务器的方式实现非结构化数据的检索,本申请不做限定。It should be noted that, in this application, the retrieval of unstructured data can be realized by setting an ElasticSearch search server in the full-text search database, and of course, the retrieval of unstructured data can also be realized by setting other search servers in the full-text search database. Search, this application is not limited.
本申请实施例中,数据分析系统还包括自监控模块,参阅图16所示,自监控模块用于对数据分析系统内部执行任务的运行时间、当前状态以及运行是否成功进行监控,还用于对ETL模块、Hadoop模块以及MPP数据库进行硬件监控。In the embodiment of the present application, the data analysis system further includes a self-monitoring module, as shown in FIG. 16 , the self-monitoring module is used to monitor the running time, current state and whether the operation is successful within the data analysis system executing tasks, and is also used to monitor the execution of tasks within the data analysis system. ETL module, Hadoop module and MPP database for hardware monitoring.
通过上述方法,使得数据分析系统可根据自监控模块实时的监控自身硬件以及软件的运行状况,进而可在自身软件和硬件发生异常的情况下,及时针对发生的异常给出解决方案。Through the above method, the data analysis system can monitor the running status of its own hardware and software in real time according to the self-monitoring module, and then can provide a solution for the abnormality in time when its own software and hardware are abnormal.
本申请实施例中,数据分析系统还包括配置模块,配置模块用于提供对数据分析系统创建的不同类型角色的权限配置,并提供使用数据分析系统的不同类型用户与不同类型角色的映射配置。In the embodiment of the present application, the data analysis system further includes a configuration module, which is used to provide permission configuration for different types of roles created by the data analysis system, and to provide mapping configuration between different types of users using the data analysis system and different types of roles.
其中,不同类型角色是根据不同类型用户创建的,且不同类型角色与不同类型用户是一一对应的。Among them, different types of roles are created according to different types of users, and different types of roles are in one-to-one correspondence with different types of users.
通过上述方法,对所述数据分析系统针对不同类型用户创建的角色进行配置,使得能够满足不同类型用户的需求。例如,假设数据分析系统分别支持普通业务人员(包括业务分析员、部门管理者、公司管理者、集团管理者)、高级业务人员、数据分析专家以及系统管理人员四种类型的用户,数据分析系统会针对这四种类型的用户一一对应的创建四种类型的角色,通过该配置模块可实现分别对这四类角色的权限配置,例如,可以配置普通业务人员的权限只能查看分析与展现模块展现的内容,可配置高级业务人员的权限在查看分析与展现模块展现的内容的基础上,可定制化分析与展现模块的个性化报表的内容,可配置数据分析专家的权限为能同时查看分析与展现模块展现的内容以及所述接口模块接收到的原始数据,可配置系统管理人员的权限为能够执行配置管理。Through the above method, the roles created by the data analysis system for different types of users are configured, so that the needs of different types of users can be met. For example, suppose that the data analysis system supports four types of users: ordinary business personnel (including business analysts, department managers, company managers, and group managers), senior business personnel, data analysis experts, and system administrators. The data analysis system Four types of roles will be created one by one for these four types of users. Through this configuration module, the rights configuration of these four types of roles can be realized. For example, the rights of ordinary business personnel can only be configured to view analysis and display. The content displayed by the module can be configured with the authority of senior business personnel. On the basis of viewing the content displayed by the analysis and display module, the content of the personalized report of the analysis and display module can be customized, and the authority of data analysis experts can be configured to be able to view at the same time. The content displayed by the analysis and presentation module and the original data received by the interface module can be configured with the authority of the system administrator to be able to perform configuration management.
本申请实施例中,数据分析系统还包括管理模块,用于对不同类型用户、与不同类型用户对应的不同用户权限进行管理。In the embodiment of the present application, the data analysis system further includes a management module for managing different types of users and different user rights corresponding to different types of users.
通过上述方法,可使得系统管理人员对所述不同类型用户、与不同类型用户对应的不同用户权限进行管理,可根据不同类型的用户需求灵活设置针对不同类型用户的权限。Through the above method, the system administrator can manage the different types of users and different user rights corresponding to the different types of users, and can flexibly set the rights for different types of users according to the needs of different types of users.
基于与上述提供的数据分析系统相同的发明构思,本申请实施例中还提供一种基于上述数据分析系统的数据分析方法,下面将详细描述该数据分析方法。Based on the same inventive concept as the data analysis system provided above, an embodiment of the present application also provides a data analysis method based on the data analysis system, which will be described in detail below.
参阅图17所示,为本申请实施例提供的一种数据分析方法流程图,如图17所示,包括:Referring to FIG. 17 , a flowchart of a data analysis method provided in an embodiment of the present application, as shown in FIG. 17 , includes:
S101:通过ETL模块,根据预设的周期采集至少一个监控系统中的监控数据,并根据预先设置的清洗规则对监控数据执行数据清洗,得到供数据分析系统使用的有效第一数据,并将第一数据发送至分布式计算Hadoop模块。S101: Collect monitoring data in at least one monitoring system according to a preset period through an ETL module, and perform data cleaning on the monitoring data according to a preset cleaning rule to obtain valid first data for use by a data analysis system, and perform data cleaning on the monitoring data according to a preset cleaning rule. A data is sent to the distributed computing Hadoop module.
S102:通过Hadoop模块备份第一数据,并对第一数据执行数据转换、聚合处理得到第二数据,将第二数据发送至大规模并行处理MPP数据库。S102: Back up the first data by using the Hadoop module, perform data conversion and aggregation processing on the first data to obtain second data, and send the second data to the massively parallel processing MPP database.
S103:通过ETL模块调用MPP数据库执行:根据预先设置的预警规则对第二数据进行预警分析,输出预警数据,并根据预警数据、预先存储的相关第一历史数据以及预先设置的第一数据模型生成预警数据模式,并根据预先设置的隐患告警规则对第二数据进行隐患告警分析,输出隐患告警数据,并根据隐患告警数据、预先存储的相关第二历史数据以及预先设置的第二数据模型生成隐患告警数据模式。S103: Call the MPP database through the ETL module to execute: carry out early warning analysis on the second data according to the preset early warning rules, output the early warning data, and generate the warning data according to the early warning data, the pre-stored relevant first historical data and the pre-set first data model Early warning data mode, and carry out hidden danger alarm analysis on the second data according to the preset hidden danger alarm rules, output the hidden danger alarm data, and generate hidden dangers according to the hidden danger alarm data, the pre-stored relevant second historical data and the preset second data model. Alarm data mode.
其中,第一数据模型以及第二数据模型用于表征数据之间的约束规则。Wherein, the first data model and the second data model are used to represent constraint rules between data.
本申请上述实施例中,充分利用Hadoop的集群特征,将数据分析系统中需要巨大计算能力的各个模块的计算和存储要求扩展到Hadoop集群中的各个节点上,利用集群的并行计算和存储能力来进行监控数据挖掘处理工作,使用Hadoop来存储、分析和处理巨大的数据量,结合可并行处理的MPP数据库实现对大数据量的监控数据的统计、深层次分析以及快速响应。In the above-mentioned embodiments of the present application, the cluster features of Hadoop are fully utilized to extend the computing and storage requirements of each module in the data analysis system that requires huge computing power to each node in the Hadoop cluster, and the parallel computing and storage capabilities of the cluster are used to Perform monitoring data mining and processing work, use Hadoop to store, analyze and process huge amounts of data, and combine with MPP database that can be processed in parallel to achieve statistics, in-depth analysis and rapid response to monitoring data of large amounts of data.
本申请实施例提供一种监控分析系统,包括上述数据分析系统,以及至少一个监控系统。An embodiment of the present application provides a monitoring and analysis system, including the above-mentioned data analysis system and at least one monitoring system.
需要说明的是,本申请实施例中的数据分析系统可以集成在现有的监控系统中,当然也可以与现有监控系统组成一个新的监控分析系统,本申请不做限定。It should be noted that the data analysis system in the embodiments of the present application may be integrated into an existing monitoring system, and of course, a new monitoring and analysis system may be formed with the existing monitoring system, which is not limited in this application.
本申请实施例提供一种计算机可读存储介质,包括程序代码,当所述程序代码在电子设备上运行时,使所述电子设备执行上述方法实施例中任一所述方法的步骤。An embodiment of the present application provides a computer-readable storage medium, including program code, which, when the program code runs on an electronic device, causes the electronic device to execute the steps of any one of the above method embodiments.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。While the preferred embodiments of the present application have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of this application.
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711490187.8A CN110018993B (en) | 2017-12-29 | 2017-12-29 | Data analysis system, method and monitoring analysis system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711490187.8A CN110018993B (en) | 2017-12-29 | 2017-12-29 | Data analysis system, method and monitoring analysis system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110018993A true CN110018993A (en) | 2019-07-16 |
CN110018993B CN110018993B (en) | 2021-03-23 |
Family
ID=67187234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711490187.8A Active CN110018993B (en) | 2017-12-29 | 2017-12-29 | Data analysis system, method and monitoring analysis system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110018993B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111367989A (en) * | 2020-06-01 | 2020-07-03 | 北京江融信科技有限公司 | Real-time data index calculation system and method |
CN112448840A (en) * | 2019-11-27 | 2021-03-05 | 北京红山信息科技研究院有限公司 | Communication data quality monitoring method, device, server and storage medium |
CN112734178A (en) * | 2020-12-28 | 2021-04-30 | 深圳市奋达科技股份有限公司 | Lean man-hour management method, device and storage medium |
CN114666370A (en) * | 2022-03-30 | 2022-06-24 | 广东永耀消防安全技术有限公司 | SaaS intelligent fire-fighting monitoring platform based on Internet of things technology |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102841943A (en) * | 2012-08-24 | 2012-12-26 | 上海泰宇信息技术有限公司 | Data safety supervision early warning and backup strategy system and method |
CN103455636A (en) * | 2013-09-27 | 2013-12-18 | 浪潮齐鲁软件产业有限公司 | Automatic capturing and intelligent analyzing method based on Internet tax data |
CN104794578A (en) * | 2015-04-23 | 2015-07-22 | 深圳市汇生通科技发展有限公司 | Could computing based smart water affair management system |
CN105631026A (en) * | 2015-12-30 | 2016-06-01 | 北京奇艺世纪科技有限公司 | Security data analysis system |
CN107302466A (en) * | 2017-08-25 | 2017-10-27 | 郑州云海信息技术有限公司 | A kind of power & environment supervision system big data analysis platform and method |
-
2017
- 2017-12-29 CN CN201711490187.8A patent/CN110018993B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102841943A (en) * | 2012-08-24 | 2012-12-26 | 上海泰宇信息技术有限公司 | Data safety supervision early warning and backup strategy system and method |
CN103455636A (en) * | 2013-09-27 | 2013-12-18 | 浪潮齐鲁软件产业有限公司 | Automatic capturing and intelligent analyzing method based on Internet tax data |
CN104794578A (en) * | 2015-04-23 | 2015-07-22 | 深圳市汇生通科技发展有限公司 | Could computing based smart water affair management system |
CN105631026A (en) * | 2015-12-30 | 2016-06-01 | 北京奇艺世纪科技有限公司 | Security data analysis system |
CN107302466A (en) * | 2017-08-25 | 2017-10-27 | 郑州云海信息技术有限公司 | A kind of power & environment supervision system big data analysis platform and method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112448840A (en) * | 2019-11-27 | 2021-03-05 | 北京红山信息科技研究院有限公司 | Communication data quality monitoring method, device, server and storage medium |
CN112448840B (en) * | 2019-11-27 | 2023-05-02 | 北京红山信息科技研究院有限公司 | Communication data quality monitoring method, device, server and storage medium |
CN111367989A (en) * | 2020-06-01 | 2020-07-03 | 北京江融信科技有限公司 | Real-time data index calculation system and method |
CN111367989B (en) * | 2020-06-01 | 2020-08-28 | 北京江融信科技有限公司 | Real-time data index calculation system and method |
CN112734178A (en) * | 2020-12-28 | 2021-04-30 | 深圳市奋达科技股份有限公司 | Lean man-hour management method, device and storage medium |
CN114666370A (en) * | 2022-03-30 | 2022-06-24 | 广东永耀消防安全技术有限公司 | SaaS intelligent fire-fighting monitoring platform based on Internet of things technology |
CN114666370B (en) * | 2022-03-30 | 2024-03-19 | 云南恒品科技有限公司 | SaaS intelligent fire control monitor platform based on internet of things |
Also Published As
Publication number | Publication date |
---|---|
CN110018993B (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103150624B (en) | Based on the equipment control supervisory system of process chart | |
CN110489459A (en) | A kind of enterprise-level industry number fused data analysis system based on big data platform | |
US9336288B2 (en) | Workflow controller compatibility | |
CN108512691A (en) | Cloud automatic early-warning O&M monitoring system based on Hadoop | |
CN110168522B (en) | Maintaining data lineage to detect data event | |
JP2019534496A (en) | Managed query service | |
CN107103064B (en) | Data statistical method and device | |
CN113595761B (en) | Microservice component optimization method and medium for power system information and communication integrated dispatch platform | |
CN110018993A (en) | A kind of data analysis system, method and monitoring analysis system | |
CN112801607A (en) | Management service platform and construction method | |
CN106022007A (en) | Cloud platform system and method oriented to biological omics big data calculation | |
CN104156810A (en) | Power dispatching production management system based on cloud computing and realization method of power dispatching production management system | |
CA3059738A1 (en) | Behaviour data processing method, device, electronic device and computer readable medium | |
CN114328688A (en) | Management and control platform for electric power energy big data | |
CN115374102A (en) | Data processing method and system | |
CN111752723B (en) | Visual multi-source service management system and implementation method thereof | |
CN111274223A (en) | A one-click deployment of big data and deep learning container cloud platform and its construction method | |
CN104113605A (en) | Enterprise cloud application development monitoring processing method | |
CN114691050B (en) | Cloud native storage method, device, equipment and medium based on kubernets | |
CN112685499A (en) | Method, device and equipment for synchronizing process data of work service flow | |
US20140359742A1 (en) | Apparatus and Method for Agent Based Ingestion of Data | |
CN103729809A (en) | Monitoring mechanism of electric communication management system and based on real-time database | |
US20230315580A1 (en) | Disaster recovery in a cell model for an extensibility platform | |
Jin et al. | Research on Wide-area Distributed Power Quality Data Fusion Technology of Power Grid | |
Wadhera et al. | A systematic Review of Big data tools and application for developments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 518048, 10 floor, Guo Tong Building, 9023 Binhe Road, Futian District, Shenzhen, Guangdong. Applicant after: CHINA MOBILE INFORMATION TECHNOLOGY Co.,Ltd. Applicant after: CHINA MOBILE COMMUNICATIONS GROUP Co.,Ltd. Address before: 518048, 10 floor, Guo Tong Building, 9023 Binhe Road, Futian District, Shenzhen, Guangdong. Applicant before: CHINA MOBILE INFORMATION TECHNOLOGY Co.,Ltd. Applicant before: China Mobile Communications Corp. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200330 Address after: Room 1006, building 16, yard 16, Yingcai North Third Street, future science city, Changping District, Beijing 102209 Applicant after: China Mobile Information Technology Co.,Ltd. Applicant after: CHINA MOBILE COMMUNICATIONS GROUP Co.,Ltd. Address before: 518048, 10 floor, Guo Tong Building, 9023 Binhe Road, Futian District, Shenzhen, Guangdong. Applicant before: CHINA MOBILE INFORMATION TECHNOLOGY Co.,Ltd. Applicant before: CHINA MOBILE COMMUNICATIONS GROUP Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |