CN109995084B - A cascade hydropower station-thermal power plant joint optimal scheduling method and system - Google Patents

A cascade hydropower station-thermal power plant joint optimal scheduling method and system Download PDF

Info

Publication number
CN109995084B
CN109995084B CN201910332439.7A CN201910332439A CN109995084B CN 109995084 B CN109995084 B CN 109995084B CN 201910332439 A CN201910332439 A CN 201910332439A CN 109995084 B CN109995084 B CN 109995084B
Authority
CN
China
Prior art keywords
unit
thermal power
output
hydropower
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910332439.7A
Other languages
Chinese (zh)
Other versions
CN109995084A (en
Inventor
卢志刚
石丽娜
张梦晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201910332439.7A priority Critical patent/CN109995084B/en
Publication of CN109995084A publication Critical patent/CN109995084A/en
Application granted granted Critical
Publication of CN109995084B publication Critical patent/CN109995084B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/382
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种梯级水电站‑火电厂联合优化调度方法及系统。该方法包括构建水火电联合系统中火电厂火电机组的出力模型;依据火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电‑火电联合系统优化调度模型;采用Benders分解算法对水电‑火电联合系统优化调度模型进行求解,得到水电‑火电联合系统优化调度模型对应的最优解;最优解包括火电机组的最优出力和水电机组的最优出力;将火电机组的最优出力和水电机组的最优出力对应的总能耗量确定为水火电联合系统的最优总能源消耗量。本发明能够提高清洁能源的发电能力,达到节约传统化石能源的消耗,减少大气污染物的排放的目的。

Figure 201910332439

The invention discloses a method and system for joint optimal dispatching of cascade hydropower stations and thermal power plants. The method includes constructing the output model of the thermal power unit of the thermal power plant in the combined hydro-thermal power system; constructing the optimal dispatching model of the combined hydropower-thermal power system according to the output model of the thermal power unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station and the output of the wind power generating unit; using Benders The decomposition algorithm solves the optimal scheduling model of the combined hydropower-thermal power system, and obtains the optimal solution corresponding to the optimal scheduling model of the combined hydropower-thermal power system; the optimal solution includes the optimal output of the thermal power unit and the optimal output of the hydropower unit; The total energy consumption corresponding to the optimal output of the hydroelectric unit and the optimal output of the hydroelectric unit is determined as the optimal total energy consumption of the combined hydro-thermal power system. The invention can improve the power generation capacity of clean energy, achieve the purpose of saving the consumption of traditional fossil energy and reducing the emission of air pollutants.

Figure 201910332439

Description

一种梯级水电站-火电厂联合优化调度方法及系统A cascade hydropower station-thermal power plant joint optimal scheduling method and system

技术领域technical field

本发明涉及能源优化调度技术领域,特别是涉及一种梯级水电站-火电厂联合优化调度方法及系统。The invention relates to the technical field of energy optimal dispatching, in particular to a cascade hydropower station-thermal power plant joint optimal dispatching method and system.

背景技术Background technique

近年来,大量化石燃料带来的环境问题日益突出,人们开始关注清洁能源的开发和使用,新能源技术得到不断地发展,正逐步走向成熟。大力开发利用水能、风能、太阳能等清洁能源进行发电得到了广泛关注。In recent years, the environmental problems caused by a large number of fossil fuels have become increasingly prominent. People have begun to pay attention to the development and use of clean energy. New energy technologies have been continuously developed and are gradually becoming mature. The vigorous development and utilization of hydropower, wind power, solar energy and other clean energy sources for power generation has received extensive attention.

水电作为我国最主要的清洁能源,近些年来,逐步从独立水电站的开发模式转变为流域梯级水电站群的新模式。同时,在各种可再生能源发电技术中,风力发电是一种最成熟、性价比最高的发电技术。但是由于风电固有的间歇性和随机性,其大规模并网将对系统产生较大影响。As the most important clean energy in my country, hydropower has gradually changed from the development mode of independent hydropower stations to a new mode of cascade hydropower stations in the basin in recent years. At the same time, among various renewable energy power generation technologies, wind power generation is the most mature and cost-effective power generation technology. However, due to the inherent intermittent and randomness of wind power, its large-scale grid connection will have a greater impact on the system.

综上所述,亟待一种能够提高清洁能源的发电能力,节约传统化石能源的消耗的联合系统调度方法出现。To sum up, there is an urgent need for a joint system scheduling method that can improve the power generation capacity of clean energy and save the consumption of traditional fossil energy.

发明内容SUMMARY OF THE INVENTION

基于此,有必要提供一种梯级水电站-火电厂联合优化调度方法及系统,以提高清洁能源的发电能力,达到节约传统化石能源的消耗,减少大气污染物的排放的目的。Based on this, it is necessary to provide a cascade hydropower station-thermal power plant joint optimal scheduling method and system to improve the power generation capacity of clean energy, save the consumption of traditional fossil energy, and reduce the emission of air pollutants.

为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:

一种梯级水电站-火电厂联合优化调度方法,包括:A cascade hydropower station-thermal power plant joint optimal scheduling method, comprising:

构建水火电联合系统中火电厂火电机组的出力模型;Build the output model of the thermal power unit of the thermal power plant in the combined water and thermal power system;

依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型;According to the output model of the thermal power generation unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station and the output of the wind power generation unit, an optimal dispatch model of the hydropower-thermal power combined system is constructed;

采用分解优化算法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解;所述最优解包括火电机组的最优出力和水电机组的最优出力;A decomposition optimization algorithm is used to solve the optimal scheduling model of the hydropower-thermal power combined system, and the optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system is obtained; the optimal solution includes the optimal output of the thermal power unit and the hydropower unit. the optimal output;

将所述火电机组的最优出力和所述水电机组的最优出力对应的总能耗量确定所述水火电联合系统的最优总能源消耗量。The optimal total energy consumption of the combined hydro-thermal power system is determined from the total energy consumption corresponding to the optimal output of the thermal power unit and the optimal output of the hydroelectric unit.

可选的,所述火电厂火电机组的出力模型,具体为:Optionally, the output model of the thermal power unit of the thermal power plant is specifically:

Figure GDA0002685428460000021
Figure GDA0002685428460000021

其中,NT表示火电机组的台数,Pn,t表示第n台火电机组在t时刻的出力,PLt表示只有火电机组时电网的总负荷,ΔPt为只有火电机组时电网的总损耗。Among them, N T represents the number of thermal power units, P n,t represents the output of the nth thermal power unit at time t, P Lt represents the total load of the power grid when there are only thermal power units, and ΔP t is the total loss of the power grid when there are only thermal power units.

可选的,所述依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型,具体包括:Optionally, according to the output model of the thermal power unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station, and the output of the wind power generating unit, the optimal scheduling model of the hydropower-thermal power combined system is constructed, specifically including:

建立水电-火电联合系统优化调度模型的目标函数Objective Function of Establishing Optimal Scheduling Model for Combined Hydropower and Thermal Power System

minFa=FH+FT+FW minF a =F H +F T +F W

其中,in,

Figure GDA0002685428460000022
Figure GDA0002685428460000022

Figure GDA0002685428460000023
Figure GDA0002685428460000023

Figure GDA0002685428460000024
Figure GDA0002685428460000024

其中,Fa表示水火电联合系统的总能源消耗量,FH表示水电机组的能耗量,FT表示火电机组的能耗量,FW表示风力发电机组的能耗量,T为调度时间,NH为水电机组的台数,NW为风机的台数,qk,t为在t时刻第k台水电机组的出力,Pn,t为在t时刻第n台火电机组的出力,pw,t为在t时刻为第w台风机的出力,ht为t时段小时数,a、b、c分别为火电机组耗水量函数的二次项系数、一次项系数和常数项,μ为水力发电厂单位时间的煤耗率,λ为风力发电能耗系数;Among them, F a represents the total energy consumption of the combined hydro-thermal power system, F H represents the energy consumption of the hydropower unit, F T represents the energy consumption of the thermal power unit, F W represents the energy consumption of the wind turbine unit, and T is the dispatch time. , N H is the number of hydropower units, N W is the number of fans, q k,t is the output of the kth hydropower unit at time t, P n,t is the output of the nth thermal power unit at time t, pw , t is the output of the wth wind turbine at time t, h t is the number of hours in the t period, a, b, and c are the quadratic coefficient, primary coefficient and constant term of the water consumption function of the thermal power unit, and μ is the hydraulic power The coal consumption rate per unit time of the power plant, λ is the energy consumption coefficient of wind power generation;

建立水电-火电联合系统优化调度模型的约束条件;所述水电-火电联合系统优化调度模型的约束条件包括功率平衡约束条件、水电机组约束条件和火电机组约束条件;所述水电机组约束条件包括水电机组出力约束条件、水电机组出力限制约束条件和水量平衡约束条件;所述火电机组约束条件包括火电机组出力限制约束条件、常规机组爬坡限制约束条件和电网支路潮流约束条件;Constraints of the optimal scheduling model of the hydropower-thermal power combined system are established; the constraints of the hydropower-thermal power combined system optimal scheduling model include power balance constraints, hydropower unit constraints, and thermal power unit constraints; the hydropower unit constraints include hydropower Unit output constraints, hydropower unit output limitation constraints, and water balance constraints; the thermal power unit constraints include thermal power unit output limitation constraints, conventional unit ramping constraints, and power grid branch power flow constraints;

所述功率平衡约束条件为The power balance constraints are

Figure GDA0002685428460000031
Figure GDA0002685428460000031

其中,PDt为水电站-火电厂联合系统的总负荷;Among them, P Dt is the total load of the combined hydropower station and thermal power plant system;

所述水电机组出力约束条件为The output constraints of the hydroelectric unit are:

Figure GDA0002685428460000032
Figure GDA0002685428460000032

其中,Vk,t为第k台水电机组在t时刻的储水量,Qk,t为水电机组的出水量,c1k,c2k分别为水电机组出力约束中储水量、出水量的二次项系数,c3k为储水量和出水量乘积的一次项系数,c4k,c5k分别为水电机组出力约束中储水量、出水量的一次项系数,c6k为常数项参数;Among them, V k,t is the water storage capacity of the kth hydropower unit at time t, Q k,t is the water output of the hydropower unit, c 1k , c 2k are the secondary water storage capacity and water output in the output constraint of the hydropower unit, respectively term coefficient, c 3k is the first-order coefficient of the product of water storage and water output, c 4k , c 5k are the first-order coefficients of water storage and water output in the output constraint of the hydropower unit, and c 6k is the constant parameter;

所述水电机组出力限制约束条件为The output limit constraints of the hydroelectric unit are:

Figure GDA0002685428460000033
Figure GDA0002685428460000033

其中,

Figure GDA0002685428460000034
为第k台水电机组的最小出力,
Figure GDA0002685428460000035
为第k台水电机组的最大出力;in,
Figure GDA0002685428460000034
is the minimum output of the kth hydroelectric unit,
Figure GDA0002685428460000035
is the maximum output of the kth hydroelectric unit;

所述水量平衡约束条件为The water balance constraints are:

Figure GDA0002685428460000036
Figure GDA0002685428460000036

其中,Vk,t-1为第k台水电机组在t-1时刻的储水量,Ik,t为第k台水电机组在t时刻的进水量,Qk,t为第k台水电机组在t时刻的出水量,Sk,t为第k台水电机组在t时刻的溢水量,

Figure GDA0002685428460000037
表示由于时间延迟存留的水量;Ruk表示第k台水电机组的上游机组的总个数;τmk表示上游机组中的第m台水电机组到第k台水电机组的水输送的时间延迟;
Figure GDA00026854284600000412
表示上游机组中的第m台水电机组由于时间延迟产生的出水量;
Figure GDA00026854284600000413
表示上游机组中的第m台水电机组由于时间延迟产生的溢水量;Δt表示t-1时刻与t时刻的时间间隔;Among them, V k,t-1 is the water storage capacity of the kth hydropower unit at time t-1, I k,t is the water inflow of the kth hydropower unit at time t, and Qk,t is the kth hydropower unit The water output at time t, S k,t is the overflow volume of the kth hydropower unit at time t,
Figure GDA0002685428460000037
Represents the amount of water remaining due to time delay; R uk represents the total number of upstream units of the k-th hydroelectric unit; τ mk represents the time delay of water delivery from the m-th hydro-electric unit to the k-th hydro-electric unit in the upstream units;
Figure GDA00026854284600000412
Represents the water output of the m-th hydropower unit in the upstream unit due to time delay;
Figure GDA00026854284600000413
Represents the overflow amount of the mth hydropower unit in the upstream unit due to time delay; Δt represents the time interval between time t-1 and time t;

所述火电机组出力限制约束条件为The output limit constraints of the thermal power unit are:

Figure GDA0002685428460000041
Figure GDA0002685428460000041

其中,

Figure GDA0002685428460000042
表示第n台火电机组的最小出力,
Figure GDA0002685428460000043
表示第n台火电机组的最小出力、最大出力;in,
Figure GDA0002685428460000042
represents the minimum output of the nth thermal power unit,
Figure GDA0002685428460000043
Indicates the minimum output and maximum output of the nth thermal power unit;

所述常规机组爬坡限制约束条件为The conventional unit climbing limit constraints are:

pdown,n≤pn,t≤pup,np down,n ≤p n,t ≤p up,n ,

其中,pdown,n表示第n台火电机组的最大下调有功量,pup,n表示第n台火电机组的最大上调有功量;Among them, p down,n represents the maximum down-regulated active power of the nth thermal power unit, and p up,n represents the maximum up-regulated active power of the nth thermal power unit;

所述电网支路潮流约束条件为The power flow constraint condition of the power grid branch is:

Figure GDA0002685428460000044
Figure GDA0002685428460000044

其中,

Figure GDA0002685428460000045
表示电网中第m条线路的最小潮流,
Figure GDA0002685428460000046
表示电网中第m条线路的最大潮流,
Figure GDA0002685428460000047
表示电网中第m条线路在t时刻的潮流。in,
Figure GDA0002685428460000045
represents the minimum power flow of the mth line in the grid,
Figure GDA0002685428460000046
represents the maximum power flow of the mth line in the grid,
Figure GDA0002685428460000047
Represents the power flow of the mth line in the power grid at time t.

可选的,所述采用Benders分解算法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解,具体包括:Optionally, the Benders decomposition algorithm is used to solve the optimal scheduling model of the combined hydropower-thermal power system, and an optimal solution corresponding to the optimal scheduling model of the combined hydropower-thermal power system is obtained, specifically including:

步骤31:依据所述水电-火电联合系统优化调度模型分别建立下层水力发电机组模型和上层火力发电机组模型;Step 31: respectively establishing a lower-layer hydroelectric generating unit model and an upper-layer thermal generating unit model according to the optimal scheduling model of the hydropower-thermal power combined system;

步骤32:对所述下层水力发电机组模型进行求解,得到第v次迭代的水电机组的出力qv和水电机组的能耗量的上边界值

Figure GDA0002685428460000048
Step 32: Solve the lower hydroelectric generating unit model to obtain the upper boundary value of the output q v of the hydroelectric generating unit and the energy consumption of the hydroelectric generating unit at the vth iteration
Figure GDA0002685428460000048

步骤33:获取第v-1次迭代的火电机组的出力pv-1和火电机组的能耗量的下边界值

Figure GDA0002685428460000049
Step 33: Obtain the output p v-1 of the thermal power unit and the lower boundary value of the energy consumption of the thermal power unit in the v-1 iteration
Figure GDA0002685428460000049

步骤34:判断第v次迭代的水电机组的能耗量的上边界值

Figure GDA00026854284600000410
和第v-1次迭代的火电机组的能耗量的下边界值
Figure GDA00026854284600000411
是否满足预设收敛条件;若是,则将第v次迭代的水电机组的出力qv作为水电机组的最优出力,将第v-1次迭代的火电机组的出力pv-1作为火电机组的最优出力,若否,则执行步骤35;所述预设收敛条件为
Figure GDA0002685428460000051
Step 34: Determine the upper boundary value of the energy consumption of the hydroelectric unit in the vth iteration
Figure GDA00026854284600000410
and the lower bound value of the energy consumption of the thermal power unit at the v-1th iteration
Figure GDA00026854284600000411
Whether the preset convergence conditions are met; if so, take the output q v of the hydroelectric unit at the vth iteration as the optimal output of the hydroelectric unit, and take the output p v-1 of the thermal power unit at the v-1 iteration as the output of the thermal power unit Optimal output, if not, go to step 35; the preset convergence condition is
Figure GDA0002685428460000051

步骤35:对所述上层火力发电机组模型进行求解,得到第v次迭代的火电机组的出力pv和火电机组的能耗量的下边界值

Figure GDA0002685428460000052
并令v=v+1,再返回所述步骤32。Step 35: Solve the upper-layer thermal power generation unit model, and obtain the lower boundary value of the output p v of the thermal power unit and the energy consumption of the thermal power unit of the v-th iteration
Figure GDA0002685428460000052
And let v=v+1, and return to step 32.

本发明还提供了一种梯级水电站-火电厂联合优化调度系统,包括:The present invention also provides a cascade hydropower station-thermal power plant joint optimal dispatching system, comprising:

第一模型构建模块,用于构建水火电联合系统中火电厂火电机组的出力模型;The first model building module is used to build the output model of the thermal power unit of the thermal power plant in the combined water and thermal power system;

第二模型构建模块,用于依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型;The second model building module is used for constructing a hydropower-thermal power combined system optimal dispatch model according to the output model of the thermal power unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station, and the output of the wind power generating unit;

求解模块,用于采用Benders分解算法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解;所述最优解包括火电机组的最优出力和水电机组的最优出力;The solving module is used to solve the optimal scheduling model of the hydropower-thermal power combined system by using the Benders decomposition algorithm, and obtain the optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system; the optimal solution includes the optimal solution of the thermal power unit. optimal output and optimal output of hydroelectric units;

能耗确定模块,用于将所述火电机组的最优出力和所述水电机组的最优出力对应的总能耗量确定所述水火电联合系统的最优总能源消耗量。The energy consumption determination module is configured to determine the optimal total energy consumption of the combined hydrothermal power system based on the total energy consumption corresponding to the optimal output of the thermal power unit and the optimal output of the hydroelectric unit.

可选的,所述第一模型构建模块,具体为:Optionally, the first model building module is specifically:

Figure GDA0002685428460000053
Figure GDA0002685428460000053

其中,NT表示火电机组的台数,Pn,t表示第n台火电机组在t时刻的出力,PLt表示只有火电机组时电网的总负荷,ΔPt为只有火电机组时电网的总损耗。Among them, N T represents the number of thermal power units, P n,t represents the output of the nth thermal power unit at time t, P Lt represents the total load of the power grid when there are only thermal power units, and ΔP t is the total loss of the power grid when there are only thermal power units.

可选的,所述第二模型构建模块,具体包括:Optionally, the second model building module specifically includes:

目标函数建立单元,用于建立水电-火电联合系统优化调度模型的目标函数The objective function establishment unit is used to establish the objective function of the optimal dispatch model of the hydropower-thermal power combined system

minFa=FH+FT+FW minF a =F H +F T +F W

其中,in,

Figure GDA0002685428460000061
Figure GDA0002685428460000061

Figure GDA0002685428460000062
Figure GDA0002685428460000062

Figure GDA0002685428460000063
Figure GDA0002685428460000063

其中,Fa表示水火电联合系统的总能源消耗量,FH表示水电机组的能耗量,FT表示火电机组的能耗量,FW表示风力发电机组的能耗量,T为调度时间,NH为水电机组的台数,NW为风机的台数,qk,t为在t时刻第k台水电机组的出力,Pn,t为在t时刻第n台火电机组的出力,pw,t为在t时刻为第w台风机的出力,ht为t时段小时数,a、b、c分别为火电机组耗水量函数的二次项系数、一次项系数和常数项,μ为水力发电厂单位时间的煤耗率,λ为风力发电能耗系数;Among them, F a represents the total energy consumption of the combined hydro-thermal power system, F H represents the energy consumption of the hydropower unit, F T represents the energy consumption of the thermal power unit, F W represents the energy consumption of the wind turbine unit, and T is the dispatch time. , N H is the number of hydropower units, N W is the number of fans, q k,t is the output of the kth hydropower unit at time t, P n,t is the output of the nth thermal power unit at time t, pw , t is the output of the wth wind turbine at time t, h t is the number of hours in the t period, a, b, and c are the quadratic coefficient, primary coefficient and constant term of the water consumption function of the thermal power unit, and μ is the hydraulic power The coal consumption rate per unit time of the power plant, λ is the energy consumption coefficient of wind power generation;

约束条件建立单元,用于建立水电-火电联合系统优化调度模型的约束条件;所述水电-火电联合系统优化调度模型的约束条件包括功率平衡约束条件、水电机组约束条件和火电机组约束条件;所述水电机组约束条件包括水电机组出力约束条件、水电机组出力限制约束条件和水量平衡约束条件;所述火电机组约束条件包括火电机组出力限制约束条件、常规机组爬坡限制约束条件和电网支路潮流约束条件;The constraint condition establishment unit is used to establish the constraint conditions of the optimal scheduling model of the hydropower-thermal power combined system; the constraints of the optimal scheduling model of the hydropower-thermal power combined system include the power balance constraint condition, the hydropower unit constraint condition and the thermal power unit constraint condition; The constraints of the hydropower unit include the output constraints of the hydropower units, the output limit constraints of the hydropower units and the water balance constraints; the constraints of the thermal power units include the output constraints of the thermal power units, the conventional unit grade limit constraints and the power flow of the power grid branch Restrictions;

所述功率平衡约束条件为The power balance constraints are

Figure GDA0002685428460000064
Figure GDA0002685428460000064

其中,PDt为水电站-火电厂联合系统的总负荷;Among them, P Dt is the total load of the combined hydropower station and thermal power plant system;

所述水电机组出力约束条件为The output constraints of the hydroelectric unit are:

Figure GDA0002685428460000065
Figure GDA0002685428460000065

其中,Vk,t为第k台水电机组在t时刻的储水量,Qk,t为水电机组的出水量,c1k,c2k分别为水电机组出力约束中储水量、出水量的二次项系数,c3k为储水量和出水量乘积的一次项系数,c4k,c5k分别为水电机组出力约束中储水量、出水量的一次项系数,c6k为常数项参数;Among them, V k,t is the water storage capacity of the kth hydropower unit at time t, Q k,t is the water output of the hydropower unit, c 1k , c 2k are the secondary water storage capacity and water output in the output constraint of the hydropower unit, respectively term coefficient, c 3k is the first-order coefficient of the product of water storage and water output, c 4k , c 5k are the first-order coefficients of water storage and water output in the output constraint of the hydropower unit, and c 6k is the constant parameter;

所述水电机组出力限制约束条件为The output limit constraints of the hydroelectric unit are:

Figure GDA0002685428460000071
Figure GDA0002685428460000071

其中,

Figure GDA0002685428460000072
为第k台水电机组的最小出力,
Figure GDA0002685428460000073
为第k台水电机组的最大出力;in,
Figure GDA0002685428460000072
is the minimum output of the kth hydroelectric unit,
Figure GDA0002685428460000073
is the maximum output of the kth hydroelectric unit;

所述水量平衡约束条件为The water balance constraints are:

Figure GDA0002685428460000074
Figure GDA0002685428460000074

其中,Vk,t-1为第k台水电机组在t-1时刻的储水量,Ik,t为第k台水电机组在t时刻的进水量,Qk,t为第k台水电机组在t时刻的出水量,Sk,t为第k台水电机组在t时刻的溢水量,

Figure GDA0002685428460000075
表示由于时间延迟存留的水量;Ruk表示第k台水电机组的上游机组的总个数;τmk表示上游机组中的第m台水电机组到第k台水电机组的水输送的时间延迟;
Figure GDA0002685428460000079
表示上游机组中的第m台水电机组由于时间延迟产生的出水量;
Figure GDA00026854284600000710
表示上游机组中的第m台水电机组由于时间延迟产生的溢水量;Δt表示t-1时刻与t时刻的时间间隔;Among them, V k,t-1 is the water storage capacity of the kth hydropower unit at time t-1, I k,t is the water inflow of the kth hydropower unit at time t, and Qk,t is the kth hydropower unit The water output at time t, S k,t is the overflow volume of the kth hydropower unit at time t,
Figure GDA0002685428460000075
Represents the amount of water remaining due to time delay; R uk represents the total number of upstream units of the k-th hydroelectric unit; τ mk represents the time delay of water delivery from the m-th hydro-electric unit to the k-th hydro-electric unit in the upstream units;
Figure GDA0002685428460000079
Represents the water output of the m-th hydropower unit in the upstream unit due to time delay;
Figure GDA00026854284600000710
Represents the overflow amount of the mth hydropower unit in the upstream unit due to time delay; Δt represents the time interval between time t-1 and time t;

所述火电机组出力限制约束条件为The output limit constraints of the thermal power unit are:

Figure GDA0002685428460000076
Figure GDA0002685428460000076

其中,

Figure GDA0002685428460000077
表示第n台火电机组的最小出力,
Figure GDA0002685428460000078
表示第n台火电机组的最小出力、最大出力;in,
Figure GDA0002685428460000077
represents the minimum output of the nth thermal power unit,
Figure GDA0002685428460000078
Indicates the minimum output and maximum output of the nth thermal power unit;

所述常规机组爬坡限制约束条件为The conventional unit climbing limit constraints are:

pdown,n≤pn,t≤pup,np down,n ≤p n,t ≤p up,n ,

其中,pdown,n表示第n台火电机组的最大下调有功量,pup,n表示第n台火电机组的最大上调有功量;Among them, p down,n represents the maximum down-regulated active power of the nth thermal power unit, and p up,n represents the maximum up-regulated active power of the nth thermal power unit;

所述电网支路潮流约束条件为The power flow constraint condition of the power grid branch is:

Figure GDA0002685428460000081
Figure GDA0002685428460000081

其中,

Figure GDA0002685428460000082
表示电网中第m条线路的最小潮流,
Figure GDA0002685428460000083
表示电网中第m条线路的最大潮流,
Figure GDA0002685428460000084
表示电网中第m条线路在t时刻的潮流。in,
Figure GDA0002685428460000082
represents the minimum power flow of the mth line in the grid,
Figure GDA0002685428460000083
represents the maximum power flow of the mth line in the grid,
Figure GDA0002685428460000084
Represents the power flow of the mth line in the power grid at time t.

可选的,所述求解模块,具体包括:Optionally, the solving module specifically includes:

两层模型转换单元,用于依据所述水电-火电联合系统优化调度模型分别建立下层水力发电机组模型和上层火力发电机组模型;a two-layer model conversion unit, configured to respectively establish a lower-layer hydroelectric generating unit model and an upper-layer thermal generating unit model according to the optimal scheduling model of the hydropower-thermal power combined system;

第一求解单元,用于对所述下层水力发电机组模型进行求解,得到第v次迭代的水电机组的出力qv和水电机组的能耗量的上边界值

Figure GDA0002685428460000085
The first solving unit is used to solve the model of the lower hydroelectric generating unit to obtain the upper boundary value of the output qv of the hydroelectric generating unit and the energy consumption of the hydroelectric generating unit at the vth iteration
Figure GDA0002685428460000085

获取单元,用于获取第v-1次迭代的火电机组的出力pv-1和火电机组的能耗量的下边界值

Figure GDA0002685428460000086
The obtaining unit is used to obtain the output p v-1 of the thermal power unit and the lower boundary value of the energy consumption of the thermal power unit in the v-1 iteration
Figure GDA0002685428460000086

判断单元,用于判断第v次迭代的水电机组的能耗量的上边界值

Figure GDA0002685428460000087
和第v-1次迭代的火电机组的能耗量的下边界值
Figure GDA0002685428460000088
是否满足预设收敛条件;若是,则将第v次迭代的水电机组的出力qv作为水电机组的最优出力,将第v-1次迭代的火电机组的出力pv-1作为火电机组的最优出力,若否,则转到第二求解单元;所述预设收敛条件为
Figure GDA0002685428460000089
The judgment unit is used to judge the upper boundary value of the energy consumption of the hydroelectric unit in the vth iteration
Figure GDA0002685428460000087
and the lower bound value of the energy consumption of the thermal power unit at the v-1th iteration
Figure GDA0002685428460000088
Whether the preset convergence conditions are met; if so, take the output q v of the hydroelectric unit at the vth iteration as the optimal output of the hydroelectric unit, and take the output p v-1 of the thermal power unit at the v-1 iteration as the output of the thermal power unit The optimal output, if not, go to the second solving unit; the preset convergence condition is
Figure GDA0002685428460000089

第二求解单元,用于对所述上层火力发电机组模型进行求解,得到第v次迭代的火电机组的出力pv和火电机组的能耗量的下边界值

Figure GDA00026854284600000810
并令v=v+1,再返回所述第一求解单元。The second solving unit is used to solve the upper-layer thermal power generating unit model, and obtain the lower boundary value of the output p v of the thermal power unit and the energy consumption of the thermal power unit at the vth iteration
Figure GDA00026854284600000810
And let v=v+1, and then return to the first solving unit.

与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

本发明提出了一种梯级水电站-火电厂联合优化调度方法及系统。该方法包括构建水火电联合系统中火电厂火电机组的出力模型;依据火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型;采用Benders分解算法对水电-火电联合系统优化调度模型进行求解,得到水电-火电联合系统优化调度模型对应的最优解;最优解包括火电机组的最优出力和水电机组的最优出力;将火电机组的最优出力和水电机组的最优出力对应的总能耗量确定水火电联合系统的最优总能源消耗量。本发明能够提高清洁能源的发电能力,达到节约传统化石能源的消耗,减少大气污染物的排放的目的。The invention proposes a cascade hydropower station-thermal power plant joint optimal dispatching method and system. The method includes constructing the output model of the thermal power unit of the thermal power plant in the combined hydro-thermal power system; constructing the optimal scheduling model of the combined hydropower-thermal power system according to the output model of the thermal power unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station and the output of the wind power generating unit; using Benders The decomposition algorithm solves the optimal scheduling model of the hydropower-thermal power combined system, and obtains the optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system; the optimal solution includes the optimal output of the thermal power unit and the optimal output of the hydropower unit; The total energy consumption corresponding to the optimal output of the hydroelectric unit and the optimal output of the hydroelectric unit determines the optimal total energy consumption of the combined hydro-thermal power system. The invention can improve the power generation capacity of clean energy, achieve the purpose of saving the consumption of traditional fossil energy and reducing the emission of air pollutants.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.

图1为本发明实施例一种梯级水电站-火电厂联合优化调度方法的流程图;Fig. 1 is the flow chart of a kind of cascade hydropower station-thermal power plant joint optimal dispatching method according to the embodiment of the present invention;

图2为本发明实施例水火电联合系统的结构示意图;2 is a schematic structural diagram of a combined water-thermal-power system according to an embodiment of the present invention;

图3为本发明的实施例一种梯级水电站-火电厂联合优化调度系统的结构示意图。3 is a schematic structural diagram of a cascade hydropower station-thermal power plant joint optimal dispatching system according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

图1为本发明实施例一种梯级水电站-火电厂联合优化调度方法的流程图。FIG. 1 is a flow chart of a method for joint optimal scheduling of cascade hydropower stations and thermal power plants according to an embodiment of the present invention.

参见图1,实施例的梯级水电站-火电厂联合优化调度方法,包括:Referring to Fig. 1, the cascade hydropower station-thermal power plant joint optimal scheduling method of the embodiment includes:

步骤S1:构建水火电联合系统中火电厂火电机组的出力模型。所述水火电联合系统如图2所示。Step S1: Build the output model of the thermal power unit of the thermal power plant in the combined water and thermal power system. The combined water and thermal power system is shown in Figure 2.

火电厂的发电系统是由副励磁机、励磁盘、主励磁机(备用励磁机)、发电机、变压器、高压断路器、升压站、配电装置等组成。发电是由副励磁机(永磁机)发出高频电流,副励磁机发出的电流经过励磁盘整流,再送到主励磁机,主励磁机发出电后经过调压器以及灭磁开关经过碳刷送到发电机转子。发电机转子通过旋转其定子线圈感应出电流,强大的电流通过发电机出线分两路,一路送至厂用电变压器,另一路则送到高压断路器,由高压断路器送至电网。The power generation system of the thermal power plant is composed of auxiliary exciter, excitation disk, main exciter (standby exciter), generator, transformer, high-voltage circuit breaker, booster station, power distribution device, etc. Power generation is generated by the high-frequency current from the auxiliary exciter (permanent magnet machine), the current sent by the auxiliary exciter is rectified by the excitation disk, and then sent to the main exciter. to the generator rotor. The generator rotor induces current by rotating its stator coil. The strong current is divided into two paths through the generator outlet, one is sent to the factory power transformer, and the other is sent to the high-voltage circuit breaker, which is sent to the power grid by the high-voltage circuit breaker.

所述火电厂火电机组的出力模型,具体为:The output model of the thermal power unit of the thermal power plant is specifically:

Figure GDA0002685428460000101
Figure GDA0002685428460000101

其中,NT表示火电机组的台数,Pn,t表示第n台火电机组在t时刻的出力,PLt表示只有火电机组时电网的总负荷,ΔPt为只有火电机组时电网的总损耗。Among them, N T represents the number of thermal power units, P n,t represents the output of the nth thermal power unit at time t, P Lt represents the total load of the power grid when there are only thermal power units, and ΔP t is the total loss of the power grid when there are only thermal power units.

步骤S2:依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型。其中,梯级水电站水电机组的出力依据现有的任意一种梯级水电站水电机组的出力模型计算即可,风力发电机组的出力也可依据现有的任意一种风力发电机组的出力模型计算即可。Step S2: constructing a hydropower-thermal power combined system optimal scheduling model according to the output model of the thermal power plant, the output of the hydropower set of the cascade hydropower station, and the output of the wind power generating set. Wherein, the output of the hydroelectric unit of the cascade hydropower station may be calculated according to any existing output model of the hydropower unit of the cascade hydropower station, and the output of the wind turbine may also be calculated according to any existing output model of the wind turbine.

所述步骤S2,具体包括:The step S2 specifically includes:

步骤21:以水火电联合系统的总能源消耗量最小为目标函数,建立水电-火电联合系统优化调度模型的目标函数Step 21: Taking the minimum total energy consumption of the combined hydropower system as the objective function, establish the objective function of the optimal scheduling model of the combined hydropower-thermal power system

min Fa=FH+FT+FW min F a =F H +F T +F W

其中,in,

Figure GDA0002685428460000102
Figure GDA0002685428460000102

Figure GDA0002685428460000103
Figure GDA0002685428460000103

Figure GDA0002685428460000104
Figure GDA0002685428460000104

其中,Fa表示水火电联合系统的总能源消耗量,FH表示水电机组的能耗量,FT表示火电机组的能耗量,FW表示风力发电机组的能耗量,T为调度时间,NH为水电机组的台数,NW为风机的台数,qk,t为在t时刻第k台水电机组的出力,Pn,t为在t时刻第n台火电机组的出力,pw,t为在t时刻为第w台风机的出力,ht为t时段小时数,a、b、c分别为火电机组耗水量函数的二次项系数、一次项系数和常数项,μ为水力发电厂单位时间的煤耗率,λ为风力发电能耗系数。Among them, F a represents the total energy consumption of the combined hydro-thermal power system, F H represents the energy consumption of the hydropower unit, F T represents the energy consumption of the thermal power unit, F W represents the energy consumption of the wind turbine unit, and T is the dispatch time. , N H is the number of hydropower units, N W is the number of fans, q k,t is the output of the kth hydropower unit at time t, P n,t is the output of the nth thermal power unit at time t, pw , t is the output of the wth wind turbine at time t, h t is the number of hours in the t period, a, b, and c are the quadratic coefficient, primary coefficient and constant term of the water consumption function of the thermal power unit, and μ is the hydraulic power The coal consumption rate per unit time of the power plant, λ is the energy consumption coefficient of wind power generation.

步骤22:建立水电-火电联合系统优化调度模型的约束条件;所述水电-火电联合系统优化调度模型的约束条件包括功率平衡约束条件、水电机组约束条件和火电机组约束条件;所述水电机组约束条件包括水电机组出力约束条件、水电机组出力限制约束条件和水量平衡约束条件;所述火电机组约束条件包括火电机组出力限制约束条件、常规机组爬坡限制约束条件和电网支路潮流约束条件。Step 22: Establish constraints on the optimal scheduling model of the hydropower-thermal power combined system; the constraints on the optimal scheduling model for the hydropower-thermal power combined system include power balance constraints, hydropower unit constraints, and thermal power unit constraints; the hydropower unit constraints The conditions include output constraints of hydropower units, output limit constraints of hydropower units, and water balance constraints; and the thermal power unit constraints include output constraints of thermal power units, conventional unit climbing constraints, and power grid branch power flow constraints.

其中,所述功率平衡约束条件为Wherein, the power balance constraint condition is:

Figure GDA0002685428460000111
Figure GDA0002685428460000111

其中,PDt为水电站-火电厂联合系统的总负荷;Among them, P Dt is the total load of the combined hydropower station and thermal power plant system;

所述水电机组出力约束条件为The output constraints of the hydroelectric unit are:

Figure GDA0002685428460000112
Figure GDA0002685428460000112

其中,Vk,t为第k台水电机组在t时刻的储水量,Qk,t为水电机组的出水量,c1k,c2k分别为水电机组出力约束中储水量、出水量的二次项系数,c3k为储水量和出水量乘积的一次项系数,c4k,c5k分别为水电机组出力约束中储水量、出水量的一次项系数,c6k为常数项参数;Among them, V k,t is the water storage capacity of the kth hydropower unit at time t, Q k,t is the water output of the hydropower unit, c 1k , c 2k are the secondary water storage capacity and water output in the output constraint of the hydropower unit, respectively term coefficient, c 3k is the first-order coefficient of the product of water storage and water output, c 4k , c 5k are the first-order coefficients of water storage and water output in the output constraint of the hydropower unit, and c 6k is the constant parameter;

所述水电机组出力限制约束条件为The output limit constraints of the hydroelectric unit are:

Figure GDA0002685428460000113
Figure GDA0002685428460000113

其中,

Figure GDA0002685428460000114
为第k台水电机组的最小出力,
Figure GDA0002685428460000115
为第k台水电机组的最大出力;in,
Figure GDA0002685428460000114
is the minimum output of the kth hydroelectric unit,
Figure GDA0002685428460000115
is the maximum output of the kth hydroelectric unit;

所述水量平衡约束条件为The water balance constraints are:

Figure GDA0002685428460000116
Figure GDA0002685428460000116

其中,Vk,t-1为第k台水电机组在t-1时刻的储水量,Ik,t为第k台水电机组在t时刻的进水量,Qk,t为第k台水电机组在t时刻的出水量,Sk,t为第k台水电机组在t时刻的溢水量,

Figure GDA0002685428460000117
)表示由于时间延迟存留的水量;Ruk表示第k台水电机组的上游机组的总个数,位于第k台水电机组上游的机组为第k台水电机组的上游机组,第k台水电机组的上游机组中的水电机组从第k+1台开始,共有Ruk台;τmk表示上游机组中的第m台水电机组到第k台水电机组的水输送的时间延迟;
Figure GDA0002685428460000129
表示上游机组中的第m台水电机组由于时间延迟产生的出水量;
Figure GDA00026854284600001210
表示上游机组中的第m台水电机组由于时间延迟产生的溢水量;Δt表示t-1时刻与t时刻的时间间隔;Among them, V k,t-1 is the water storage capacity of the kth hydropower unit at time t-1, I k,t is the water inflow of the kth hydropower unit at time t, and Qk,t is the kth hydropower unit The water output at time t, S k,t is the overflow volume of the kth hydropower unit at time t,
Figure GDA0002685428460000117
) represents the amount of water remaining due to time delay; R uk represents the total number of upstream units of the kth hydropower unit, the unit located upstream of the kth hydropower unit is the upstream unit of the kth hydropower unit, and the The hydropower units in the upstream unit start from the k+1th unit, and there are a total of R uk units; τ mk represents the time delay of water delivery from the mth hydropower unit in the upstream unit to the kth hydropower unit;
Figure GDA0002685428460000129
Represents the water output of the m-th hydropower unit in the upstream unit due to time delay;
Figure GDA00026854284600001210
Represents the overflow amount of the mth hydropower unit in the upstream unit due to time delay; Δt represents the time interval between time t-1 and time t;

所述火电机组出力限制约束条件为The output limit constraints of the thermal power unit are:

Figure GDA0002685428460000121
Figure GDA0002685428460000121

其中,

Figure GDA0002685428460000122
表示第n台火电机组的最小出力,
Figure GDA0002685428460000123
表示第n台火电机组的最小出力、最大出力;in,
Figure GDA0002685428460000122
represents the minimum output of the nth thermal power unit,
Figure GDA0002685428460000123
Indicates the minimum output and maximum output of the nth thermal power unit;

所述常规机组爬坡限制约束条件为The conventional unit climbing limit constraints are:

pdown,n≤pn,t≤pup,np down,n ≤p n,t ≤p up,n ,

其中,pdown,n表示第n台火电机组的最大下调有功量,pup,n表示第n台火电机组的最大上调有功量;Among them, p down,n represents the maximum down-regulated active power of the nth thermal power unit, and p up,n represents the maximum up-regulated active power of the nth thermal power unit;

所述电网支路潮流约束条件为The power flow constraint condition of the power grid branch is:

Figure GDA0002685428460000124
Figure GDA0002685428460000124

其中,

Figure GDA0002685428460000125
表示电网中第m条线路的最小潮流,
Figure GDA0002685428460000126
表示电网中第m条线路的最大潮流,
Figure GDA0002685428460000127
表示电网中第m条线路在t时刻的潮流。in,
Figure GDA0002685428460000125
represents the minimum power flow of the mth line in the grid,
Figure GDA0002685428460000126
represents the maximum power flow of the mth line in the grid,
Figure GDA0002685428460000127
Represents the power flow of the mth line in the power grid at time t.

步骤S3:采用Benders分解算法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解;所述最优解包括火电机组的最优出力和水电机组的最优出力。Step S3: use the Benders decomposition algorithm to solve the optimal scheduling model of the hydropower-thermal power combined system, and obtain an optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system; the optimal solution includes the optimal output of the thermal power unit and the optimal output of hydroelectric units.

所述步骤S3,具体包括:The step S3 specifically includes:

步骤31:依据所述水电-火电联合系统优化调度模型分别建立下层水力发电机组模型和上层火力发电机组模型。Step 31: According to the optimal scheduling model of the hydropower-thermal power combined system, a lower-layer hydroelectric generating unit model and an upper-layer thermal generating unit model are established respectively.

步骤32:对所述下层水力发电机组模型进行求解,得到第v次迭代的水电机组的出力qv和水电机组的能耗量的上边界值

Figure GDA0002685428460000128
Step 32: Solve the lower hydroelectric generating unit model to obtain the upper boundary value of the output q v of the hydroelectric generating unit and the energy consumption of the hydroelectric generating unit at the vth iteration
Figure GDA0002685428460000128

所述下层水力发电机组模型为The lower hydroelectric generating unit model is

Figure GDA0002685428460000131
Figure GDA0002685428460000131

subjecttosubjectto

Figure GDA0002685428460000132
Figure GDA0002685428460000132

其中,约束条件c(q)表示水力发电机组约束,包括水电机组出力限制约束和水量平衡约束,表示为Among them, the constraint condition c(q) represents the constraint of the hydroelectric generating unit, including the output limitation constraint and the water balance constraint of the hydroelectric generating unit, expressed as

Figure GDA0002685428460000133
Figure GDA0002685428460000133

约束条件d(p,q)表示水电站-火电厂联合系统的耦合约束,表示为The constraint condition d(p,q) represents the coupling constraint of the combined hydropower station and thermal power plant system, which is expressed as

Figure GDA0002685428460000134
Figure GDA0002685428460000134

p被赋值为上层火力发电机组第v-1次迭代所得的解pv-1,即p=pv-1。将p代入到下层模型中,则此时下层水力发电机组模型是一个只关于水力发电变量q的优化问题。p is assigned as the solution p v-1 obtained by the v-1 iteration of the upper thermal power generating unit, that is, p=p v-1 . Substitute p into the lower layer model, then the lower layer hydroelectric generating unit model is an optimization problem only about the hydropower generation variable q.

下层水力发电机组模型求解得出了qv值以及目标函数F值,此时定义F值为目标函数在第v次迭代之后的上边界

Figure GDA0002685428460000135
The qv value and the objective function F value are obtained by solving the lower hydroelectric generating unit model. At this time, the F value is defined as the upper boundary of the objective function after the vth iteration.
Figure GDA0002685428460000135

其中,λv为火电机组出力pi在第v次迭代的双向变量,用来修正约束可行性越限,增加目标函数的敏感度,λv表示为Among them, λ v is the bidirectional variable of the output p i of the thermal power unit in the vth iteration, which is used to correct the constraint feasibility exceeding the limit and increase the sensitivity of the objective function, and λ v is expressed as

Figure GDA0002685428460000136
Figure GDA0002685428460000136

其中,NH为水电机组的台数,NT为火电机组的台数,NW为风机的台数;

Figure GDA0002685428460000137
表示函数F对Pi求偏导。Among them, NH is the number of hydropower units, NT is the number of thermal power units, and N W is the number of fans;
Figure GDA0002685428460000137
Represents the partial derivative of the function F with respect to Pi.

步骤33:获取第v-1次迭代的火电机组的出力pv-1和火电机组的能耗量的下边界值

Figure GDA0002685428460000138
Step 33: Obtain the output p v-1 of the thermal power unit and the lower boundary value of the energy consumption of the thermal power unit in the v-1 iteration
Figure GDA0002685428460000138

步骤34:判断第v次迭代的水电机组的能耗量的上边界值

Figure GDA0002685428460000139
和第v-1次迭代的火电机组的能耗量的下边界值
Figure GDA00026854284600001310
是否满足预设收敛条件;若是,则将第v次迭代的水电机组的出力qv作为水电机组的最优出力,将第v-1次迭代的火电机组的出力pv-1作为火电机组的最优出力,若否,则执行步骤35;所述预设收敛条件为
Figure GDA0002685428460000141
Step 34: Determine the upper boundary value of the energy consumption of the hydroelectric unit in the vth iteration
Figure GDA0002685428460000139
and the lower bound value of the energy consumption of the thermal power unit at the v-1th iteration
Figure GDA00026854284600001310
Whether the preset convergence conditions are met; if so, take the output q v of the hydroelectric unit at the vth iteration as the optimal output of the hydroelectric unit, and take the output p v-1 of the thermal power unit at the v-1 iteration as the output of the thermal power unit Optimal output, if not, go to step 35; the preset convergence condition is
Figure GDA0002685428460000141

步骤35:对所述上层火力发电机组模型进行求解,上层火力发电机组模型中目标函数为一个实数变量,约束条件包括火力发电机组约束,上层火力发电机组模型求解得出了pv,以及目标函数值下边界

Figure GDA0002685428460000142
更新迭代次数v=v+1,再返回所述步骤32。其中,所述上层火力发电机组模型为Step 35: Solve the upper-layer thermal power generation unit model, the objective function in the upper-layer thermal power generation unit model is a real variable, and the constraints include thermal power generation unit constraints, and the upper layer thermal power generation unit model is solved to obtain p v , and the objective function value lower bound
Figure GDA0002685428460000142
Update the number of iterations v=v+1, and then return to step 32. Wherein, the upper-layer thermal power generation unit model is

Figure GDA0002685428460000143
Figure GDA0002685428460000143

其中,约束条件c(p)表示火力发电机组约束,包括火电机组出力限制约束、机组爬坡限制约束和电网支路潮流约束,表示为Among them, the constraint condition c(p) represents the constraints of the thermal power generation unit, including the output restriction constraint of the thermal power unit, the unit climbing limit constraint and the power flow constraint of the power grid branch, which is expressed as

Figure GDA0002685428460000144
Figure GDA0002685428460000144

步骤S4:将所述火电机组的最优出力和所述水电机组的最优出力对应的总能耗量确定所述水火电联合系统的最优总能源消耗量。Step S4: Determine the optimal total energy consumption of the combined hydro-thermal power system based on the total energy consumption corresponding to the optimal output of the thermal power unit and the optimal output of the hydroelectric unit.

本实施例的梯级水电站-火电厂联合优化调度方法,水电-火电联合系统优化调度模型考虑了对水火电联合系统消纳风电的影响;水电-火电联合系统优化调度模型以总能耗量最小为目标,达到了资源的合理配置;水火电联合系统是一个多维的、复杂的、非线性优化问题,应用传统的优化算法计算难度较大,采用分解优化算法将水电-火电联合系统优化调度模型分解成上下两层交替迭代求解,降低系统计算复杂度,能够快速收敛到系统最优值,可用于实际工程中大规模大系统的优化问题;能够提高清洁能源的发电能力,达到节约传统化石能源的消耗,减少大气污染物的排放的目的。The cascade hydropower station-thermal power combined optimal scheduling method in this embodiment, the hydropower-thermal power combined system optimal scheduling model considers the impact on the wind power consumption of the hydropower-thermal power combined system; the hydropower-thermal power combined system optimal scheduling model takes the minimum total energy consumption as The goal is to achieve a reasonable allocation of resources; the combined hydropower-thermal power system is a multi-dimensional, complex, nonlinear optimization problem, and the traditional optimization algorithm is difficult to calculate. The decomposition optimization algorithm is used to decompose the optimal scheduling model of the hydropower-thermal power combined system Iteratively solves the upper and lower layers alternately, reduces the computational complexity of the system, can quickly converge to the optimal value of the system, and can be used for optimization problems of large-scale large-scale systems in practical projects; It can improve the power generation capacity of clean energy and achieve the goal of saving traditional fossil energy. consumption, the purpose of reducing the emission of air pollutants.

本发明还提供了一种梯级水电站-火电厂联合优化调度系统,图3为本发明的实施例一种梯级水电站-火电厂联合优化调度系统的结构示意图。The present invention also provides a cascade hydropower station-thermal power plant joint optimal dispatching system. FIG. 3 is a schematic structural diagram of a cascade hydropower station-thermal power plant joint optimal dispatching system according to an embodiment of the present invention.

参见图3,实施例的梯级水电站-火电厂联合优化调度系统包括:Referring to FIG. 3, the cascade hydropower station-thermal power plant joint optimal dispatching system of the embodiment includes:

第一模型构建模块301,用于构建水火电联合系统中火电厂火电机组的出力模型。The first model building module 301 is used to build the output model of the thermal power unit of the thermal power plant in the combined water and thermal power system.

第二模型构建模块302,用于依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型。The second model building module 302 is used for constructing a hydropower-thermal power combined system optimal dispatch model according to the output model of the thermal power unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station and the output of the wind power generating unit.

求解模块303,用于采用Benders分解法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解;所述最优解包括火电机组的最优出力和水电机组的最优出力。The solving module 303 is used to solve the optimal scheduling model of the hydropower-thermal power combined system by using the Benders decomposition method, and obtain an optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system; the optimal solution includes the Optimal output and optimal output of hydroelectric units.

能耗确定模块304,用于将所述火电机组的最优出力和所述水电机组的最优出力对应的总能耗量确定所述水火电联合系统的最优总能源消耗量。The energy consumption determination module 304 is configured to determine the optimal total energy consumption of the combined hydrothermal power system based on the total energy consumption corresponding to the optimal output of the thermal power unit and the optimal output of the hydroelectric unit.

作为一种可选的实施方式,所述第一模型构建模块301,具体为:As an optional implementation manner, the first model building module 301 is specifically:

Figure GDA0002685428460000151
Figure GDA0002685428460000151

其中,NT表示火电机组的台数,Pn,t表示第n台火电机组在t时刻的出力,PLt表示只有火电机组时电网的总负荷,ΔPt为只有火电机组时电网的总损耗。Among them, N T represents the number of thermal power units, P n,t represents the output of the nth thermal power unit at time t, P Lt represents the total load of the power grid when there are only thermal power units, and ΔP t is the total loss of the power grid when there are only thermal power units.

作为一种可选的实施方式,所述第二模型构建模块302,具体包括:As an optional implementation manner, the second model building module 302 specifically includes:

目标函数建立单元,用于建立水电-火电联合系统优化调度模型的目标函数The objective function establishment unit is used to establish the objective function of the optimal dispatch model of the hydropower-thermal power combined system

minFa=FH+FT+FW minF a =F H +F T +F W

其中,in,

Figure GDA0002685428460000152
Figure GDA0002685428460000152

Figure GDA0002685428460000153
Figure GDA0002685428460000153

Figure GDA0002685428460000154
Figure GDA0002685428460000154

其中,Fa表示水火电联合系统的总能源消耗量,FH表示水电机组的能耗量,FT表示火电机组的能耗量,FW表示风力发电机组的能耗量,T为调度时间,NH为水电机组的台数,NW为风机的台数,qk,t为在t时刻第k台水电机组的出力,Pn,t为在t时刻第n台火电机组的出力,pw,t为在t时刻为第w台风机的出力,ht为t时段小时数,a、b、c分别为火电机组耗水量函数的二次项系数、一次项系数和常数项,μ为水力发电厂单位时间的煤耗率,λ为风力发电能耗系数;Among them, F a represents the total energy consumption of the combined hydro-thermal power system, F H represents the energy consumption of the hydropower unit, F T represents the energy consumption of the thermal power unit, F W represents the energy consumption of the wind turbine unit, and T is the dispatch time. , N H is the number of hydropower units, N W is the number of fans, q k,t is the output of the kth hydropower unit at time t, P n,t is the output of the nth thermal power unit at time t, pw , t is the output of the wth wind turbine at time t, h t is the number of hours in the t period, a, b, and c are the quadratic coefficient, primary coefficient and constant term of the water consumption function of the thermal power unit, and μ is the hydraulic power The coal consumption rate per unit time of the power plant, λ is the energy consumption coefficient of wind power generation;

约束条件建立单元,用于建立水电-火电联合系统优化调度模型的约束条件;所述水电-火电联合系统优化调度模型的约束条件包括功率平衡约束条件、水电机组约束条件和火电机组约束条件;所述水电机组约束条件包括水电机组出力约束条件、水电机组出力限制约束条件和水量平衡约束条件;所述火电机组约束条件包括火电机组出力限制约束条件、常规机组爬坡限制约束条件和电网支路潮流约束条件;The constraint condition establishment unit is used to establish the constraint conditions of the optimal scheduling model of the hydropower-thermal power combined system; the constraints of the optimal scheduling model of the hydropower-thermal power combined system include the power balance constraint condition, the hydropower unit constraint condition and the thermal power unit constraint condition; The constraints of the hydropower unit include the output constraints of the hydropower units, the output limit constraints of the hydropower units and the water balance constraints; the constraints of the thermal power units include the output constraints of the thermal power units, the conventional unit grade limit constraints and the power flow of the power grid branch Restrictions;

所述功率平衡约束条件为The power balance constraints are

Figure GDA0002685428460000161
Figure GDA0002685428460000161

其中,PDt为水电站-火电厂联合系统的总负荷;Among them, P Dt is the total load of the combined hydropower station and thermal power plant system;

所述水电机组出力约束条件为The output constraints of the hydroelectric unit are:

Figure GDA0002685428460000162
Figure GDA0002685428460000162

其中,Vk,t为第k台水电机组在t时刻的储水量,Qk,t为水电机组的出水量,c1k,c2k分别为水电机组出力约束中储水量、出水量的二次项系数,c3k为储水量和出水量乘积的一次项系数,c4k,c5k分别为水电机组出力约束中储水量、出水量的一次项系数,c6k为常数项参数;Among them, V k,t is the water storage capacity of the kth hydropower unit at time t, Q k,t is the water output of the hydropower unit, c 1k , c 2k are the secondary water storage capacity and water output in the output constraint of the hydropower unit, respectively term coefficient, c 3k is the first-order coefficient of the product of water storage and water output, c 4k , c 5k are the first-order coefficients of water storage and water output in the output constraint of the hydropower unit, and c 6k is the constant parameter;

所述水电机组出力限制约束条件为The output limit constraints of the hydroelectric unit are:

Figure GDA0002685428460000163
Figure GDA0002685428460000163

其中,

Figure GDA0002685428460000164
为第k台水电机组的最小出力,
Figure GDA0002685428460000165
为第k台水电机组的最大出力;in,
Figure GDA0002685428460000164
is the minimum output of the kth hydroelectric unit,
Figure GDA0002685428460000165
is the maximum output of the kth hydroelectric unit;

所述水量平衡约束条件为The water balance constraints are:

Figure GDA0002685428460000171
Figure GDA0002685428460000171

其中,Vk,t-1为第k台水电机组在t-1时刻的储水量,Ik,t为第k台水电机组在t时刻的进水量,Qk,t为第k台水电机组在t时刻的出水量,Sk,t为第k台水电机组在t时刻的溢水量,

Figure GDA0002685428460000172
)表示由于时间延迟存留的水量;Ruk表示第k台水电机组的上游机组的总个数;τmk表示上游机组中的第m台水电机组到第k台水电机组的水输送的时间延迟;Qm,t-τmk表示上游机组中的第m台水电机组由于时间延迟产生的出水量;Sm,t-τmk表示上游机组中的第m台水电机组由于时间延迟产生的溢水量;Δt表示t-1时刻与t时刻的时间间隔;Among them, V k,t-1 is the water storage capacity of the kth hydropower unit at time t-1, I k,t is the water inflow of the kth hydropower unit at time t, and Qk,t is the kth hydropower unit The water output at time t, S k,t is the overflow volume of the kth hydropower unit at time t,
Figure GDA0002685428460000172
) represents the amount of water remaining due to time delay; R uk represents the total number of upstream units of the k-th hydropower unit; τ mk represents the time delay of water delivery from the m-th hydro-power unit to the k-th hydro-power unit in the upstream units; Q m,t-τmk represents the water output of the mth hydropower unit in the upstream unit due to time delay; S m,t-τmk represents the overflow volume of the mth hydropower unit in the upstream unit due to time delay; Δt represents The time interval between time t-1 and time t;

所述火电机组出力限制约束条件为The output limit constraints of the thermal power unit are:

Figure GDA0002685428460000173
Figure GDA0002685428460000173

其中,

Figure GDA0002685428460000174
表示第n台火电机组的最小出力,
Figure GDA0002685428460000175
表示第n台火电机组的最小出力、最大出力;in,
Figure GDA0002685428460000174
represents the minimum output of the nth thermal power unit,
Figure GDA0002685428460000175
Indicates the minimum output and maximum output of the nth thermal power unit;

所述常规机组爬坡限制约束条件为The conventional unit climbing limit constraints are:

pdown,n≤pn,t≤pup,np down,n ≤p n,t ≤p up,n ,

其中,pdown,n表示第n台火电机组的最大下调有功量,pup,n表示第n台火电机组的最大上调有功量;Among them, p down,n represents the maximum down-regulated active power of the nth thermal power unit, and p up,n represents the maximum up-regulated active power of the nth thermal power unit;

所述电网支路潮流约束条件为The power flow constraint condition of the power grid branch is:

Figure GDA0002685428460000176
Figure GDA0002685428460000176

其中,

Figure GDA0002685428460000177
表示电网中第m条线路的最小潮流,
Figure GDA0002685428460000178
表示电网中第m条线路的最大潮流,
Figure GDA0002685428460000179
表示电网中第m条线路在t时刻的潮流。in,
Figure GDA0002685428460000177
represents the minimum power flow of the mth line in the grid,
Figure GDA0002685428460000178
represents the maximum power flow of the mth line in the grid,
Figure GDA0002685428460000179
Represents the power flow of the mth line in the power grid at time t.

作为一种可选的实施方式,所述求解模块303,具体包括:As an optional implementation manner, the solving module 303 specifically includes:

两层模型转换单元,用于依据所述水电-火电联合系统优化调度模型分别建立下层水力发电机组模型和上层火力发电机组模型;a two-layer model conversion unit, configured to respectively establish a lower-layer hydroelectric generating unit model and an upper-layer thermal generating unit model according to the optimal scheduling model of the hydropower-thermal power combined system;

第一求解单元,用于对所述下层水力发电机组模型进行求解,得到第v次迭代的水电机组的出力qv和水电机组的能耗量的上边界值

Figure GDA0002685428460000181
The first solving unit is used to solve the model of the lower hydroelectric generating unit to obtain the upper boundary value of the output qv of the hydroelectric generating unit and the energy consumption of the hydroelectric generating unit at the vth iteration
Figure GDA0002685428460000181

获取单元,用于获取第v-1次迭代的火电机组的出力pv-1和火电机组的能耗量的下边界值

Figure GDA0002685428460000182
The obtaining unit is used to obtain the output p v-1 of the thermal power unit and the lower boundary value of the energy consumption of the thermal power unit in the v-1 iteration
Figure GDA0002685428460000182

判断单元,用于判断第v次迭代的水电机组的能耗量的上边界值

Figure GDA0002685428460000183
和第v-1次迭代的火电机组的能耗量的下边界值
Figure GDA0002685428460000184
是否满足预设收敛条件;若是,则将第v次迭代的水电机组的出力qv作为水电机组的最优出力,将第v-1次迭代的火电机组的出力pv-1作为火电机组的最优出力,若否,则转到第二求解单元;所述预设收敛条件为
Figure GDA0002685428460000185
The judgment unit is used to judge the upper boundary value of the energy consumption of the hydroelectric unit in the vth iteration
Figure GDA0002685428460000183
and the lower bound value of the energy consumption of the thermal power unit at the v-1th iteration
Figure GDA0002685428460000184
Whether the preset convergence conditions are met; if so, take the output q v of the hydroelectric unit at the vth iteration as the optimal output of the hydroelectric unit, and take the output p v-1 of the thermal power unit at the v-1 iteration as the output of the thermal power unit The optimal output, if not, go to the second solving unit; the preset convergence condition is
Figure GDA0002685428460000185

第二求解单元,用于对所述上层火力发电机组模型进行求解,得到第v次迭代的火电机组的出力pv和火电机组的能耗量的下边界值

Figure GDA0002685428460000186
并令v=v+1,再返回所述第一求解单元。The second solving unit is used to solve the upper-layer thermal power generating unit model, and obtain the lower boundary value of the output p v of the thermal power unit and the energy consumption of the thermal power unit at the vth iteration
Figure GDA0002685428460000186
And let v=v+1, and then return to the first solving unit.

本实施例的梯级水电站-火电厂联合优化调度系统,能够提高清洁能源的发电能力,达到节约传统化石能源的消耗,减少大气污染物的排放的目的。The cascade hydropower station-thermal power plant joint optimal dispatching system in this embodiment can improve the power generation capacity of clean energy, save the consumption of traditional fossil energy, and reduce the emission of air pollutants.

对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.

Claims (6)

1.一种梯级水电站-火电厂联合优化调度方法,其特征在于,包括:1. a cascade hydropower station-thermal power plant joint optimal dispatch method, is characterized in that, comprises: 构建水火电联合系统中火电厂火电机组的出力模型;Build the output model of the thermal power unit of the thermal power plant in the combined water and thermal power system; 依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型;According to the output model of the thermal power generation unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station and the output of the wind power generation unit, an optimal scheduling model of the hydropower-thermal power combined system is constructed; 采用Benders分解算法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解;所述最优解包括火电机组的最优出力和水电机组的最优出力;Benders decomposition algorithm is used to solve the optimal scheduling model of the hydropower-thermal power combined system, and the optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system is obtained; the optimal solution includes the optimal output of the thermal power unit and the hydropower unit. the optimal output; 将所述火电机组的最优出力和所述水电机组的最优出力对应的总能耗量确定所述水火电联合系统的最优总能源消耗量;determining the optimal total energy consumption of the combined hydro-thermal power system based on the total energy consumption corresponding to the optimal output of the thermal power unit and the optimal output of the hydroelectric unit; 所述采用Benders分解算法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解,具体包括:The Benders decomposition algorithm is used to solve the optimal scheduling model of the hydropower-thermal power combined system, and an optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system is obtained, which specifically includes: 步骤31:依据所述水电-火电联合系统优化调度模型分别建立下层水力发电机组模型和上层火力发电机组模型;Step 31: respectively establishing a lower-layer hydroelectric generating unit model and an upper-layer thermal generating unit model according to the optimal scheduling model of the hydropower-thermal power combined system; 步骤32:对所述下层水力发电机组模型进行求解,得到第v次迭代的水电机组的出力qv和水电机组的能耗量的上边界值
Figure FDA0002685428450000013
Step 32: Solve the lower hydroelectric generating unit model to obtain the upper boundary value of the output q v of the hydroelectric generating unit and the energy consumption of the hydroelectric generating unit at the vth iteration
Figure FDA0002685428450000013
步骤33:获取第v-1次迭代的火电机组的出力pv-1和火电机组的能耗量的下边界值
Figure FDA0002685428450000014
Step 33: Obtain the output p v-1 of the thermal power unit and the lower boundary value of the energy consumption of the thermal power unit in the v-1 iteration
Figure FDA0002685428450000014
步骤34:判断第v次迭代的水电机组的能耗量的上边界值
Figure FDA0002685428450000015
和第v-1次迭代的火电机组的能耗量的下边界值
Figure FDA0002685428450000016
是否满足预设收敛条件;若是,则将第v次迭代的水电机组的出力qv作为水电机组的最优出力,将第v-1次迭代的火电机组的出力pv-1作为火电机组的最优出力,若否,则执行步骤35;所述预设收敛条件为
Figure FDA0002685428450000011
Step 34: Determine the upper boundary value of the energy consumption of the hydroelectric unit in the vth iteration
Figure FDA0002685428450000015
and the lower bound value of the energy consumption of the thermal power unit at the v-1th iteration
Figure FDA0002685428450000016
Whether the preset convergence conditions are met; if so, take the output q v of the hydroelectric unit at the vth iteration as the optimal output of the hydroelectric unit, and take the output p v-1 of the thermal power unit at the v-1 iteration as the output of the thermal power unit Optimal output, if not, go to step 35; the preset convergence condition is
Figure FDA0002685428450000011
步骤35:对所述上层火力发电机组模型进行求解,得到第v次迭代的火电机组的出力pv和火电机组的能耗量的下边界值
Figure FDA0002685428450000012
并令v=v+1,再返回所述步骤32。
Step 35: Solve the upper-layer thermal power generation unit model, and obtain the lower boundary value of the output p v of the thermal power unit and the energy consumption of the thermal power unit of the v-th iteration
Figure FDA0002685428450000012
And let v=v+1, and return to step 32.
2.根据权利要求1所述的一种梯级水电站-火电厂联合优化调度方法,其特征在于,所述火电厂火电机组的出力模型,具体为:2. a kind of cascade hydropower station-thermal power plant joint optimal dispatching method according to claim 1, is characterized in that, the output model of described thermal power plant thermal power unit is specially:
Figure FDA0002685428450000021
Figure FDA0002685428450000021
其中,NT表示火电机组的台数,Pn,t表示第n台火电机组在t时刻的出力,PLt表示只有火电机组时电网的总负荷,ΔPt为只有火电机组时电网的总损耗。Among them, N T represents the number of thermal power units, P n,t represents the output of the nth thermal power unit at time t, P Lt represents the total load of the power grid when there are only thermal power units, and ΔP t is the total loss of the power grid when there are only thermal power units.
3.根据权利要求2所述的一种梯级水电站-火电厂联合优化调度方法,其特征在于,所述依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型,具体包括:3. a kind of cascade hydropower station-thermal power plant joint optimal dispatching method according to claim 2, is characterized in that, described according to the output model of described thermal power plant thermal power unit, the output of cascade hydropower station hydropower unit and the output of wind power generating unit Build an optimal scheduling model for a combined hydropower-thermal power system, including: 建立水电-火电联合系统优化调度模型的目标函数Objective Function of Establishing Optimal Scheduling Model for Combined Hydropower and Thermal Power System min Fa=FH+FT+FW min F a =F H +F T +F W 其中,in,
Figure FDA0002685428450000022
Figure FDA0002685428450000022
Figure FDA0002685428450000023
Figure FDA0002685428450000023
Figure FDA0002685428450000024
Figure FDA0002685428450000024
其中,Fa表示水火电联合系统的总能源消耗量,FH表示水电机组的能耗量,FT表示火电机组的能耗量,FW表示风力发电机组的能耗量,T为调度时间,NH为水电机组的台数,NT为火电机组的台数,NW为风机的台数,qk,t为在t时刻第k台水电机组的出力,Pn,t为在t时刻第n台火电机组的出力,pw,t为在t时刻为第w台风机的出力,ht为t时段小时数,a、b、c分别为火电机组耗水量函数的二次项系数、一次项系数和常数项,μ为水力发电厂单位时间的煤耗率,λ为风力发电能耗系数;Among them, F a represents the total energy consumption of the combined hydro-thermal power system, F H represents the energy consumption of the hydropower unit, F T represents the energy consumption of the thermal power unit, F W represents the energy consumption of the wind turbine unit, and T is the dispatch time. , N H is the number of hydropower units, N T is the number of thermal power units, N W is the number of fans, q k,t is the output of the kth hydroelectric unit at time t, P n,t is the nth unit at time t The output of the thermal power unit, p w, t is the output of the wth wind turbine at time t, h t is the number of hours in the t period, a, b, and c are the quadratic term coefficient and primary term of the water consumption function of the thermal power unit, respectively. coefficient and constant term, μ is the coal consumption rate per unit time of the hydropower plant, λ is the energy consumption coefficient of wind power generation; 建立水电-火电联合系统优化调度模型的约束条件;所述水电-火电联合系统优化调度模型的约束条件包括功率平衡约束条件、水电机组约束条件和火电机组约束条件;所述水电机组约束条件包括水电机组出力约束条件、水电机组出力限制约束条件和水量平衡约束条件;所述火电机组约束条件包括火电机组出力限制约束条件、常规机组爬坡限制约束条件和电网支路潮流约束条件;Constraints of the optimal scheduling model of the hydropower-thermal power combined system are established; the constraints of the hydropower-thermal power combined system optimal scheduling model include power balance constraints, hydropower unit constraints, and thermal power unit constraints; the hydropower unit constraints include hydropower Unit output constraints, hydropower unit output limitation constraints, and water balance constraints; the thermal power unit constraints include thermal power unit output limitation constraints, conventional unit ramping constraints, and power grid branch power flow constraints; 所述功率平衡约束条件为The power balance constraints are
Figure FDA0002685428450000031
Figure FDA0002685428450000031
其中,PDt为水电站-火电厂联合系统的总负荷;Among them, P Dt is the total load of the combined hydropower station and thermal power plant system; 所述水电机组出力约束条件为The output constraints of the hydroelectric unit are:
Figure FDA0002685428450000032
Figure FDA0002685428450000032
其中,Vk,t为第k台水电机组在t时刻的储水量,Qk,t为水电机组的出水量,c1k,c2k分别为水电机组出力约束中储水量、出水量的二次项系数,c3k为储水量和出水量乘积的一次项系数,c4k,c5k分别为水电机组出力约束中储水量、出水量的一次项系数,c6k为常数项参数;Among them, V k,t is the water storage capacity of the kth hydropower unit at time t, Q k,t is the water output of the hydropower unit, c 1k , c 2k are the secondary water storage capacity and water output in the output constraint of the hydropower unit, respectively term coefficient, c 3k is the first-order coefficient of the product of water storage and water output, c 4k , c 5k are the first-order coefficients of water storage and water output in the output constraint of the hydropower unit, and c 6k is the constant parameter; 所述水电机组出力限制约束条件为The output limit constraints of the hydroelectric unit are:
Figure FDA0002685428450000033
Figure FDA0002685428450000033
其中,
Figure FDA0002685428450000034
为第k台水电机组的最小出力,
Figure FDA0002685428450000035
为第k台水电机组的最大出力;
in,
Figure FDA0002685428450000034
is the minimum output of the kth hydroelectric unit,
Figure FDA0002685428450000035
is the maximum output of the kth hydroelectric unit;
所述水量平衡约束条件为The water balance constraints are:
Figure FDA0002685428450000041
Figure FDA0002685428450000041
其中,Vk,t-1为第k台水电机组在t-1时刻的储水量,Ik,t为第k台水电机组在t时刻的进水量,Qk,t为第k台水电机组在t时刻的出水量,Sk,t为第k台水电机组在t时刻的溢水量,
Figure FDA0002685428450000042
表示由于时间延迟存留的水量;Ruk表示第k台水电机组的上游机组的总个数;τmk表示上游机组中的第m台水电机组到第k台水电机组的水输送的时间延迟;
Figure FDA0002685428450000043
表示上游机组中的第m台水电机组由于时间延迟产生的出水量;
Figure FDA0002685428450000044
表示上游机组中的第m台水电机组由于时间延迟产生的溢水量;Δt表示t-1时刻与t时刻的时间间隔;
Among them, V k,t-1 is the water storage capacity of the kth hydropower unit at time t-1, I k,t is the water inflow of the kth hydropower unit at time t, and Qk,t is the kth hydropower unit The water output at time t, S k,t is the overflow volume of the kth hydroelectric unit at time t,
Figure FDA0002685428450000042
Represents the amount of water remaining due to time delay; R uk represents the total number of upstream units of the k-th hydroelectric unit; τ mk represents the time delay of water delivery from the m-th hydro-electric unit to the k-th hydro-electric unit in the upstream units;
Figure FDA0002685428450000043
Represents the water output of the mth hydroelectric unit in the upstream unit due to time delay;
Figure FDA0002685428450000044
Represents the overflow volume of the mth hydropower unit in the upstream unit due to time delay; Δt represents the time interval between time t-1 and time t;
所述火电机组出力限制约束条件为The output limit constraints of the thermal power unit are:
Figure FDA0002685428450000045
Figure FDA0002685428450000045
其中,
Figure FDA0002685428450000046
表示第n台火电机组的最小出力,
Figure FDA0002685428450000047
表示第n台火电机组的最小出力、最大出力;
in,
Figure FDA0002685428450000046
represents the minimum output of the nth thermal power unit,
Figure FDA0002685428450000047
Indicates the minimum output and maximum output of the nth thermal power unit;
所述常规机组爬坡限制约束条件为The conventional unit climbing limit constraints are: pdown,n≤pn,t≤pup,np down,n ≤p n,t ≤p up,n , 其中,pdown,n表示第n台火电机组的最大下调有功量,pup,n表示第n台火电机组的最大上调有功量;Among them, p down,n represents the maximum down-regulated active power of the nth thermal power unit, and p up,n represents the maximum up-regulated active power of the nth thermal power unit; 所述电网支路潮流约束条件为The power flow constraint condition of the power grid branch is:
Figure FDA0002685428450000048
Figure FDA0002685428450000048
其中,
Figure FDA0002685428450000049
表示电网中第m条线路的最小潮流,
Figure FDA00026854284500000410
表示电网中第m条线路的最大潮流,
Figure FDA00026854284500000411
表示电网中第m条线路在t时刻的潮流。
in,
Figure FDA0002685428450000049
represents the minimum power flow of the mth line in the grid,
Figure FDA00026854284500000410
represents the maximum power flow of the mth line in the grid,
Figure FDA00026854284500000411
Represents the power flow of the mth line in the power grid at time t.
4.一种梯级水电站-火电厂联合优化调度系统,其特征在于,包括:4. A cascade hydropower station-thermal power plant joint optimal dispatching system is characterized in that, comprising: 第一模型构建模块,用于构建水火电联合系统中火电厂火电机组的出力模型;The first model building module is used to build the output model of the thermal power unit of the thermal power plant in the combined water and thermal power system; 第二模型构建模块,用于依据所述火电厂火电机组的出力模型、梯级水电站水电机组的出力以及风力发电机组的出力构建水电-火电联合系统优化调度模型;The second model building module is used for constructing a hydropower-thermal power combined system optimal dispatch model according to the output model of the thermal power unit of the thermal power plant, the output of the hydropower unit of the cascade hydropower station, and the output of the wind power generating unit; 求解模块,用于采用分解优化算法对所述水电-火电联合系统优化调度模型进行求解,得到所述水电-火电联合系统优化调度模型对应的最优解;所述最优解包括火电机组的最优出力和水电机组的最优出力;A solving module is used to solve the optimal scheduling model of the hydropower-thermal power combined system by using a decomposition optimization algorithm, and obtain an optimal solution corresponding to the optimal scheduling model of the hydropower-thermal power combined system; the optimal solution includes the optimal solution of the thermal power unit. optimal output and optimal output of hydroelectric units; 能耗确定模块,用于将所述火电机组的最优出力和所述水电机组的最优出力对应的总能耗量确定所述水火电联合系统的最优总能源消耗量;an energy consumption determination module, configured to determine the optimal total energy consumption of the combined hydro-thermal power system based on the total energy consumption corresponding to the optimal output of the thermal power unit and the optimal output of the hydroelectric unit; 所述求解模块,具体包括:The solving module specifically includes: 两层模型转换单元,用于依据所述水电-火电联合系统优化调度模型分别建立下层水力发电机组模型和上层火力发电机组模型;a two-layer model conversion unit, configured to respectively establish a lower-layer hydroelectric generating unit model and an upper-layer thermal generating unit model according to the optimal scheduling model of the hydropower-thermal power combined system; 第一求解单元,用于对所述下层水力发电机组模型进行求解,得到第v次迭代的水电机组的出力qv和水电机组的能耗量的上边界值
Figure FDA0002685428450000051
The first solving unit is used to solve the model of the lower hydroelectric generating unit to obtain the upper boundary value of the output qv of the hydroelectric generating unit and the energy consumption of the hydroelectric generating unit at the vth iteration
Figure FDA0002685428450000051
获取单元,用于获取第v-1次迭代的火电机组的出力pv-1和火电机组的能耗量的下边界值
Figure FDA0002685428450000052
The obtaining unit is used to obtain the output p v-1 of the thermal power unit and the lower boundary value of the energy consumption of the thermal power unit in the v-1 iteration
Figure FDA0002685428450000052
判断单元,用于判断第v次迭代的水电机组的能耗量的上边界值
Figure FDA0002685428450000053
和第v-1次迭代的火电机组的能耗量的下边界值
Figure FDA0002685428450000054
是否满足预设收敛条件;若是,则将第v次迭代的水电机组的出力qv作为水电机组的最优出力,将第v-1次迭代的火电机组的出力pv-1作为火电机组的最优出力,若否,则转到第二求解单元;所述预设收敛条件为
Figure FDA0002685428450000055
The judgment unit is used to judge the upper boundary value of the energy consumption of the hydroelectric unit in the vth iteration
Figure FDA0002685428450000053
and the lower bound value of the energy consumption of the thermal power unit at the v-1th iteration
Figure FDA0002685428450000054
Whether the preset convergence conditions are met; if so, take the output q v of the hydroelectric unit at the vth iteration as the optimal output of the hydroelectric unit, and take the output p v-1 of the thermal power unit at the v-1 iteration as the output of the thermal power unit The optimal output, if not, go to the second solving unit; the preset convergence condition is
Figure FDA0002685428450000055
第二求解单元,用于对所述上层火力发电机组模型进行求解,得到第v次迭代的火电机组的出力pv和火电机组的能耗量的下边界值
Figure FDA0002685428450000056
并令v=v+1,再返回所述第一求解单元。
The second solving unit is used to solve the upper-layer thermal power generating unit model, and obtain the lower boundary value of the output p v of the thermal power unit and the energy consumption of the thermal power unit at the vth iteration
Figure FDA0002685428450000056
And let v=v+1, and then return to the first solving unit.
5.根据权利要求4所述的一种梯级水电站-火电厂联合优化调度系统,其特征在于,所述第一模型构建模块,具体为:5. a kind of cascade hydropower station-thermal power plant joint optimal dispatching system according to claim 4, is characterized in that, described first model building module is specifically:
Figure FDA0002685428450000061
Figure FDA0002685428450000061
其中,NT表示火电机组的台数,Pn,t表示第n台火电机组在t时刻的出力,PLt表示只有火电机组时电网的总负荷,ΔPt为只有火电机组时电网的总损耗。Among them, N T represents the number of thermal power units, P n,t represents the output of the nth thermal power unit at time t, P Lt represents the total load of the power grid when there are only thermal power units, and ΔP t is the total loss of the power grid when there are only thermal power units.
6.根据权利要求5所述的一种梯级水电站-火电厂联合优化调度系统,其特征在于,所述第二模型构建模块,具体包括:6. a kind of cascade hydropower station-thermal power plant joint optimal dispatching system according to claim 5, is characterized in that, described second model building module, specifically comprises: 目标函数建立单元,用于建立水电-火电联合系统优化调度模型的目标函数The objective function establishment unit is used to establish the objective function of the optimal dispatch model of the hydropower-thermal power combined system min Fa=FH+FT+FW min F a =F H +F T +F W 其中,in,
Figure FDA0002685428450000062
Figure FDA0002685428450000062
Figure FDA0002685428450000063
Figure FDA0002685428450000063
Figure FDA0002685428450000064
Figure FDA0002685428450000064
其中,Fa表示水火电联合系统的总能源消耗量,FH表示水电机组的能耗量,FT表示火电机组的能耗量,FW表示风力发电机组的能耗量,T为调度时间,NH为水电机组的台数,NW为风机的台数,qk,t为在t时刻第k台水电机组的出力,Pn,t为在t时刻第n台火电机组的出力,pw,t为在t时刻为第w台风机的出力,ht为t时段小时数,a、b、c分别为火电机组耗水量函数的二次项系数、一次项系数和常数项,μ为水力发电厂单位时间的煤耗率,λ为风力发电能耗系数;Among them, F a represents the total energy consumption of the combined hydro-thermal power system, F H represents the energy consumption of the hydropower unit, F T represents the energy consumption of the thermal power unit, F W represents the energy consumption of the wind turbine unit, and T is the dispatch time. , N H is the number of hydropower units, N W is the number of fans, q k,t is the output of the kth hydropower unit at time t, P n,t is the output of the nth thermal power unit at time t, pw , t is the output of the wth wind turbine at time t, h t is the number of hours in the t period, a, b, and c are the quadratic coefficient, primary coefficient and constant term of the water consumption function of the thermal power unit, and μ is the hydraulic power The coal consumption rate per unit time of the power plant, λ is the energy consumption coefficient of wind power generation; 约束条件建立单元,用于建立水电-火电联合系统优化调度模型的约束条件;所述水电-火电联合系统优化调度模型的约束条件包括功率平衡约束条件、水电机组约束条件和火电机组约束条件;所述水电机组约束条件包括水电机组出力约束条件、水电机组出力限制约束条件和水量平衡约束条件;所述火电机组约束条件包括火电机组出力限制约束条件、常规机组爬坡限制约束条件和电网支路潮流约束条件;The constraint condition establishment unit is used to establish the constraint conditions of the optimal scheduling model of the hydropower-thermal power combined system; the constraints of the optimal scheduling model of the hydropower-thermal power combined system include the power balance constraint condition, the hydropower unit constraint condition and the thermal power unit constraint condition; The constraints of the hydropower unit include the output constraints of the hydropower units, the output limit constraints of the hydropower units and the water balance constraints; the constraints of the thermal power units include the output constraints of the thermal power units, the conventional unit grade limit constraints and the power flow of the power grid branch Restrictions; 所述功率平衡约束条件为The power balance constraints are
Figure FDA0002685428450000071
Figure FDA0002685428450000071
其中,PDt为水电站-火电厂联合系统的总负荷;Among them, P Dt is the total load of the combined hydropower station and thermal power plant system; 所述水电机组出力约束条件为The output constraints of the hydroelectric unit are:
Figure FDA0002685428450000072
Figure FDA0002685428450000072
其中,Vk,t为第k台水电机组在t时刻的储水量,Qk,t为水电机组的出水量,c1k,c2k分别为水电机组出力约束中储水量、出水量的二次项系数,c3k为储水量和出水量乘积的一次项系数,c4k,c5k分别为水电机组出力约束中储水量、出水量的一次项系数,c6k为常数项参数;Among them, V k,t is the water storage capacity of the kth hydropower unit at time t, Q k,t is the water output of the hydropower unit, c 1k , c 2k are the secondary water storage capacity and water output in the output constraint of the hydropower unit, respectively term coefficient, c 3k is the first-order coefficient of the product of water storage and water output, c 4k , c 5k are the first-order coefficients of water storage and water output in the output constraint of the hydropower unit, and c 6k is the constant parameter; 所述水电机组出力限制约束条件为The output limit constraints of the hydroelectric unit are:
Figure FDA0002685428450000073
Figure FDA0002685428450000073
其中,
Figure FDA0002685428450000074
为第k台水电机组的最小出力,
Figure FDA0002685428450000075
为第k台水电机组的最大出力;
in,
Figure FDA0002685428450000074
is the minimum output of the kth hydroelectric unit,
Figure FDA0002685428450000075
is the maximum output of the kth hydroelectric unit;
所述水量平衡约束条件为The water balance constraints are:
Figure FDA0002685428450000076
Figure FDA0002685428450000076
其中,Vk,t-1为第k台水电机组在t-1时刻的储水量,Ik,t为第k台水电机组在t时刻的进水量,Qk,t为第k台水电机组在t时刻的出水量,Sk,t为第k台水电机组在t时刻的溢水量,
Figure FDA0002685428450000081
表示由于时间延迟存留的水量;Ruk表示第k台水电机组的上游机组的总个数;τmk表示上游机组中的第m台水电机组到第k台水电机组的水输送的时间延迟;
Figure FDA0002685428450000082
表示上游机组中的第m台水电机组由于时间延迟产生的出水量;
Figure FDA0002685428450000083
表示上游机组中的第m台水电机组由于时间延迟产生的溢水量;Δt表示t-1时刻与t时刻的时间间隔;
Among them, V k,t-1 is the water storage capacity of the kth hydropower unit at time t-1, I k,t is the water inflow of the kth hydropower unit at time t, and Qk,t is the kth hydropower unit The water output at time t, S k,t is the overflow volume of the kth hydropower unit at time t,
Figure FDA0002685428450000081
Represents the amount of water remaining due to time delay; R uk represents the total number of upstream units of the k-th hydroelectric unit; τ mk represents the time delay of water delivery from the m-th hydro-electric unit to the k-th hydro-electric unit in the upstream units;
Figure FDA0002685428450000082
Represents the water output of the m-th hydropower unit in the upstream unit due to time delay;
Figure FDA0002685428450000083
Represents the overflow volume of the mth hydropower unit in the upstream unit due to time delay; Δt represents the time interval between time t-1 and time t;
所述火电机组出力限制约束条件为The output limit constraints of the thermal power unit are:
Figure FDA0002685428450000084
Figure FDA0002685428450000084
其中,
Figure FDA0002685428450000085
表示第n台火电机组的最小出力,
Figure FDA0002685428450000086
表示第n台火电机组的最小出力、最大出力;
in,
Figure FDA0002685428450000085
represents the minimum output of the nth thermal power unit,
Figure FDA0002685428450000086
Indicates the minimum output and maximum output of the nth thermal power unit;
所述常规机组爬坡限制约束条件为The conventional unit climbing limit constraints are: pdown,n≤pn,t≤pup,np down,n ≤p n,t ≤p up,n , 其中,pdown,n表示第n台火电机组的最大下调有功量,pup,n表示第n台火电机组的最大上调有功量;Among them, p down,n represents the maximum down-regulated active power of the nth thermal power unit, and p up,n represents the maximum up-regulated active power of the nth thermal power unit; 所述电网支路潮流约束条件为The power flow constraint condition of the power grid branch is:
Figure FDA0002685428450000087
Figure FDA0002685428450000087
其中,
Figure FDA0002685428450000088
表示电网中第m条线路的最小潮流,
Figure FDA0002685428450000089
表示电网中第m条线路的最大潮流,
Figure FDA00026854284500000810
表示电网中第m条线路在t时刻的潮流。
in,
Figure FDA0002685428450000088
represents the minimum power flow of the mth line in the grid,
Figure FDA0002685428450000089
represents the maximum power flow of the mth line in the grid,
Figure FDA00026854284500000810
Represents the power flow of the mth line in the power grid at time t.
CN201910332439.7A 2019-04-24 2019-04-24 A cascade hydropower station-thermal power plant joint optimal scheduling method and system Active CN109995084B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910332439.7A CN109995084B (en) 2019-04-24 2019-04-24 A cascade hydropower station-thermal power plant joint optimal scheduling method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910332439.7A CN109995084B (en) 2019-04-24 2019-04-24 A cascade hydropower station-thermal power plant joint optimal scheduling method and system

Publications (2)

Publication Number Publication Date
CN109995084A CN109995084A (en) 2019-07-09
CN109995084B true CN109995084B (en) 2020-11-06

Family

ID=67135015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910332439.7A Active CN109995084B (en) 2019-04-24 2019-04-24 A cascade hydropower station-thermal power plant joint optimal scheduling method and system

Country Status (1)

Country Link
CN (1) CN109995084B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854931A (en) * 2019-11-20 2020-02-28 广东电网有限责任公司 Pumped storage unit day-ahead power generation planning method, system and equipment
CN111416389A (en) * 2020-04-27 2020-07-14 西安热工研究院有限公司 Backpressure machine switching system
CN113657722B (en) * 2021-07-26 2023-07-21 西安理工大学 Energy-saving scheduling method for power plants based on swarm spider optimization algorithm

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105868841A (en) * 2016-03-21 2016-08-17 广西电网有限责任公司电力科学研究院 Wind-water-fire combined dispatching method based on wind power priority grid connection
CN106130079A (en) * 2016-07-08 2016-11-16 华北电力大学 A kind of edema due to wind pathogen fire short-term joint optimal operation method
CN106208075A (en) * 2016-08-29 2016-12-07 清华大学 Based on the multizone composition decomposition dynamic economic dispatch method revising generalized benders decomposition
CN106655246A (en) * 2016-10-18 2017-05-10 国网黑龙江省电力有限公司哈尔滨供电公司 Method of solving robust two-layer optimization model based on wind power prediction and demand response
US9831677B2 (en) * 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
CN108155674A (en) * 2018-02-01 2018-06-12 清华大学 Consider the Hydro-Thermal Systems combined scheduling method and system of uncertain distribution character
CN108596388A (en) * 2018-04-23 2018-09-28 广西大学 A kind of optimal extreme misery combined scheduling method for abandoning water of consideration step power station
CN108711892A (en) * 2018-05-30 2018-10-26 南京工程学院 A kind of Optimization Scheduling of multi-energies hybrid power generating system
CN109510238A (en) * 2018-12-07 2019-03-22 国网辽宁省电力有限公司大连供电公司 A kind of coordinated scheduling Unit Combination method of Efficient Solution water power thermoelectricity wind-powered electricity generation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831677B2 (en) * 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
CN105868841A (en) * 2016-03-21 2016-08-17 广西电网有限责任公司电力科学研究院 Wind-water-fire combined dispatching method based on wind power priority grid connection
CN106130079A (en) * 2016-07-08 2016-11-16 华北电力大学 A kind of edema due to wind pathogen fire short-term joint optimal operation method
CN106208075A (en) * 2016-08-29 2016-12-07 清华大学 Based on the multizone composition decomposition dynamic economic dispatch method revising generalized benders decomposition
CN106655246A (en) * 2016-10-18 2017-05-10 国网黑龙江省电力有限公司哈尔滨供电公司 Method of solving robust two-layer optimization model based on wind power prediction and demand response
CN108155674A (en) * 2018-02-01 2018-06-12 清华大学 Consider the Hydro-Thermal Systems combined scheduling method and system of uncertain distribution character
CN108596388A (en) * 2018-04-23 2018-09-28 广西大学 A kind of optimal extreme misery combined scheduling method for abandoning water of consideration step power station
CN108711892A (en) * 2018-05-30 2018-10-26 南京工程学院 A kind of Optimization Scheduling of multi-energies hybrid power generating system
CN109510238A (en) * 2018-12-07 2019-03-22 国网辽宁省电力有限公司大连供电公司 A kind of coordinated scheduling Unit Combination method of Efficient Solution water power thermoelectricity wind-powered electricity generation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Extended Benders Decomposition for Two-Stage SCUC;Cong Liu etal.;《IEEE Transactions on Power Systems》;20101231;第25卷(第2期);全文 *
水火电力系统一次能源消耗最小模型及其算法研究;郭小璇;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20140315;第24-36页 *
考虑电网N−1闭环安全校核的最优安全发电计划;汪洋 等;《中国电机工程学报》;20110405;第31卷(第10期);全文 *

Also Published As

Publication number Publication date
CN109995084A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
CN113393054A (en) Optimal scheduling method and optimal scheduling system of wind storage combined system
CN105447599B (en) Coordinated dispatching model of abandoned wind consumption based on heat storage cogeneration unit and electric boiler
CN108258679A (en) Consider the electric-thermal integrated energy system Optimization Scheduling of heating network heat accumulation characteristic
CN109995084B (en) A cascade hydropower station-thermal power plant joint optimal scheduling method and system
CN102738835B (en) Wind-fire-water co-scheduling method on basis of multi-agent system
CN108667012A (en) Source-load-storage two-stage coordinated optimization method for regional energy interconnection based on multi-scenario
CN111711206B (en) Urban thermoelectric comprehensive energy system scheduling method considering dynamic characteristics of heat supply network
CN104201673A (en) Assessment method for online acceptance capacity of new energy power generation
CN103151795B (en) Scattered-type wind power plant reactive power optimization control method capable of reducing fan losses and system
CN106295853A (en) Distributed photovoltaic two benches multiple target on-site elimination method based on energy storage scheduling method
CN109031952A (en) A kind of electric-gas interconnection integrated energy system mixing control method
CN104167765A (en) Admitting ability distribution-based maximum wind power installed capacity calculation method
CN107862418A (en) Coupled thermomechanics system optimization dispatching method and device based on energy storage energy hinge
CN108599138A (en) Meter and the probabilistic energy storage system capacity configuration method of micro-capacitance sensor distributed energy
CN107302231A (en) A kind of small hydropower system accesses the random economic load dispatching method of two targets of power network
CN110601260A (en) Light-storage system capacity optimization method for limiting power fluctuation on interconnection line
CN108565972A (en) Terminal integral integrates provide multiple forms of energy to complement each other control system and the method for powered mode
CN112531788A (en) Transparent micro-grid group planning method considering multiple uncertainties and self-optimization-approaching operation
CN104836260B (en) Calculation method for allowed capacity of DGs in active power distribution network under voltage constraint
CN110137953A (en) Synthetic operation optimization method based on distributed busbar protection multi-energy system
CN105762806A (en) Method for collaboratively operating internal power supplies and external power supplies of power grid with large-scale power input from external regions
CN108667077A (en) A wind-storage combined system optimization scheduling method
Liu et al. Research on the optimal dispatch of wind power consumption based on combined heat and power with thermal energy storage
CN110707752A (en) A day-to-day coordination optimization scheduling method for independent microgrid considering unit flexibility
CN111724026A (en) An optimization method for coupled operation of multi-energy network and water distribution network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant