CN109995257A - 控制和调制转换器的方法及转换器 - Google Patents

控制和调制转换器的方法及转换器 Download PDF

Info

Publication number
CN109995257A
CN109995257A CN201811472488.2A CN201811472488A CN109995257A CN 109995257 A CN109995257 A CN 109995257A CN 201811472488 A CN201811472488 A CN 201811472488A CN 109995257 A CN109995257 A CN 109995257A
Authority
CN
China
Prior art keywords
switching
converter
controlled variable
sequence
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811472488.2A
Other languages
English (en)
Other versions
CN109995257B (zh
Inventor
托比亚斯·盖尔
彼得罗斯·卡拉曼阿科什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Technology AG filed Critical ABB Technology AG
Publication of CN109995257A publication Critical patent/CN109995257A/zh
Application granted granted Critical
Publication of CN109995257B publication Critical patent/CN109995257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种控制和调制转换器的方法及转换器。该方法包括:形成包括转换器的电气系统的数学表示;提供受控变量的参考值;基于电气系统的数学表示来计算受控变量的梯度;确定在调制时段中可能的切换序列,所述切换序列限定开关被切换的顺序;针对每个可能的切换序列,基于所计算的梯度通过优化切换序列的时刻,使所提供的参考与对应的受控变量之间的误差最小化;选择具有最小误差的切换序列;以及在调制时段中应用具有对应的切换时间的切换序列,以调制可控开关。

Description

控制和调制转换器的方法及转换器
技术领域
本发明涉及转换器的控制和调制,并且尤其涉及转换器的直接模型预测控制(MPC)。
背景技术
转换器广泛用于控制电气负载。转换器可以用于向和从电机、负载或AC电网馈送电力。通常,当转换器用于控制马达或负载时,转换器被称为逆变器,而当用于向和从AC电网馈送电力时,被称为(并网)转换器。图1中提供了具有驱动感应马达的输出LC滤波器的两电平三相电压源逆变器的示例。
电力电子系统的典型控制问题包括以下内容。例如,对于驱动电机的转换器,需要沿其参考轨迹调节定子电流。在具有中间LC滤波器的驱动系统(见图1)的情况下,还应调节滤波器电容器电压和转换器电流。此外,在稳态操作、瞬态和故障期间,应使负载电流的总谐波失真(THD)最小化。这相当于使均方根(rms)电流误差最小化。此外,对于电网侧转换器,电网电流和电压的谐波频谱应满足相关的电网规范。这意味着谐波频谱具有基频的奇数非三重整数倍的谐波,并且以恒定的切换频率操作。通常,高次谐波的幅度应很小。此外,当采用LC滤波器时,切换频率与LC滤波器谐振的频率之间的比率是极为重要的。为了使该滤波器的尺寸最小化,所提及比率应尽可能很小。任何低于3的比率都被认为很小。此外,在转换器中,需要快速闭环控制来快速补偿诸如转矩和功率阶跃的负载的变化,以及需要快速抑制干扰,例如直流链路电压纹波。
考虑到上述所有情况,显然合适的控制器应当成功地满足所有控制目标,这些目标在许多情况下相互竞争。控制设计者通常诉诸于对手头控制问题以及电力电子系统的模型进行简化。具体而言,鉴于电力电子系统是非线性多输入多输出(MIMO)系统(其中对输入变量有约束(如整数约束或占空比约束)、对状态变量有约束(如电流约束)以及输出变量有约束),MIMO控制问题通常被分解为多个单输入单输出(SISO)环路,所述多个SISO环路根据每个环路的主导时间常数以级联方式排列。接下来,为了隐蔽系统的切换性质,采用平均和脉冲宽度调制(PWM)的构思。这产生了间接控制,如图2所呈现的。级联SISO环路和PWM阶段使得能够使用线性控制器,例如常规的比例-积分-微分(PID)控制器。这种控制器通常通过额外的抗饱卷机制和速率限制器来增强。在LC滤波器的情况下,使用有源阻尼环路来增强内部(电流)控制环路,以阻尼由滤波器引入的系统谐振。
虽然间接控制技术在稳态操作下运行良好,但在瞬态和故障期间,不同的控制环路通常很难解耦,彼此不利地相互作用。这意味着应减小控制器的带宽以避免稳定性问题,这反过来又限制了系统性能。此外,由于这种类型的控制器通常被调谐成仅在窄的操作范围内获得令人满意的性能,因此当在该范围之外的点操作时,性能趋于显着劣化。为了避免后者,采用增益调度,这进一步使控制环路的调谐复杂化并使整个设计过程变得麻烦。
此外,当要控制像具有LC滤波器的转换器的MIMO系统时,控制器设计应相对简单。输出变量(例如负载电流、电容器电压、转换器电流等)的控制应在一个环路中进行,同时应避免使设计更加复杂化的附加阻尼环路。
从以上可以理解,需要一种新的MIMO控制方法,其在一个计算阶段中处理所有控制目标。
发明内容
本发明的一个目的是提供一种方法和实现该方法的装置,以解决上述问题。本发明的目的通过以独立权利要求中所述的内容表征的方法和装置来实现。在从属权利要求中公开了本发明的优选实施方式。
本发明基于采用MPC控制和调制转换器的构思。在所公开的模型预测控制器中,以最佳方式实时计算转换器的切换模式(即,切换序列和相应的切换时刻)。基于受控变量的参考值与其预测值之间的误差来优化切换模式。受控变量通常是负载电流、转换器电流、电容器电压、有功功率和无功功率、电磁转矩、磁通和速度。在优化步骤中,考虑开关的切换序列和切换时刻二者。结果,选择具有相应切换时刻的最佳切换序列,以应用于转换器。
在本公开中,使用类似于PWM的固定调制周期,其中每相和半周期具有一个切换转换,从而产生恒定的切换频率和离散的谐波频谱。对于可能的六个切换序列中每个,MPC旨在通过操纵三个切换时刻来使受控变量的均方根误差最小化。选择预测为使rms误差最小化的切换序列和对应的切换时刻作为最佳切换序列和切换时刻。
直接MPC方法适用于转换器系统的电网侧和负载侧。这包括带有电机的变速驱动系统和带LC滤波器的转换器(还参见图1)。后一种系统引入了谐振频率。即使当切换频率和谐振频率之间的比率为2而没有任何附加的阻尼环路时,本公开的控制器也可以操作这样的系统。
附图说明
在下文中,将参考附图借助于优选实施方式更详细地描述本发明,在附图中:
图1示出了具有驱动感应马达的输出LC滤波器的两电平三相电压源逆变器。
图2示出了间接控制的框图;
图3示出了直接控制的框图;
图4a示出了切换序列的示例(用于两电平转换器);
图4b示出了对应于图4a的受控变量以及参考值;
图5示出了在两电平转换器中相位切换的可能顺序的表;
图6示出了与本发明有关的系统的简化框图;
图7a示出了对应于图7b的受控变量以及参考值以及附加的中间样本;
图7b示出了在采样时刻受控变量与其参考值的偏差的平方误差,其对应于图7a;
图8示出了当惩罚两个连续采样间隔之间的每相切换时刻的变化时的切换序列;
图9示出了具有六个切换时刻的两个采样间隔内的预测范围;
图10示出了针对两个采样间隔内的预测范围的滚动时域策略(receding horizonpolicy);
图11示出了三电平转换器的一相中可能的切换转换;
图12示出了连接至有源RL负载(例如AC电网)的中性点钳位三电平电压源转换器;以及
图13示出了通过LC滤波器连接至感应电机的中性点钳位三电平电压源逆变器。
具体实施方式
在静止正交αβ框架中得出转换器系统的数学模型和优化问题的公式。操作ξαβ=Kξabc通过以下变换矩阵将abc平面中的任何变量ξabc=[ξa ξb ξc]T映射成αβ平面中的二维矢量ξαβ=[ξα ξβ]T
此后,abc平面中的所有变量由它们的相应下标表示,而下标对于αβ平面中的变量而言下降。
本公开涉及电力电子系统的状态变量例如转换器、滤波器、负载、电网或电机的电压、电流和(虚拟)通量的控制。假设该厂在整数输入下是线性的,即其连续时间状态空间表示为以下形式:
y(t)=Cx(t), (1b)
其中分别是状态矢量和输出矢量,并且nx,ny∈N+。而且,输入矢量uabc=[ua ub uc]T∈Z3是三相开关位置。最后,D、E和C是状态矩阵、输入矩阵和输出矩阵,它们表征系统。同样,可以在状态空间表示中使用的等式是已知的。通常,状态空间表示使用数学公式来描述系统的行为。
使用精确的欧拉离散化,电力电子系统的离散时间状态空间模型是:
x(k+1)=Ax(k)+BKuabc(k) (2a)
y(k)=Cx(k) (2b)
其中且B=-D-1(I-A)E.。此外,I是单位矩阵,e是矩阵指数,Ts是采样间隔,并且k∈N。采样间隔等于非对称规则采样的基于载波的PWM中的调制(半)间隔。因此,也将Ts称为调制时段。
此外,以下描述集中于两电平转换器,其具有23=8个可能的三相开关位置uabc。uabc的分量为1或-1。开关位置指的是转换器中的开关成对使用的事实,使得一对开关用于将输出连接至正电源电压或负电源电压。这样的对形成转换器的相输出。开关位置uabc的分量为1意味着开关对的上开关将所讨论的相的输出连接至正电源电压。类似地,-1表示下开关将负电源电压连接至相的输出的情况。如下面将说明的,多电平转换器的扩展很简单。
在本发明中,目标之一是在恒定的转换器切换频率下操作的同时使受控变量即所关注的变量的纹波最小化。为此,允许转换器开关在采样间隔Ts内而不是仅在离散时间步骤k、k+1、……、处改变状态。为了保证三相之间的相等的负载分配,三相中的每一相在Ts内切换一次。
为了实现上述控制目标,目标函数考虑了输出变量的加权(平方)均方根误差,即,
其中是用于受控(输出)变量的参考值矢量。此外,是对角正定矩阵。写为Q>0。Q的项优先考虑不同受控变量y之间的跟踪精度。注意,由于帕塞瓦尔定理,使(3)最小化相当于使采样间隔内关注变量的平方THD最小化。
切换时刻tz,z∈{1,2,3}在采样间隔内连续发生,即,应用0<t1<t2<t3<Ts。假设在最后的采样间隔结束时应用开关位置因此,在当前采样间隔开始时,在t0≡0处,于是有在时刻t1处,从uabc(t0)切换到uabc(t1)。可以对时刻t2和t3进行类似的陈述。将切换时间t的矢量和开关位置矢量(切换序列)U定义为
t=[t1 t2 t3]T (4a)
例如,考虑具有三相开关位置uabc∈{-1,1}3的两电平逆变器。如图4a所示,假设在先前采样间隔结束时应用在当前采样间隔中,转换器分别在时刻t1、t2和t3切换到开关位置uabc(t1)=[-1 1 1]T、uabc(t2)=[-1 1 -1]T和uabc(t3)=[-1 -1 -1]T。这样做可以控制输出变量的演变。在图4b中,在连续时间域中示出了受控变量yi(其中i∈{1,...,ny})中仅一个变量的演变以及相应的参考。图4a和图4b提供了一个候选切换序列和相应的切换时刻(参见图4a)及其对输出变量之一的影响(图4b)的示例。
切换时刻将(3)中的区间[0,Ts)分成四个子区间[0,t1)、[t1,t2)、[t2,t3)和[t3,Ts)。这三个相可以按照六个不同的时间顺序切换,如图5的表1所示。
为了更好地理解这一构思,提供了以下示例。对于和相序a→b→c,要应用的三相开关位置的序列是:
uabc(t0)=[1 1 1]T,t0≤t<t1
uabc(t1)=[-1 1 1]T,t1≤t<t2
uabc(t2)=[-1 -1 1]T,t2≤t<t3
uabc(t3)=[-1 -1 -1]T,t3≤t<Ts
对于图4a中所示的相序a→c→b,切换序列变为:
uabc(t0)=[1 1 1]T,t0≤t<t1
uabc(t1)=[-1 1 1]T,t1≤t<t2
uabc(t2)=[-1 1 -1]T,t2≤t<t3
uabc(t3)=[-1 -1 -1]T,t3≤t<Ts
同样的逻辑适用于其余四种组合。
在本公开的方法中,假设受控变量在具有恒定梯度(或斜率)的一个采样间隔Ts内线性地演变。假设这些梯度在整个采样间隔内是相同的。该简化是有效的,因为Ts<<T1,其中T1是基本时段。换句话说,诸如电流或电压的受控变量在短时间段内以线性方式变化,并且采样频率远高于受控变量例如电流或电压的基频。为了进一步简化计算,受控变量的参考值在采样间隔内被认为是恒定的。然而,如后面将说明的,该假设可以放宽。
在上述假设的情况下,四个子间隔内输出变量的演变可以用它们相应的梯度来描述如下:
1.t0≤t<t1:在采样间隔的开始处(t0≡0),仍然应用在先前采样间隔中应用的三相开关位置,即因此,受控变量随(矢量值)梯度演变:
2.t1≤t<t2:在时刻t1处,应用新的三相开关位置uabc(t1),允许在三相中的一相中进行一次换向,即||uabc(t1)-uabc(t0)||1=2。结果,受控变量随梯度而演变:
m(t1)=C(Dx(t0)+Euabc(t1)) (6)
注意,在时刻t1处的梯度取决于在时刻t0处(而不是在t1处)的状态,因为上面假设梯度在采样间隔内是恒定的。
3.t2≤t<t3:在时刻t2处,应用三相开关位置uabc(t2),允许在剩余的两相中的一相中进行一次换向,||uabc(t2)-uabc(t1)||1=2和||uabc(t2)-uabc(t0)||1=4。受控变量随梯度而演变:
m(t2)=C(Dx(t0)+Euabc(t2)) (7)
4.t3≤t<Ts:对于最后一个间隔,应用开关位置uabc(t3),这意味着在至此一直处于非活动状态的最后相中进行一次换向,即||uabc(t3)-uabc(t2)||1=2和||uabc(t3)-uabc(t0)||1=6。受控变量随梯度而演变:
m(t3)=C(Dx(t0)+Euabc(t3)) (8)
为了简化优化过程,应用先前的假设。此外,执行对rms误差的相当粗略但有效的近似。具体地,受控变量与其参考的偏差仅在时刻t1、t2、t3和Ts处受到惩罚。如下所概述的,可以进一步改善这种近似。
鉴于这些简化,将目标函数(3)重写为:
其中,yref=yref(t0),即,如上所述,在整个采样间隔期间参考值保持恒定。利用(5)-(8),并且经过一些代数操作,可以证明矢量形式的函数(9)变为:
其中,并且0是ny维零矢量。
下文中,总结了所公开方法的步骤。假设先前应用的开关位置是这意味着三个相位在采样间隔Ts内从1切换到-1。因此,间隔结束时的开关位置是uabc(t3)=[-1 -1 -1]T。如前所述,存在六种不同的切换序列,如表1所示。相反,在的情况下,每个相位从-1切换到1。然后,最终的三相开关位置为uabc(t3)=[1 1 1]T。同样,存在六种不同的切换序列。
在本公开的方法中,计算可能的梯度,其取决于测量和/或估计的状态矢量x(t0)以及功率转换器的可能的开关位置uabc。在两电平转换器的情况下,八个开关位置uabc在αβ平面中产生七个不同的电压矢量,这导致七个独特的输出矢量梯度mz,其中z∈{0,1,2,...,6}。为了计算这些梯度,等式(5)被重写为:
mz=C(Dx(t0)+Euz) (11)
其中uz指的是αβ平面中的七个不同的开关位置。
接下来,根据先前应用的开关位置确定相应的六个开关序列Uz,z∈{1,2,...,6}。如前所述,六个可能的切换序列来自这样的事实:每个相位的开关位置在每个采样间隔中改变一次。如前所述,这意味着对于三相系统,存在六种可能的顺序,其中可以控制开关使得每个开关对被控制一次。
在本公开中,考虑每个切换序列,并且针对每个切换序列求解专用优化问题。利用简化的目标函数(10),该优化问题采取以下形式:
约束条件为0<t1<t2<t3<Ts,t∈R3 (12)
问题(12)是凸二次规划(QP)。它的解决方案,即所谓的优化器,是切换时刻t的矢量。针对六个切换序列Uz,z∈{1,2,...,6}中的每一个求解QP,产生切换时刻tz、切换序列Uz和目标函数Jz的值(其中z∈{1,2,...,6})的六个三元组。
此外,在该方法中,选择具有目标函数的最小值的三元组。更具体地说,求解平凡优化问题:
,以确定切换时刻t*、切换序列U*和目标函数J*的值的最佳三元组,使得J(U*,t*)=J*。前两个量根据(4)定义为:
所得最佳切换序列以适当切换定时应用于转换器。
因此,在本发明中,通过使控制误差最小化来计算可能的切换序列和切换时刻。产生最小误差的切换序列被选择为最佳,并且在相应的最佳切换时刻应用于转换器。通过实时求解优化问题,在一个阶段中完成最佳切换序列和时刻的获取。因此,控制器在一个计算阶段中组合转换器的控制和调制。
本发明可以用以下步骤总结,这些步骤已在上面详细描述过。基于每个相位在采样间隔内切换一次,首先,计算可能的梯度矢量mz,z∈{0,1,...,6},并且从开始列举可能的切换序列Uz,z∈{1,2,...,6}。
针对每个切换序列Uz,求解QP(等式(12))得到tz和Jz。通过求解等式(13)中所示的平凡优化问题来确定最佳时刻t*和所选择的切换序列U*
图2和图3示出了间接控制(图2)和直接控制(图3)的基本框图。在直接控制中,例如在本发明的控制方法中,控制器通过直接操纵系统输入uabc即三相开关位置,沿参考yref调节系统输出y。在间接控制中,控制器通过操纵调制信号vref沿其参考yref来调节系统输出y。需要调制阶段将调制信号vref转换成三相开关位置。
图6示出了本公开的框图的示例。在该图中,转换器被示出为控制负载,该负载可以是例如感应马达。转换器被示出为接收参考值的矢量yref,并且从电气系统接收状态x。此外,接收先前应用的三相开关位置。基于这些数据,针对可能的控制输入(即,开关位置)中的每一个计算梯度,并且使目标函数最小化。在相应的最佳切换时刻,将最佳切换序列应用于转换器的开关。
为了进一步改善直接MPC方案的性能,可以实施若干改进和扩展。根据一个实施方式,为了更好地近似rms误差,而不是在时刻t1、t2、t3和Ts处惩罚受控变量与其参考值的平方偏差,可以添加附加样本。为此,可以在以下时刻添加四个间隔中的每一个的中间的一个样本:
这如图7a所示。通过这样做,样本数量从4成倍增到8,从而提高了均方根误差近似的精度。该八样本方法解决了四样本方法的一个特定问题:四样本方法不能区分平方误差在切换序列的两个连续时刻之间是否具有零转换。在零转换的情况下,例如在t1和t2之间,rms误差很小,如图7a所示。然而,在没有这种零转换的情况下,均方根误差趋于较大,这无法被在t1和t2处的样本捕获。添加中间样本,通过使得目标函数能够区分这两种情况而解决了此问题。
使用四个中间抽样时刻(15),目标函数(10)采取以下形式:
优化器的维度(切换时刻t的矢量)保持不变,但优化矩阵的维数加倍。因此,优化问题的复杂度几乎保持不变,但rms误差的近似得到显着改善。
显然,可以添加更多的附加中间样本,以进一步提高均方根误差近似的精度。因此,根据该实施方式,由于在切换时刻之间的附加时刻处计算,因此在计算误差中使用的样本数量增加。
根据另一实施方式,不是在整个采样间隔中考虑针对受控变量的恒定参考,即yref(t)=yref(k):对于t∈[0,Ts),可以通过在下一时间步骤k+1处预测它们的值并且通过在时间步骤k和k+1之间线性内插来计算受控变量的参考。鉴于在稳态操作期间参考通常是正弦变化量,这种方法导致较小的跟踪误差。根据该实施方式,假设参考值线性地改变。例如,可以通过在下一时间步骤k+1处预测参考并且通过在时间步骤k和k+1之间线性内插来完成预测。然后参考的演变给出如下:
为了减少同一相中两个连续切换时刻之间的差异——从而增强切换模式的对称性并为控制器动作提供一定程度的阻尼——可以增加对其变化的惩罚。在该实施方式中,除了跟踪误差,即参考和预测受控变量之间的误差之外,优化变量即切换时刻的变化在优化问题中受到惩罚。因此,在决定使用哪个切换序列和切换时刻时,该过程旨在在连续切换模式中实现一定程度的对称性。通过利用先前得到的切换时刻并通过用特定权重λ惩罚切换时刻的两个连续矢量之间的变化,可以将上述情况(图8)纳入考虑。为此,将控制作用项添加到等式(12)的优化问题中,其采取以下形式:
约束条件为O<t1<t2<t3<Ts,t∈R3
该实施方式不影响优化器的大小,并且它将保持三维。因此,问题的计算复杂度与初始问题保持相同。
更长的预测范围使控制器能够关于受控系统的未来演变做出更好的明智决策。然而,它们通常以增加计算复杂度为代价。为了保持计算复杂度,在实施方式中,通过引入在先前间隔中使用的切换序列的镜像(相对于Ts)版本来扩展每个切换序列。镜像序列指的是相对于先前切换序列以相反顺序使用开关的序列。图9中提供了两个连续和镜像切换序列的示例。
结果,在两个采样间隔的预测范围的情况下,仅需要评估六个唯一的切换序列,并且需要求解六个相应的QP。然而,这些QP的优化器的维度现在是6(而不是3)。将这种方法扩展到甚至更长的预测范围而不增加候选切换序列的数量(其仍为六)是简单的。QP的大小随预测范围中的采样间隔的数量线性增加。
当考虑多个采样间隔的预测范围时,控制器制定超出下一个采样间隔Ts的未来计划。仅实施该计划的第一个实例,即,仅将具有第一采样间隔内的相应切换时刻的切换序列应用于转换器。一旦采样间隔过去,基于将一个采样间隔移位到未来的预测范围内的新测量值(或估计值)来重新计算计划。这是所谓的滚动时域策略的典型实现。滚动时域策略的概念在图10中例示。在图10a中,示出在时间步骤k处的预测范围,而图10b示出在时间步骤k+1处的预测范围。请注意,由于滚动时域策略,每个采样间隔都提供反馈,使MPC方案对建模不匹配、参数不确定性和干扰具有鲁棒性。
在本发明的上述描述中,考虑了两电平转换器。然而,三电平转换器可以在每个相位中切换到两个新的开关位置ux(tz),对于tz<Ts,(其中z∈{1,2,3})。因此,如图11所示,每相可能有两个不同的切换转换,从而在采样间隔结束时产生23=8个不同的开关位置。由于存在三相可以切换的六个可能的序列,所以对于三电平逆变器而言需要探索6·8=48个切换序列并且要求解48个QP。
然而,为了降低优化问题的计算复杂度,可以通过考虑每相平均开关位置u~x∈R在每相中得出最终开关位置ux(tz)。后者可以作为(理想和实值)调制指数进行分析计算,间接控制器将计算该调制指数并将其发送到PWM阶段。利用u~x,可以证明只需要探索六个切换序列,并且需要求解六个QP。因此,所提出的直接MPC方案的计算复杂度对于两电平转换器和三电平转换器而言是相同的。该构思可以以简单的方式扩展到多电平转换器(图12和图13)。
在本发明的转换器中,实现了上述方法。转换器包括半导体开关,其可以将电压切换到相应的输出。对于每个相,在两电平转换器中采用一对开关。在多电平转换器中,使用的开关的数量取决于使用的拓扑。此外,转换器的输出连接至电气系统或设备。输出可以连接至AC电网或电力网络或连接至一般AC负载或旋转电机,用于控制电机的电流、电磁转矩、通量和转速。
转换器还包括用于存储转换器和连接至转换器的电气系统的数学表示的存储器。此外,本发明的转换器包括用于执行该方法的各个步骤的计算装置,其中对调制序列进行确定。计算装置可以是转换器的处理器,其被编程以执行该方法。转换器通常包括可以访问存储器的处理能力。处理能力用于解决上述优化问题。应注意,在根据本发明的转换器中不需要调制器。也就是说,在每个调制或采样间隔之前实时地在转换器中执行计算。计算以精确的方式预测系统的行为,并且在采样间隔期间,不需要在参考值和实际值之间进行额外的比较。因此,不需要具有调制器的传统控制环路来实现快速控制和调制。
对于本领域技术人员明显的是,随着技术的进步,本发明构思可以以各种方式实现。本发明及其实施方式不限于上述示例,而是可以在权利要求的范围内变化。

Claims (15)

1.一种控制和调制连接至电气系统的转换器的方法,所述转换器包括可控开关以形成离散输出电压,其中,所述方法包括:
形成包括所述转换器的所述电气系统的数学表示,
提供受控变量的参考值,
基于所述电气系统的数学表示来计算所述受控变量的梯度,
确定在调制时段中可能的切换序列,所述切换序列限定开关被切换的顺序,
针对每个可能的切换序列,基于所计算的梯度通过优化所述切换序列的切换时刻,使所提供的参考与对应的受控变量之间的误差最小化,
选择具有最小误差的切换序列,以及
在所述调制时段中应用具有对应的切换时间的切换序列,以调制所述可控开关。
2.根据权利要求1所述的方法,其中,所述梯度的计算包括对于每个可能的开关组合的梯度的计算。
3.根据权利要求1或2所述的方法,其中,在所述调制时段上的切换序列每相具有一个接通切换转换和一个关断切换转换。
4.根据权利要求1、2或3所述的方法,其中,对所述受控变量进行测量或估计。
5.根据前述权利要求1至4中任一项所述的方法,其中,所述受控变量是所述转换器的输出电流。
6.根据前述权利要求1至5中任一项所述的方法,其中,最小化所提供的参考与所述对应的受控变量之间的误差包括求解凸二次规划问题,并且所述问题的解产生所述调制时段中的切换时刻。
7.根据前述权利要求1至6中任一项所述的方法,其中,所述受控变量的参考值在所述调制时段的持续时间内为恒定值。
8.根据前述权利要求1至6中任一项所述的方法,其中,所述受控变量的参考值在所述调制时段内为线性变化的值。
9.根据前述权利要求1至8中任一项所述的方法,其中,在两个连续的切换时段中,以相反的顺序调制所述开关。
10.根据前述权利要求1至9中任一项所述的方法,其中,在所述开关的切换时刻处计算所提供的参考与所述对应的受控变量之间的误差。
11.根据前述权利要求1至10中任一项所述的方法,其中,在所述开关的切换时刻处和连续的切换时刻之间计算所提供的参考与所述对应的受控变量之间的误差。
12.根据前述权利要求1至11中任一项所述的方法,其中,使所述误差最小化的步骤包括:
根据先前对应的切换时刻确定所述切换时刻的变化,以及
在所述优化问题中惩罚所述切换时刻的变化。
13.根据前述权利要求1至12中任一项所述的方法,其中,所述方法包括:
在所述优化问题中考虑多个调制时段,以及
根据滚动时域策略将仅第一调制时段中的切换转换应用于所述转换器。
14.根据前述权利要求1至13中任一项所述的方法,其中,所述转换器是多电平转换器,并且每相考虑多个切换转换。
15.一种连接至电气系统的转换器,所述转换器包括可控开关以形成离散的输出电压,其中,所述转换器还包括:
用于形成包括所述转换器的所述电气系统的数学表示的装置,以及
用于提供受控变量的参考值的装置,
用于基于所述电气系统的数学表示计算所述受控变量的梯度的装置,
用于确定在调制时段中可能的切换序列的装置,所述切换序列限定开关被切换的顺序,
用于针对每个可能的切换序列,基于所计算的梯度通过优化所述切换序列的切换时刻,使所提供的参考与对应的受控变量之间的误差最小化的装置,
用于选择具有最小误差的切换序列的装置,以及
用于在所述调制时段中应用具有对应切换时间的切换序列以调制所述可控开关的装置。
CN201811472488.2A 2017-12-07 2018-12-04 控制和调制转换器的方法及转换器 Active CN109995257B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17205874.5A EP3496261B1 (en) 2017-12-07 2017-12-07 Control and modulation of a converter
EP17205874.5 2017-12-07

Publications (2)

Publication Number Publication Date
CN109995257A true CN109995257A (zh) 2019-07-09
CN109995257B CN109995257B (zh) 2022-07-26

Family

ID=60627540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811472488.2A Active CN109995257B (zh) 2017-12-07 2018-12-04 控制和调制转换器的方法及转换器

Country Status (3)

Country Link
US (1) US10707781B2 (zh)
EP (1) EP3496261B1 (zh)
CN (1) CN109995257B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541358A (zh) * 2020-03-25 2020-08-14 西安电子科技大学 变频开关序列控制方法、系统、存储介质、装置及应用
CN111538238A (zh) * 2020-03-25 2020-08-14 西安电子科技大学 一种一阶离散开关切换序列控制和误差分析方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570151B (en) * 2018-01-14 2020-07-15 Zhong Qingchang Reconfiguration of inertia, damping, and fault ride-through for a virtual synchronous machine
GB2574645B (en) * 2018-06-14 2020-07-15 Zhong Qingchang Passive virtual synchronous machine with bounded frequency and virtual flux
EP3806312B1 (en) * 2019-10-11 2023-03-15 ABB Schweiz AG Model predictive pulse pattern control based on optimizing a sequence of averaged switch positions
CN111682792B (zh) * 2020-07-02 2023-07-11 湖南师范大学 一种多步预测的变流器模型预测控制方法
CN112383237B (zh) * 2020-10-09 2022-03-22 河南科技大学 一种并网逆变器的模型预测控制方法
CN114336569A (zh) * 2021-11-30 2022-04-12 南京邮电大学 一种直流微电网协同弹性控制方法及系统
CN114710055B (zh) * 2022-04-26 2022-10-28 南京理工大学 基于有限集单矢量的两并联功率变流器模型预测控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937833A (zh) * 2012-11-15 2015-09-23 Abb技术有限公司 控制电转换器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2576778C (en) * 2006-02-07 2014-09-02 Xinping Huang Self-calibrating multi-port circuit and method
GB2476316B (en) * 2009-12-21 2014-07-16 Vestas Wind Sys As A wind turbine having a control method and controller for predictive control of a wind turbine generator
US8837185B2 (en) * 2010-02-11 2014-09-16 Siemens Aktiengesellschaft Control of a modular converter having distributed energy stores with the aid of an observer for the currents and an estimating unit for the intermediate circuit energy
EP2469692B1 (en) * 2010-12-24 2019-06-12 ABB Research Ltd. Method for controlling a converter
US9473013B2 (en) * 2012-07-06 2016-10-18 Abb Schweiz Ag Controlling a modular converter with a plurality of converter modules
EP2688191A1 (en) * 2012-07-17 2014-01-22 ABB Research Ltd. Multi terminal HVDC control
US20140350743A1 (en) * 2012-08-27 2014-11-27 Nec Laboratories America, Inc. Tiered power management system for microgrids
BR112015004285A2 (pt) * 2012-08-28 2017-07-04 Abb Technology Ag controle de um conversor modular em dois estágios
US9390370B2 (en) * 2012-08-28 2016-07-12 International Business Machines Corporation Training deep neural network acoustic models using distributed hessian-free optimization
EP2725706A1 (en) * 2012-10-23 2014-04-30 ABB Technology AG Model predictive control with reference tracking
GB201310193D0 (en) * 2013-06-07 2013-07-24 Trw Ltd Motor control circuit
WO2015055444A1 (en) * 2013-10-18 2015-04-23 Abb Technology Ag Control method for electrical converter with lc filter
WO2015078656A1 (en) * 2013-11-29 2015-06-04 Abb Technology Ag Fast model predictive pulse pattern control
EP2978122A1 (en) * 2014-07-22 2016-01-27 ABB Technology AG Model predictive control of a modular multilevel converter
US9431945B2 (en) * 2014-09-24 2016-08-30 Texas Instruments Incorporated Normalization of motor phase measurements
CN107408880B (zh) * 2015-02-25 2020-02-14 Abb瑞士股份有限公司 电气转换器系统及其控制方法、计算机可读介质和控制器
US10333390B2 (en) * 2015-05-08 2019-06-25 The Board Of Trustees Of The University Of Alabama Systems and methods for providing vector control of a grid connected converter with a resonant circuit grid filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104937833A (zh) * 2012-11-15 2015-09-23 Abb技术有限公司 控制电转换器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETROS KARAMANAKOS等: ""Computationally Efficient Long-Horizon Direct Model Predictive Control for Transient Operation", 《2017 IEEE ENGERY CONVERSION CONGRESS AND EXPOSITON》 *
SERGIO AURTENECHEA LARRINAGA等: "Predictive Control Strategy for DC/AC Converters Based on Direct Power Control", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541358A (zh) * 2020-03-25 2020-08-14 西安电子科技大学 变频开关序列控制方法、系统、存储介质、装置及应用
CN111538238A (zh) * 2020-03-25 2020-08-14 西安电子科技大学 一种一阶离散开关切换序列控制和误差分析方法及系统

Also Published As

Publication number Publication date
US10707781B2 (en) 2020-07-07
US20190181775A1 (en) 2019-06-13
EP3496261A1 (en) 2019-06-12
EP3496261B1 (en) 2023-11-22
CN109995257B (zh) 2022-07-26
EP3496261C0 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
CN109995257A (zh) 控制和调制转换器的方法及转换器
Geyer et al. On the benefit of long-horizon direct model predictive control for drives with LC filters
Townsend et al. Multigoal heuristic model predictive control technique applied to a cascaded H-bridge StatCom
Quevedo et al. Predictive control in power electronics and drives: Basic concepts, theory, and methods
US7629764B2 (en) Nonlinear motor control techniques
US6052297A (en) Power conversion apparatus
US11290023B2 (en) Model predictive control for matrix converter operating in current control mode with load current estimation
US11967908B2 (en) Model predictive pulse pattern control based on small-signal pulse pattern optimization
Puvvula Sri Rama Venkata Ranga Sai Sesha et al. Model predictive control approach for frequency and voltage control of standalone micro‐grid
Jeong et al. High performance LQR control of modular multilevel converters with simple control structure and implementation
Rodriguez et al. Constrained control of low-capacitance delta cascaded H-bridge StatComs: A model predictive control approach
Riccio et al. Modulated model-predictive integral control applied to a synchronous reluctance motor drive
Chebaani et al. Sliding mode predictive control of induction motor fed by five-leg AC–DC–AC converter with DC-link voltages offset compensation
Fuchs et al. Impact of the prediction error on the performance of model predictive controllers with long prediction horizons for modular multilevel converters-linear vs. nonlinear system models
Moehle et al. Value function approximation for direct control of switched power converters
Mohamed et al. Three-phase inverter with output LC filter using predictive control for UPS applications
Blasko et al. Operation and control of a matrix converter in current control mode with voltage boost capability
Liu et al. Multi-objective fuzzy-decision-making-based FS-MPC with improved performance for grid-connected converters
Geldenhuys Model Predictive Control of a Grid-connected Converter with LCL-filter
Santos-Martin et al. Dynamic programming power control for doubly fed induction generators
Kang et al. Modulated model predictive current control of HERIC AFE converter equipped with LCL filter
Khandelwal et al. Reduced voltage stress hybrid multilevel inverter using optimised predictive control
Kiani et al. Model predictive based direct torque control for induction motor drives by sole-evaluation of two parameter independence duty ratios for each voltage vector
Vafaie Approach for classifying continuous control set‐predictive controllers applied in AC motor drives
Rodriguez-Bernuz et al. Model predictive current reference calculation for single-phase VSCs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant