CN110007357A - 一种航空tem和航空mt联合反演方法 - Google Patents
一种航空tem和航空mt联合反演方法 Download PDFInfo
- Publication number
- CN110007357A CN110007357A CN201910411381.5A CN201910411381A CN110007357A CN 110007357 A CN110007357 A CN 110007357A CN 201910411381 A CN201910411381 A CN 201910411381A CN 110007357 A CN110007357 A CN 110007357A
- Authority
- CN
- China
- Prior art keywords
- aviation
- tem
- dimensional
- data
- inversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明涉及一种航空TEM和航空MT联合反演方法,本发明同时采用航空TEM与航空MT对同一块区域进行测量,通过两种测量方法得到航空TEM与航空MT两组数据,对两组数据进行处理,分别得到航空TEM视电阻率断面图及视电阻率三维图、航空MT二维反演视电阻率断面图及视电阻率三维图,将航空MT二维反演视电阻率三维图作为深部,同时利用航空TEM视电阻率资料约束浅部,形成初始模型。对初始模型进行联合三维反演,获得航空TEM和航空MT三维联合反演电阻率断面图,最后根据航空TEM和航空MT三维联合反演电阻率断面图与地质资料对低阻异常区域进行分析。本发明能够同时兼具较大的探测深度以及较高的分辨率,从而得到准确的数据,得到准确的分析结果。
Description
技术领域
本发明涉及一种工程地质勘察技术,具体地说是一种航空TEM和航空MT联合反演方法。
背景技术
工程勘察的目的多为查明浅部地质特征,为了查明工程地质及不良地质体特征,通常采用可控源音频大地电磁法、音频大地电磁测量法(AMT)或大地电磁测量法(MT)。但在复杂高山区,由于地形复杂,高寒缺氧,以上方法实施比较困难,很难采集到高质量的电磁法数据,测量深度也较为有限,采用常规方法很难取得好的成果。因此开展了航空电磁法测量,包括航空TEM和航空MT两种方法,两种方法全覆盖测量,浅层资料和中深层资料兼顾,可以取得好的勘察效果。
由于航空TEM采用人工场源,同时由于受机载平台动力及系统元器件性能影响,测量系统发射磁矩有限,导致航空TEM探测深度较小,一般为200-600m,但其浅部分辨率较高;航空MT采用天然场源,与常规MT相似,探测深度大,但相对于航空TEM,其中浅部分辨率相对较小,部分地段可能造成浅部地质信息的缺失。因此,单独采用航空TEM或者航空MT方法,很难同时解决测量深度大、分辨率相对较高的问题。
发明内容
本发明的目的就是提供一种航空TEM和航空MT联合反演方法,以解决单独采用航空TEM或者航空MT方法无法满足测量深度大和分辨率高的使用需要的问题。
本发明是这样实现的:一种航空TEM和航空MT联合反演方法,包括以下步骤:
a.布置航空TEM测线与航空MT测线,航空TEM测线与航空MT测线的位置相互重合;
b.按照布置好的测线分别使用航空TEM与航空MT两种测量方法进行数据采集;
c.对步骤b中测得的航空TEM数据与航空MT数据进行优化处理,并计算优化后的航空MT数据,得出航空MT沿测线方向的实部数据和虚部数据以及垂直于测线方向的实部数据和虚部数据;
d.对经过优化处理的航空TEM数据进行二维反演,获得航空TEM视电阻率断面图及视电阻率三维图,同时对经过优化处理与计算的航空MT数据进行二维反演,得到航空MT二维反演视电阻率断面图及视电阻率三维图;
e.建立初始模型,初始模型的深部模型是航空MT二维反演视电阻率三维图的均匀半空间模型,在航空MT的均匀半空间模型上利用航空TEM视电阻率断面图及视电阻率三维图进行约束形成浅部模型,深部模型与浅部模型共同组成完整的初始模型;
f.对得到的完整初始模型进行联合三维反演,获得航空TEM和航空MT三维联合反演视电阻率断面图;
g.结合地质资料及得到的航空TEM和航空MT三维联合反演电阻率断面图提取低阻异常体信息。
在步骤a中,测线的控制宽度大于1.5倍的探测深度。
在步骤c中,数据的优化处理包括对数据进行整理、补偿、滤波以及调平。
在步骤e中,根据航空TEM视电阻率分布特征,使用人机交互方式对浅部模型电阻率、埋深、厚度进行约束,从而建立浅部视电阻率约束模型。
在步骤e中,航空MT的均匀半空间模型的初始电阻值为航空MT二维反演视电阻率的平均值。
在步骤f中,对初始模型进行联合三维反演时,设置网格的尺寸,垂直网格的大小随着深度的增加几何增长,以初始模型为基础设置电阻率范围、数据性对误差以及噪声,经过反演迭代,获得航空TEM和航空MT三维联合反演电阻率结果。
本发明同时采用航空TEM与航空MT对同一块区域进行测量,通过两种测量方法得到航空TEM与航空MT两组数据,对两组数据进行处理,分别得到航空TEM视电阻率断面图及视电阻率三维图、航空MT二维反演视电阻率断面图及视电阻率三维图,将航空MT二维反演视电阻率三维图作为深部,同时利用航空TEM视电阻率资料约束浅部,形成初始模型。对初始模型进行联合三维反演,获得航空TEM和航空MT三维联合反演视电阻率断面图,最后根据航空TEM和航空MT三维联合反演视电阻率断面图与地质资料对低阻异常区域进行分析。由于初始模型的深部利用的是航空MT二维反演视电阻率三维图,浅部利用的是航空TEM视电阻率资料,航空MT探测深度大,同时利用航空TEM技术弥补其浅部分辨率相对较小的问题,使初始模型兼具探测深度大、分辨率高的优点,以初始模型为基础进行的三维反演以及低阻异常体信息分析的精准度较高,能够得到比较准确的信息,从而得到准确的分析结果。
本发明能够同时兼具较大的探测深度以及较高的分辨率,从而得到准确的数据,得到准确的分析结果。
附图说明
图1是本发明的流程图。
图2是本发明的航空TEM视电阻率图。
图3是本发明的航空TEM视电阻率三维图。
图4是本发明的航空MT二维反演视电阻率图。
图5是本发明的航空MT二维反演视电阻率三维图。
图6是本发明的航空TEM和航空MT反演初始模型。
图7是本发明的航空TEM和航空MT三维联合反演视电阻率图。
图8是本发明的航空TEM和航空MT三维联合反演视电阻率断面图。
图9为不良地质体信息提取结果图。
图中:1、不良地质体;2、地质断层。
具体实施方式
如图1所示,本发明同时采用航空TEM与航空MT对同一块区域进行测量,通过两种测量方法得到航空TEM与航空MT两组数据,对两组数据进行处理,分别得到航空TEM视电阻率断面图及视电阻率三维图、航空MT二维反演视电阻率断面图及视电阻率三维图,将航空MT二维反演视电阻率三维图作为深部,同时利用航空TEM视电阻率资料约束浅部,形成初始模型。对初始模型进行联合三维反演,获得航空TEM和航空MT三维联合反演电阻率断面图,最后根据航空TEM和航空MT三维联合反演电阻率断面图与地质资料对低阻异常区域进行分析。
本发明的具体步骤如下:
a.布置航空TEM测线与航空MT测线,航空TEM测线与航空MT测线的位置相互重合。为满足资料处理中三维反演对探测深度的基本要求,要求测线的控制宽度大于1.5倍的探测深度,根据工程地质要求,布置约20条侧线,侧线之间的间距不等,侧线控制宽度约为2.1km。
b.按照布置好的测线分别使用航空TEM与航空MT两种测量方法进行数据采集。
c.对步骤b中测得的航空TEM数据与航空MT数据进行优化处理,并计算优化后的航空MT数据,得出航空MT沿测线方向的实部数据和虚部数据以及垂直于测线方向的实部数据和虚部数据。数据的优化处理包括对数据进行整理、补偿、滤波以及调平等。
航空TEM数据处理:数据补偿主要是利用每个架次前后两个背景场数据,对测线数据进行背景场补偿处理;针对天电噪声、运动噪声等,利用特定的滤波器进行滤波处理,以消除天电、运动噪声等;最后针对电压剖面实际形态,对数据进行调平,完成航空TEM数据处理。
航空MT数据处理:利用航空MT空中接收线圈、地面基站测量数据,经过滤波、调平处理后,分别计算不同频率沿测线方向、垂直测线方向的实部、虚部数据。
d.对经过优化处理的航空TEM数据进行二维反演,获得航空TEM视电阻率断面图(如图2所示)及视电阻率三维图(如图3所示),同时对经过优化处理与计算的航空MT数据进行二维反演,得到航空MT二维反演视电阻率断面图(如图4所示)及视电阻率三维图(如图5所示)。在对采集的航空TEM、航空MT数据进行滤波、调平后,分别使用相应软件进行二维反演,反演参数需要根据地质条件进行试验后确定,主要以反映低阻导常体分布范围为主,以达到数据误差与模型粗糙程度最佳为依据,生成航空TEM视电阻率断面图及视电阻率三维图以及航空MT视电阻率断面图及三维视电阻率图。
e.建立初始模型,初始模型的深部模型是航空MT二维反演视电阻率三维图的均匀半空间模型,在航空MT的均匀半空间模型上利用航空TEM视电阻率断面图及视电阻率三维图进行约束形成浅部模型,深部模型与浅部模型共同组成完整的初始模型(如图6所示)。航空MT的均匀半空间模型的初始电阻值为航空MT二维反演视电阻率的平均值。
f.对得到的完整初始模型进行联合三维反演,设置网格的尺寸,垂直网格的大小随着深度的增加几何增长,以初始模型为基础设置电阻率范围、数据性对误差以及噪声,经过反演迭代,获得航空TEM和航空MT三维联合反演电阻率结果,即航空TEM和航空MT三维联合反演视电阻率图(如图7所示)。再根据航空TEM和航空MT三维联合反演视电阻率图获得每个侧线上的航空TEM和航空MT三维联合反演电阻率断面图(如图8所示)。
具体的,反演的中心区网格尺寸为100m×100m×20m,垂直网格大小随着深度增加几何增长。频率范围为25Hz-600Hz的X分量的实部和虚部以及Y分量的实部和虚部,电阻率范围为1~100000Ω∙m,相对误差设置为20%,噪声设置为1%,经过多次叠加得到反演结果。
g.结合地质资料及得到的航空TEM和航空MT三维联合反演电阻率断面图提取低阻异常体信息。以得到的航空TEM和航空MT三维联合反演视电阻率断面图为主、以地质资料为辅,考虑反演电阻率断面图中的背景值、低阻异常形态、低阻异常值及其梯度值的因素,对主要不良地质体进行推断解释,根据电阻率断面图中低阻异常的形态和梯度带位置确定异常体边界。
Claims (6)
1.一种航空TEM和航空MT联合反演方法,其特征在于,包括以下步骤:
a.布置航空TEM测线与航空MT测线,航空TEM测线与航空MT测线的位置相互重合;
b.按照布置好的测线分别使用航空TEM与航空MT两种测量方法进行数据采集;
c.对步骤b中测得的航空TEM数据与航空MT数据进行优化处理,并计算优化后的航空MT数据,得出航空MT沿测线方向的实部数据和虚部数据以及垂直于测线方向的实部数据和虚部数据;
d.对经过优化处理的航空TEM数据进行二维反演,获得航空TEM视电阻率断面图及视电阻率三维图,同时对经过优化处理与计算的航空MT数据进行二维反演,得到航空MT二维反演视电阻率断面图及视电阻率三维图;
e.建立初始模型,初始模型的深部模型是航空MT二维反演视电阻率三维图的均匀半空间模型,在航空MT的均匀半空间模型上利用航空TEM视电阻率断面图及视电阻率三维图进行约束形成浅部模型,深部模型与浅部模型共同组成完整的初始模型;
f.对得到的完整初始模型进行联合三维反演,获得航空TEM和航空MT三维联合反演视电阻率断面图;
g.结合地质资料及得到的航空TEM和航空MT三维联合反演电阻率断面图提取低阻异常体信息。
2.根据权利要求1所述的航空TEM和航空MT联合反演方法,其特征在于,在步骤a中,测线的控制宽度大于1.5倍的探测深度。
3.根据权利要求1所述的航空TEM和航空MT联合反演方法,其特征在于,在步骤c中,数据的优化处理包括对数据进行整理、补偿、滤波以及调平。
4.根据权利要求1所述的航空TEM和航空MT联合反演方法,其特征在于,在步骤e中,根据航空TEM视电阻率分布特征,使用人机交互方式对浅部模型电阻率、埋深、厚度进行约束,从而建立浅部视电阻率约束模型。
5.根据权利要求1所述的航空TEM和航空MT联合反演方法,其特征在于,在步骤e中,航空MT的均匀半空间模型的初始电阻值为航空MT二维反演视电阻率的平均值。
6.根据权利要求1所述的航空TEM和航空MT联合反演方法,其特征在于,在步骤f中,对初始模型进行联合三维反演时,设置网格的尺寸,垂直网格的大小随着深度的增加几何增长,以初始模型为基础设置电阻率范围、数据性对误差以及噪声,经过反演迭代,获得航空TEM和航空MT三维联合反演电阻率结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910411381.5A CN110007357B (zh) | 2019-05-16 | 2019-05-16 | 一种航空tem和航空mt联合反演方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910411381.5A CN110007357B (zh) | 2019-05-16 | 2019-05-16 | 一种航空tem和航空mt联合反演方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110007357A true CN110007357A (zh) | 2019-07-12 |
CN110007357B CN110007357B (zh) | 2020-10-27 |
Family
ID=67177216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910411381.5A Active CN110007357B (zh) | 2019-05-16 | 2019-05-16 | 一种航空tem和航空mt联合反演方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110007357B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111522069A (zh) * | 2020-05-15 | 2020-08-11 | 核工业航测遥感中心 | 玄武岩覆盖区玄武岩通道解释方法 |
CN111596373A (zh) * | 2020-07-20 | 2020-08-28 | 核工业航测遥感中心 | 快速寻找隐伏中低温热液型铜多金属矿方法 |
CN111679315A (zh) * | 2020-06-29 | 2020-09-18 | 核工业航测遥感中心 | 基于土壤氡地震前兆异常识别及地震预测方法 |
CN113420456A (zh) * | 2021-07-07 | 2021-09-21 | 核工业航测遥感中心 | 基于反演电阻率断面的物探地质数据库合并方法 |
CN114047554A (zh) * | 2021-11-05 | 2022-02-15 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 大地电阻率模型建模方法、装置、计算机设备和存储介质 |
CN115201926A (zh) * | 2022-06-29 | 2022-10-18 | 中铁二院工程集团有限责任公司 | 基于航空电磁联合反演技术的深大断裂解译方法及系统 |
CN117934748A (zh) * | 2024-03-22 | 2024-04-26 | 山东科技大学 | 基于深度三视图的重力异常智能反演方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101535840A (zh) * | 2006-06-15 | 2009-09-16 | Kjt企业有限公司 | 用于获取和解释震电和电震数据的方法 |
CN104537714A (zh) * | 2015-01-07 | 2015-04-22 | 吉林大学 | 磁共振与瞬变电磁空间约束联合反演方法 |
CN107305257A (zh) * | 2016-04-21 | 2017-10-31 | 新疆维吾尔自治区煤炭科学研究所 | 高密度电阻率法与瞬变电磁法联合反演技术 |
CN108802834A (zh) * | 2018-02-13 | 2018-11-13 | 中国科学院电子学研究所 | 一种基于联合反演的地下目标识别方法 |
US20180364388A1 (en) * | 2017-06-14 | 2018-12-20 | Pgs Geophysical As | Inversion of Enhanced-Sensitivity Controlled Source Electromagnetic Data |
CN109100821A (zh) * | 2018-09-21 | 2018-12-28 | 安徽惠洲地质安全研究院股份有限公司 | 多勘探地球物理场信号智能采集装置及方法 |
US10185052B2 (en) * | 2016-12-19 | 2019-01-22 | Baker Hughes, A Ge Company, Llc | Constrained backscatter gamma ray casing and cement inspection tool |
-
2019
- 2019-05-16 CN CN201910411381.5A patent/CN110007357B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101535840A (zh) * | 2006-06-15 | 2009-09-16 | Kjt企业有限公司 | 用于获取和解释震电和电震数据的方法 |
CN104537714A (zh) * | 2015-01-07 | 2015-04-22 | 吉林大学 | 磁共振与瞬变电磁空间约束联合反演方法 |
CN107305257A (zh) * | 2016-04-21 | 2017-10-31 | 新疆维吾尔自治区煤炭科学研究所 | 高密度电阻率法与瞬变电磁法联合反演技术 |
US10185052B2 (en) * | 2016-12-19 | 2019-01-22 | Baker Hughes, A Ge Company, Llc | Constrained backscatter gamma ray casing and cement inspection tool |
US20180364388A1 (en) * | 2017-06-14 | 2018-12-20 | Pgs Geophysical As | Inversion of Enhanced-Sensitivity Controlled Source Electromagnetic Data |
CN108802834A (zh) * | 2018-02-13 | 2018-11-13 | 中国科学院电子学研究所 | 一种基于联合反演的地下目标识别方法 |
CN109100821A (zh) * | 2018-09-21 | 2018-12-28 | 安徽惠洲地质安全研究院股份有限公司 | 多勘探地球物理场信号智能采集装置及方法 |
Non-Patent Citations (2)
Title |
---|
MAXWELL A. MEJU: "Joint inversion of TEM and distorted MT soundings: Some effective practical considerations", 《GEOPHYSICS》 * |
杨辉等: "综合地球物理联合反演综述", 《地球物理学进展》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111522069A (zh) * | 2020-05-15 | 2020-08-11 | 核工业航测遥感中心 | 玄武岩覆盖区玄武岩通道解释方法 |
CN111679315A (zh) * | 2020-06-29 | 2020-09-18 | 核工业航测遥感中心 | 基于土壤氡地震前兆异常识别及地震预测方法 |
CN111679315B (zh) * | 2020-06-29 | 2023-03-07 | 核工业航测遥感中心 | 基于土壤氡地震前兆异常识别及地震预测方法 |
CN111596373A (zh) * | 2020-07-20 | 2020-08-28 | 核工业航测遥感中心 | 快速寻找隐伏中低温热液型铜多金属矿方法 |
CN113420456A (zh) * | 2021-07-07 | 2021-09-21 | 核工业航测遥感中心 | 基于反演电阻率断面的物探地质数据库合并方法 |
CN113420456B (zh) * | 2021-07-07 | 2022-05-03 | 核工业航测遥感中心 | 基于反演电阻率断面的物探地质数据库合并方法 |
CN114047554A (zh) * | 2021-11-05 | 2022-02-15 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 大地电阻率模型建模方法、装置、计算机设备和存储介质 |
CN114047554B (zh) * | 2021-11-05 | 2024-04-02 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 大地电阻率模型建模方法、装置、计算机设备和存储介质 |
CN115201926A (zh) * | 2022-06-29 | 2022-10-18 | 中铁二院工程集团有限责任公司 | 基于航空电磁联合反演技术的深大断裂解译方法及系统 |
CN117934748A (zh) * | 2024-03-22 | 2024-04-26 | 山东科技大学 | 基于深度三视图的重力异常智能反演方法 |
CN117934748B (zh) * | 2024-03-22 | 2024-06-04 | 山东科技大学 | 基于深度三视图的重力异常智能反演方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110007357B (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110007357A (zh) | 一种航空tem和航空mt联合反演方法 | |
CN110058317B (zh) | 航空瞬变电磁数据和航空大地电磁数据联合反演方法 | |
CN100429531C (zh) | 目标最小化的三维电磁快速反演方法 | |
CN102901985B (zh) | 一种适用于起伏地表的深度域层速度修正方法 | |
CN103809204B (zh) | 一种野外音频大地电磁的数据采集方法 | |
CN107678057B (zh) | 三维地震中确定或优化检波器或设备投入量及排布的方法 | |
CN109884710B (zh) | 针对激发井深设计的微测井层析成像方法 | |
CN104698313B (zh) | 多直流接地极不同运行方式下直流偏磁电流影响站点的预测方法 | |
CN103064124B (zh) | 一种校正电磁勘探中地形影响的比值方法 | |
CN102236108B (zh) | 一种磁性地表三维地形改正方法 | |
CN105204073B (zh) | 一种张量视电导率测量方法 | |
CN107966732A (zh) | 基于空间结构导向的地震属性变化率求取方法 | |
CN104656156A (zh) | 音频大地电磁测深三维采集资料的磁参考处理方法 | |
CN106443189A (zh) | 一种接地极极址及其周边土壤电阻率三维探测方法和系统 | |
CN110308492A (zh) | 一种弯曲铁路隧道中线航空物探数据提取方法 | |
CN107065019A (zh) | 应用于道路灾害和塌陷检测的三维电磁成像装置及使用方法 | |
CN110068873A (zh) | 一种基于球坐标系的大地电磁三维正演方法 | |
Nakatsuka et al. | Reduction of magnetic anomaly observations from helicopter surveys at varying elevations | |
Růžek et al. | Inversion of travel times obtained during active seismic refraction experiments CELEBRATION 2000, ALP 2002 and SUDETES 2003 | |
CN113406707A (zh) | 一种大地电磁多尺度、多时段探测方法 | |
CN113552637A (zh) | 一种航空-地面-井中磁异常数据协同三维反演方法 | |
CN106483570A (zh) | 一种大地电磁场物探方法及装置 | |
CN114236624B (zh) | 基于电磁法估算压裂改造空间体积的方法和系统 | |
CN115586577A (zh) | 一种定源瞬变电磁非中心点观测数据全时转换方法 | |
CN107255837A (zh) | 一种二维地形正演和改正方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220606 Address after: 050002 No. 11, Xuefu Road, Shijiazhuang, Hebei Patentee after: AERIAL SURVEY & REMOTE SENSING CENTRE OF NUCLEAR INDUSTRY Patentee after: Hebei HangYao Technology Co., Ltd Address before: 050002 Nuclear Engineering Remote Sensing Center of Xuefu Road, No. 11 Xuefu Road, Shijiazhuang, Hebei Patentee before: AERIAL SURVEY & REMOTE SENSING CENTRE OF NUCLEAR INDUSTRY |
|
TR01 | Transfer of patent right |