CN109995084A - A kind of step power station-thermal power plant's joint optimal operation method and system - Google Patents

A kind of step power station-thermal power plant's joint optimal operation method and system Download PDF

Info

Publication number
CN109995084A
CN109995084A CN201910332439.7A CN201910332439A CN109995084A CN 109995084 A CN109995084 A CN 109995084A CN 201910332439 A CN201910332439 A CN 201910332439A CN 109995084 A CN109995084 A CN 109995084A
Authority
CN
China
Prior art keywords
thermal power
output
generating set
unit
hydroelectric generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910332439.7A
Other languages
Chinese (zh)
Other versions
CN109995084B (en
Inventor
卢志刚
石丽娜
张梦晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201910332439.7A priority Critical patent/CN109995084B/en
Publication of CN109995084A publication Critical patent/CN109995084A/en
Application granted granted Critical
Publication of CN109995084B publication Critical patent/CN109995084B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/382
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The invention discloses a kind of step power station-thermal power plant's joint optimal operation method and system.This method includes the power output model for constructing thermal power plant's fired power generating unit in Hydro-thermal system;Water power-thermoelectricity association system Optimal Operation Model is constructed according to the power output model of thermal power plant's fired power generating unit, the power output of step power station Hydropower Unit and the power output of wind power generating set;Water power-thermoelectricity association system Optimal Operation Model is solved using Benders decomposition algorithm, obtains water power-corresponding optimal solution of thermoelectricity association system Optimal Operation Model;Optimal solution includes the optimal power output of fired power generating unit and the optimal power output of Hydropower Unit;The corresponding total energy consumption of the optimal power output of the optimal power output of fired power generating unit and Hydropower Unit is determined as to the optimal total energy consumption of Hydro-thermal system.The present invention can be improved the generating capacity of clean energy resource, reaches the consumption for saving traditional fossil energy, reduces the purpose of the discharge of atmosphere pollution.

Description

Cascade hydropower station-thermal power plant combined optimization scheduling method and system
Technical Field
The invention relates to the technical field of energy optimization scheduling, in particular to a cascade hydropower station-thermal power plant combined optimization scheduling method and system.
Background
In recent years, environmental problems caused by a large amount of fossil fuels are increasingly prominent, people pay attention to the development and use of clean energy, and new energy technology is continuously developed and gradually matures. The great development and utilization of clean energy sources such as water energy, wind energy, solar energy and the like for power generation are widely concerned.
Hydropower is the most main clean energy in China, and in recent years, the development mode of independent hydropower stations is gradually changed into a new mode of basin step hydropower station groups. Meanwhile, among various renewable energy power generation technologies, wind power generation is the most mature power generation technology with the highest cost performance. But due to the inherent intermittency and randomness of wind power, large-scale grid connection of the wind power has a large influence on the system.
In summary, a united system scheduling method capable of improving the power generation capacity of clean energy and saving the consumption of traditional fossil energy is urgently needed.
Disclosure of Invention
Therefore, it is necessary to provide a cascaded hydropower station-thermal power plant combined optimization scheduling method and system to improve the power generation capacity of clean energy, and achieve the purposes of saving the consumption of traditional fossil energy and reducing the emission of atmospheric pollutants.
In order to achieve the purpose, the invention provides the following scheme:
a cascade hydropower station-thermal power plant joint optimization scheduling method comprises the following steps:
constructing an output model of a thermal power plant thermal power generating unit in a water, fire and electricity combined system;
constructing a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station and the output of the wind generating set;
solving the hydropower-thermal power combined system optimization scheduling model by adopting a decomposition optimization algorithm to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model; the optimal solution comprises the optimal output of the thermal power generating unit and the optimal output of the hydroelectric generating unit;
and determining the optimal output of the thermal power generating unit and the total energy consumption corresponding to the optimal output of the hydroelectric generating unit as the optimal total energy consumption of the water, fire and electricity combined system.
Optionally, the output model of the thermal power unit of the thermal power plant specifically includes:
wherein N isTIndicating the number of thermal power generating units, Pn,tRepresenting the output, P, of the nth thermal power generating unit at time tLtRepresenting the total load, Δ P, of the gridtIs the total loss of the grid.
Optionally, the constructing a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station, and the output of the fan specifically includes:
target function for establishing hydropower-thermal power combined system optimization scheduling model
minFa=FH+FT+FW
Wherein,
wherein, FaRepresenting the total energy consumption of the water-fire-electricity combined system, FHRepresenting the energy consumption of a thermal power unit, FTRepresenting the energy consumption of a hydroelectric generating set, FWRepresenting the energy consumption of the wind generating set, T is the scheduling time, NHNumber of hydroelectric generating sets, NWNumber of fans, qk,tFor the output of the kth hydroelectric generating set at time t, Pn,tFor the output of the nth thermal power generating unit at time t, pw,tThe output of the w-th fan at the time t, htThe number of hours in a time period t is, a, b and c are a quadratic term coefficient, a primary term coefficient and a constant term of a water consumption function of the hydroelectric generating set respectively, mu is the coal consumption rate of a thermal power plant in unit time, and lambda is the energy consumption coefficient of wind power generation;
establishing a constraint condition of a hydropower-thermal power combined system optimization scheduling model; the constraint conditions of the hydropower-thermal power combined system optimization scheduling model comprise power balance constraint conditions, hydroelectric generating set constraint conditions and thermal power generating set constraint conditions; the constraint conditions of the hydroelectric generating set comprise a hydroelectric generating set output constraint condition, a hydroelectric generating set output limit constraint condition and a water quantity balance constraint condition; the thermal power unit constraint conditions comprise thermal power unit output limit constraint conditions, conventional unit climbing limit constraint conditions and power grid branch flow constraint conditions;
the power balance constraint condition is
Wherein, PDtThe total load of the hydropower station-thermal power plant combined system is shown;
the output constraint condition of the hydroelectric generating set is
Wherein, Vk,tWater storage capacity, Q, of the kth hydroelectric generating set at time tk,tWater yield of hydroelectric generating set, c1k,c2kSecondary term coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set, c3kA first order coefficient which is the product of the water storage capacity and the water yield, c4k,c5kFirst order coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set respectively, c6kIs a constant term parameter;
the output limit constraint condition of the hydroelectric generating set is
Wherein,is the minimum output of the kth hydroelectric generating set,the maximum output of the kth hydroelectric generating set;
the water quantity balance constraint condition is
Wherein, Vk,t-1For the kth hydroelectric machineWater storage capacity of group at time t-1, Ik,tIs the water inflow of the kth hydroelectric generating set at the moment t, Qk,tWater yield of kth hydroelectric generating set at time t, Sk,tThe water overflow amount of the kth hydroelectric generating set at the time t,representing the amount of water remaining due to the time delay; rukRepresenting the total number of upstream units of the kth hydroelectric generating set; tau ismkRepresenting a time delay of water delivery from the mth hydro-power unit to the kth hydro-power unit in the upstream unit;representing the water yield of the mth hydroelectric generating set in the upstream generating set due to time delay;indicating the overflow amount of the mth hydroelectric generating set in the upstream generating set due to time delay; Δ t represents the time interval between time t-1 and time t;
the output limit constraint condition of the thermal power generating unit is
Wherein,represents the minimum output of the nth thermal power generating unit,representing the maximum output of the nth thermal power generating unit;
the conventional unit climbing restriction condition is
pdown,n≤pn,t≤pup,n
Wherein p isdown,nRepresenting the maximum turndown active quantity, p, of the nth thermal power generating unitup,nRepresenting the maximum up-regulation active power quantity of the nth thermal power generating unit;
the power grid branch flow constraint condition is
Wherein,representing the minimum power flow of the mth line in the grid,representing the maximum power flow of the mth line in the grid,representing the power flow of the mth line in the power grid at time t.
Optionally, the solving is performed on the hydropower-thermal power combined system optimization scheduling model by using a Benders decomposition algorithm to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model, and the method specifically includes:
step 31: respectively establishing a lower-layer hydroelectric generating set model and an upper-layer thermal generating set model according to the hydropower-thermal power combined system optimization scheduling model;
step 32: solving the lower layer hydroelectric generating set model to obtain the output q of the hydroelectric generating set of the nth iterationvAnd an upper limit value of the energy consumption of the hydroelectric generating set
Step 33: acquiring output p of thermal power generating unit of v-1 iterationv-1And the lower boundary value of the energy consumption of the thermal power generating unit
Step 34: determining an upper boundary value of the energy consumption of the hydroelectric generating set of the v-th iterationAnd the lower boundary value of the energy consumption of the thermal power generating unit of the v-1 th iterationWhether a preset convergence condition is met; if so, the output q of the hydroelectric generating set of the v-th iteration is calculatedvAs the optimal output of the hydroelectric generating set, the output p of the thermal power generating set of the v-1 th iteration is usedv-1If not, executing step 35; the preset convergence condition is
Step 35: solving the upper-layer thermal power generating unit model to obtain the output p of the thermal power generating unit of the nth iterationvAnd the lower boundary value of the energy consumption of the thermal power generating unitAnd let v be v +1 and then return to the step 32.
The invention also provides a cascade hydropower station-thermal power plant combined optimization scheduling system, which comprises:
the first model building module is used for building an output model of a thermal power plant thermal power generating unit in the water, fire and electricity combined system;
the second model building module is used for building a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station and the output of the wind power generator unit;
the solving module is used for solving the hydropower-thermal power combined system optimization scheduling model by adopting a Benders decomposition algorithm to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model; the optimal solution comprises the optimal output of the thermal power generating unit and the optimal output of the hydroelectric generating unit;
and the energy consumption determining module is used for determining the optimal output of the thermal power generating unit and the total energy consumption corresponding to the optimal output of the hydroelectric generating unit as the optimal total energy consumption of the water, fire and electricity combined system.
Optionally, the first model building module specifically includes:
wherein N isTIndicating the number of thermal power generating units, Pn,tRepresenting the output, P, of the nth thermal power generating unit at time tLtRepresenting the total load, Δ P, of the gridtIs the total loss of the grid.
Optionally, the second model building module specifically includes:
an objective function establishing unit for establishing an objective function of a hydropower-thermal power combined system optimization scheduling model
minFa=FH+FT+FW
Wherein,
wherein, FaRepresenting the total energy consumption of the water-fire-electricity combined system, FHRepresenting the energy consumption of a thermal power unit, FTRepresenting the energy consumption of a hydroelectric generating set, FWRepresenting the energy consumption of the wind generating set, T is the scheduling time, NHNumber of hydroelectric generating sets, NWNumber of fans, qk,tFor the output of the kth hydroelectric generating set at time t, Pn,tFor the output of the nth thermal power generating unit at time t, pw,tThe output of the w-th fan at the time t, htThe number of hours in a time period t is, a, b and c are a quadratic term coefficient, a primary term coefficient and a constant term of a water consumption function of the hydroelectric generating set respectively, mu is the coal consumption rate of a thermal power plant in unit time, and lambda is the energy consumption coefficient of wind power generation;
the constraint condition establishing unit is used for establishing constraint conditions of a hydropower-thermal power combined system optimization scheduling model; the constraint conditions of the hydropower-thermal power combined system optimization scheduling model comprise power balance constraint conditions, hydroelectric generating set constraint conditions and thermal power generating set constraint conditions; the constraint conditions of the hydroelectric generating set comprise a hydroelectric generating set output constraint condition, a hydroelectric generating set output limit constraint condition and a water quantity balance constraint condition; the thermal power unit constraint conditions comprise thermal power unit output limit constraint conditions, conventional unit climbing limit constraint conditions and power grid branch flow constraint conditions;
the power balance constraint condition is
Wherein, PDtThe total load of the hydropower station-thermal power plant combined system is shown;
the output constraint condition of the hydroelectric generating set is
Wherein,Vk,twater storage capacity, Q, of the kth hydroelectric generating set at time tk,tWater yield of hydroelectric generating set, c1k,c2kSecondary term coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set, c3kA first order coefficient which is the product of the water storage capacity and the water yield, c4k,c5kFirst order coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set respectively, c6kIs a constant term parameter;
the output limit constraint condition of the hydroelectric generating set is
Wherein,is the minimum output of the kth hydroelectric generating set,the maximum output of the kth hydroelectric generating set;
the water quantity balance constraint condition is
Wherein, Vk,t-1Water storage capacity of kth hydroelectric generating set at t-1 moment, Ik,tIs the water inflow of the kth hydroelectric generating set at the moment t, Qk,tWater yield of kth hydroelectric generating set at time t, Sk,tThe water overflow amount of the kth hydroelectric generating set at the time t,representing the amount of water remaining due to the time delay; rukRepresenting the total number of upstream units of the kth hydroelectric generating set; tau ismkIndicating water delivery from the mth hydro-power unit to the kth hydro-power unit in an upstream unitA time delay of (d);representing the water yield of the mth hydroelectric generating set in the upstream generating set due to time delay;indicating the overflow amount of the mth hydroelectric generating set in the upstream generating set due to time delay; Δ t represents the time interval between time t-1 and time t;
the output limit constraint condition of the thermal power generating unit is
Wherein,represents the minimum output of the nth thermal power generating unit,representing the maximum output of the nth thermal power generating unit;
the conventional unit climbing restriction condition is
pdown,n≤pn,t≤pup,n
Wherein p isdown,nRepresenting the maximum turndown active quantity, p, of the nth thermal power generating unitup,nRepresenting the maximum up-regulation active power quantity of the nth thermal power generating unit;
the power grid branch flow constraint condition is
Wherein,representing the minimum power flow of the mth line in the grid,representing the maximum power flow of the mth line in the grid,representing the power flow of the mth line in the power grid at time t.
Optionally, the solving module specifically includes:
the two-layer model conversion unit is used for respectively establishing a lower-layer hydroelectric generating set model and an upper-layer thermal generating set model according to the hydropower-thermal power combined system optimization scheduling model;
the first solving unit is used for solving the lower layer hydroelectric generating set model to obtain the output q of the hydroelectric generating set of the nth iterationvAnd an upper limit value of the energy consumption of the hydroelectric generating set
The obtaining unit is used for obtaining the output p of the thermal power generating unit of the v-1 th iterationv-1And the lower boundary value of the energy consumption of the thermal power generating unit
A determination unit for determining an upper boundary value of the energy consumption of the hydroelectric generating set of the v-th iterationAnd the lower boundary value of the energy consumption of the thermal power generating unit of the v-1 th iterationWhether a preset convergence condition is met; if so, the output q of the hydroelectric generating set of the v-th iteration is calculatedvOptimization as a hydroelectric generating setThe output p of the thermal power generating unit of the v-1 th iteration is obtainedv-1The optimal output of the thermal power generating unit is used, if not, the second solving unit is switched to; the preset convergence condition is
The second solving unit is used for solving the upper-layer thermal power generating unit model to obtain the output p of the thermal power generating unit of the nth iterationvAnd the lower boundary value of the energy consumption of the thermal power generating unitAnd let v be v +1, and then return to the first solving unit.
Compared with the prior art, the invention has the beneficial effects that:
the invention provides a cascade hydropower station-thermal power plant combined optimization scheduling method and system. The method comprises the steps of constructing an output model of a thermal power plant thermal power unit in a water-power-electric combined system; constructing a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station and the output of the wind generating set; solving the hydropower-thermal power combined system optimization scheduling model by adopting a Benders decomposition algorithm to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model; the optimal solution comprises the optimal output of the thermal power generating unit and the optimal output of the hydroelectric generating unit; and determining the optimal total energy consumption of the water, fire and electricity combined system according to the optimal output of the thermal power generating unit and the total energy consumption corresponding to the optimal output of the hydroelectric power generating unit. The invention can improve the power generation capacity of clean energy, and achieve the purposes of saving the consumption of the traditional fossil energy and reducing the emission of atmospheric pollutants.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings without inventive exercise.
Fig. 1 is a flowchart of a cascaded hydropower station-thermal power plant joint optimization scheduling method according to an embodiment of the present invention;
FIG. 2 is a schematic structural diagram of a water, fire and electricity combined system according to an embodiment of the invention;
fig. 3 is a schematic structural diagram of a cascaded hydropower station-thermal power plant joint optimization scheduling system according to an embodiment of the invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
In order to make the aforementioned objects, features and advantages of the present invention comprehensible, embodiments accompanied with figures are described in further detail below.
Fig. 1 is a flowchart of a cascaded hydropower station-thermal power plant joint optimization scheduling method according to an embodiment of the present invention.
Referring to fig. 1, the combined optimal scheduling method for a cascade hydropower station-thermal power plant of the embodiment includes:
step S1: and (3) constructing an output model of the thermal power plant thermal power generating unit in the water, fire and electricity combined system. The water-fire-electricity combined system is shown in figure 2.
The power generation system of the thermal power plant comprises an auxiliary exciter, an exciter disc, a main exciter (a standby exciter), a generator, a transformer, a high-voltage circuit breaker, a booster station, a power distribution device and the like. The power generation is that the auxiliary exciter (permanent magnet machine) sends out high-frequency current, the current sent out by the auxiliary exciter is rectified by an exciting disc and then sent to the main exciter, and the power generated by the main exciter is sent to a generator rotor through a voltage regulator and a de-excitation switch and a carbon brush. The rotor of the generator induces current by rotating the stator coil of the generator, strong current is divided into two paths through the outgoing line of the generator, one path of strong current is sent to the service transformer, the other path of strong current is sent to the high-voltage circuit breaker, and the strong current is sent to the power grid through the high-voltage circuit breaker.
The output model of the thermal power unit of the thermal power plant specifically comprises the following steps:
wherein N isTIndicating the number of thermal power generating units, Pn,tRepresenting the output, P, of the nth thermal power generating unit at time tLtRepresenting the total load, Δ P, of the gridtIs the total loss of the grid.
Step S2: and constructing a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station and the output of the wind generating set. The output of the cascade hydropower station hydropower unit can be calculated according to the existing output model of any cascade hydropower station hydropower unit, and the output of the wind generating set can be calculated according to the existing output model of any wind generating set.
The step S2 specifically includes:
step 21: establishing an objective function of a hydropower-thermal power combined system optimization scheduling model by taking the minimum total energy consumption of the hydropower-thermal power combined system as an objective function
minFa=FH+FT+FW
Wherein,
wherein, FaRepresenting the total energy consumption of the water-fire-electricity combined system, FHRepresenting the energy consumption of a thermal power unit, FTRepresenting the energy consumption of a hydroelectric generating set, FWRepresenting the energy consumption of the wind generating set, T is the scheduling time, NHNumber of hydroelectric generating sets, NWNumber of fans, qk,tFor the output of the kth hydroelectric generating set at time t, Pn,tFor the output of the nth thermal power generating unit at time t, pw,tThe output of the w-th fan at the time t, htAnd a, b and c are a quadratic term coefficient, a primary term coefficient and a constant term of the water consumption function of the hydroelectric generating set respectively, mu is the coal consumption rate of the thermal power plant in unit time, and lambda is the energy consumption coefficient of the wind power generation.
Step 22: establishing a constraint condition of a hydropower-thermal power combined system optimization scheduling model; the constraint conditions of the hydropower-thermal power combined system optimization scheduling model comprise power balance constraint conditions, hydroelectric generating set constraint conditions and thermal power generating set constraint conditions; the constraint conditions of the hydroelectric generating set comprise a hydroelectric generating set output constraint condition, a hydroelectric generating set output limit constraint condition and a water quantity balance constraint condition; the thermal power unit constraint conditions comprise thermal power unit output limit constraint conditions, conventional unit climbing limit constraint conditions and power grid branch flow constraint conditions.
Wherein the power balance constraint condition is
Wherein, PDtThe total load of the hydropower station-thermal power plant combined system is shown;
the output constraint condition of the hydroelectric generating set is
Wherein, Vk,tWater storage capacity, Q, of the kth hydroelectric generating set at time tk,tWater yield of hydroelectric generating set, c1k,c2kSecondary term coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set, c3kA first order coefficient which is the product of the water storage capacity and the water yield, c4k,c5kFirst order coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set respectively, c6kIs a constant term parameter;
the output limit constraint condition of the hydroelectric generating set is
Wherein,is the minimum output of the kth hydroelectric generating set,the maximum output of the kth hydroelectric generating set;
the water quantity balance constraint condition is
Wherein, Vk,t-1Water storage capacity of kth hydroelectric generating set at t-1 moment, Ik,tIs the water inflow of the kth hydroelectric generating set at the moment t, Qk,tWater yield of kth hydroelectric generating set at time t, Sk,tThe water overflow amount of the kth hydroelectric generating set at the time t,representing the amount of water remaining due to the time delay; rukThe total number of upstream units of the kth hydroelectric generating set is shown, the unit positioned at the upstream of the kth hydroelectric generating set is the upstream unit of the kth hydroelectric generating set, and the hydroelectric generating sets in the upstream units of the kth hydroelectric generating set start from the (k + 1) th unit and have R in totalukA stage; tau ismkRepresenting a time delay of water delivery from the mth hydro-power unit to the kth hydro-power unit in the upstream unit;representing the water yield of the mth hydroelectric generating set in the upstream generating set due to time delay;indicating the overflow amount of the mth hydroelectric generating set in the upstream generating set due to time delay; Δ t represents the time interval between time t-1 and time t;
the output limit constraint condition of the thermal power generating unit is
Wherein,represents the minimum output of the nth thermal power generating unit,representing the maximum output of the nth thermal power generating unit;
the conventional unit climbing restriction condition is
pdown,n≤pn,t≤pup,n
Wherein p isdown,nRepresenting the maximum turndown active quantity, p, of the nth thermal power generating unitup,nRepresenting the maximum up-regulation active power quantity of the nth thermal power generating unit;
the power grid branch flow constraint condition is
Wherein,representing the minimum power flow of the mth line in the grid,representing the maximum power flow of the mth line in the grid,representing the power flow of the mth line in the power grid at time t.
Step S3: solving the hydropower-thermal power combined system optimization scheduling model by adopting a Benders decomposition algorithm to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model; the optimal solution comprises the optimal output of the thermal power generating unit and the optimal output of the hydroelectric generating unit.
The step S3 specifically includes:
step 31: and respectively establishing a lower-layer hydroelectric generating set model and an upper-layer thermal generating set model according to the hydropower-thermal power combined system optimization scheduling model.
Step 32: solving the lower layer hydroelectric generating set model to obtain the hydroelectric generating set of the v iterationOutput q ofvAnd an upper limit value of the energy consumption of the hydroelectric generating set
The lower layer hydroelectric generating set model is
subjectto
Wherein the constraint conditions c (q) represent hydroelectric generating set constraints including hydroelectric generating set output limit constraints and water balance constraints, and are expressed as
The constraint d (p, q) represents the coupling constraint of the combined hydropower station-thermal power plant system and is expressed as
p is assigned as a solution p obtained by the v-1 iteration of the upper-layer thermal generator setv-1I.e. p ═ pv-1. And substituting p into the lower layer model, wherein the lower layer hydroelectric generating set model is an optimization problem only about the hydroelectric generating variable q.
The model of the lower hydroelectric generating set is solved to obtain qvValue and the value of the objective function F, where the value of F is defined as the upper bound of the objective function after the v-th iteration
Wherein λ isvOutput p for thermal power generating unitiThe bidirectional variable of the v-th iteration is used for correcting out-of-limit constraint feasibility and increasing the sensitivity of the objective function, lambdavIs shown as
Wherein N isHNumber of hydroelectric generating sets, NTNumber of thermal power generating units, NWThe number of the fans is;representing functions F to PiAnd (5) calculating partial derivatives.
Step 33: acquiring output p of thermal power generating unit of v-1 iterationv-1And the lower boundary value of the energy consumption of the thermal power generating unit
Step 34: determining an upper boundary value of the energy consumption of the hydroelectric generating set of the v-th iterationAnd the lower boundary value of the energy consumption of the thermal power generating unit of the v-1 th iterationWhether a preset convergence condition is met; if so, the output q of the hydroelectric generating set of the v-th iteration is calculatedvAs the optimal output of the hydroelectric generating set, the output p of the thermal power generating set of the v-1 th iteration is usedv-1If not, executing step 35; the preset convergence condition is
Step 35: to the upper fireSolving a power generation set model, wherein an objective function in the upper-layer thermal power generation set model is a real variable, the constraint condition comprises thermal power generation set constraint, and p is obtained by solving the upper-layer thermal power generation set modelvAnd lower bound of objective function valueAnd updating the iteration number v-v +1, and returning to the step 32. Wherein, the upper layer thermal power generation unit model is
minγ
c(p)≤0
Wherein the constraint conditions c (p) represent thermal power unit constraints including thermal power unit output limit constraint, unit climbing limit constraint and power grid branch flow constraint, and are represented as
Step S4: and determining the optimal output of the thermal power generating unit and the total energy consumption corresponding to the optimal output of the hydroelectric generating unit as the optimal total energy consumption of the water, fire and electricity combined system.
According to the cascade hydropower station-thermal power plant combined optimal scheduling method, the influence on wind power consumption of a water, fire and electricity combined system is considered by a hydropower-thermal power combined system optimal scheduling model; the hydropower-thermal power combined system optimization scheduling model aims at minimizing the total energy consumption, and reasonable resource allocation is achieved; the water, fire and electricity combined system is a multi-dimensional, complex and nonlinear optimization problem, the calculation difficulty of the traditional optimization algorithm is high, the decomposition optimization algorithm is adopted to decompose the water, electricity and fire electricity combined system optimization scheduling model into an upper layer and a lower layer for alternative iterative solution, the system calculation complexity is reduced, the system can be quickly converged to the optimal value, and the method can be used for the optimization problem of a large-scale system in the actual engineering; the power generation capacity of clean energy can be improved, and the aims of saving the consumption of the traditional fossil energy and reducing the emission of atmospheric pollutants are fulfilled.
The invention also provides a cascade hydropower station-thermal power plant combined optimization scheduling system, and fig. 3 is a schematic structural diagram of the cascade hydropower station-thermal power plant combined optimization scheduling system according to the embodiment of the invention.
Referring to fig. 3, the cascaded hydropower station-thermal power plant joint optimization scheduling system of the embodiment includes:
the first model building module 301 is used for building an output model of a thermal power plant thermal power generating unit in the water, fire and electricity combined system.
And a second model construction module 302, configured to construct a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station, and the output of the wind power generator unit.
The solving module 303 is used for solving the hydropower-thermal power combined system optimization scheduling model by adopting a Benders decomposition method to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model; the optimal solution comprises the optimal output of the thermal power generating unit and the optimal output of the hydroelectric generating unit.
The energy consumption determining module 304 is configured to determine total energy consumption corresponding to the optimal output of the thermal power generating unit and the optimal output of the hydroelectric power generating unit as the optimal total energy consumption of the water, fire and electricity combined system.
As an optional implementation manner, the first model building module 301 specifically includes:
wherein N isTIndicating the number of thermal power generating units, Pn,tIndicating nth ignition powerOutput of the unit at time t, PLtRepresenting the total load, Δ P, of the gridtIs the total loss of the grid.
As an optional implementation manner, the second model building module 302 specifically includes:
an objective function establishing unit for establishing an objective function of a hydropower-thermal power combined system optimization scheduling model
minFa=FH+FT+FW
Wherein,
wherein, FaRepresenting the total energy consumption of the water-fire-electricity combined system, FHRepresenting the energy consumption of a thermal power unit, FTRepresenting the energy consumption of a hydroelectric generating set, FWRepresenting the energy consumption of the wind generating set, T is the scheduling time, NHNumber of hydroelectric generating sets, NWNumber of fans, qk,tFor the output of the kth hydroelectric generating set at time t, Pn,tFor the output of the nth thermal power generating unit at time t, pw,tThe output of the w-th fan at the time t, htThe number of hours in a time period t is, a, b and c are a quadratic term coefficient, a primary term coefficient and a constant term of a water consumption function of the hydroelectric generating set respectively, mu is the coal consumption rate of a thermal power plant in unit time, and lambda is the energy consumption coefficient of wind power generation;
the constraint condition establishing unit is used for establishing constraint conditions of a hydropower-thermal power combined system optimization scheduling model; the constraint conditions of the hydropower-thermal power combined system optimization scheduling model comprise power balance constraint conditions, hydroelectric generating set constraint conditions and thermal power generating set constraint conditions; the constraint conditions of the hydroelectric generating set comprise a hydroelectric generating set output constraint condition, a hydroelectric generating set output limit constraint condition and a water quantity balance constraint condition; the thermal power unit constraint conditions comprise thermal power unit output limit constraint conditions, conventional unit climbing limit constraint conditions and power grid branch flow constraint conditions;
the power balance constraint condition is
Wherein, PDtThe total load of the hydropower station-thermal power plant combined system is shown;
the output constraint condition of the hydroelectric generating set is
Wherein, Vk,tWater storage capacity, Q, of the kth hydroelectric generating set at time tk,tWater yield of hydroelectric generating set, c1k,c2kSecondary term coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set, c3kA first order coefficient which is the product of the water storage capacity and the water yield, c4k,c5kFirst order coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set respectively, c6kIs a constant term parameter;
the output limit constraint condition of the hydroelectric generating set is
Wherein,is the minimum output of the kth hydroelectric generating set,the maximum output of the kth hydroelectric generating set;
the water quantity balance constraint condition is
Wherein, Vk,t-1Water storage capacity of kth hydroelectric generating set at t-1 moment, Ik,tIs the water inflow of the kth hydroelectric generating set at the moment t, Qk,tWater yield of kth hydroelectric generating set at time t, Sk,tThe water overflow amount of the kth hydroelectric generating set at the time t,representing the amount of water remaining due to the time delay; rukRepresenting the total number of upstream units of the kth hydroelectric generating set; tau ismkRepresenting a time delay of water delivery from the mth hydro-power unit to the kth hydro-power unit in the upstream unit;representing the water yield of the mth hydroelectric generating set in the upstream generating set due to time delay;indicating the overflow amount of the mth hydroelectric generating set in the upstream generating set due to time delay; Δ t represents the time interval between time t-1 and time t;
the output limit constraint condition of the thermal power generating unit is
Wherein,represents the minimum output of the nth thermal power generating unit,representing the maximum output of the nth thermal power generating unit;
the conventional unit climbing restriction condition is
pdown,n≤pn,t≤pup,n
Wherein p isdown,nRepresenting the maximum turndown active quantity, p, of the nth thermal power generating unitup,nRepresenting the maximum up-regulation active power quantity of the nth thermal power generating unit;
the power grid branch flow constraint condition is
Wherein,representing the minimum power flow of the mth line in the grid,representing the maximum power flow of the mth line in the grid,representing the power flow of the mth line in the power grid at time t.
As an optional implementation manner, the solving module 303 specifically includes:
the two-layer model conversion unit is used for respectively establishing a lower-layer hydroelectric generating set model and an upper-layer thermal generating set model according to the hydropower-thermal power combined system optimization scheduling model;
the first solving unit is used for solving the lower layer hydroelectric generating set model to obtain the output q of the hydroelectric generating set of the nth iterationvAnd an upper limit value of the energy consumption of the hydroelectric generating set
The obtaining unit is used for obtaining the output p of the thermal power generating unit of the v-1 th iterationv-1And the lower boundary value of the energy consumption of the thermal power generating unit
A determination unit for determining an upper boundary value of the energy consumption of the hydroelectric generating set of the v-th iterationAnd the lower boundary value of the energy consumption of the thermal power generating unit of the v-1 th iterationWhether a preset convergence condition is met; if so, the output q of the hydroelectric generating set of the v-th iteration is calculatedvAs the optimal output of the hydroelectric generating set, the output p of the thermal power generating set of the v-1 th iteration is usedv-1The optimal output of the thermal power generating unit is used, if not, the second solving unit is switched to; the preset convergence condition is
The second solving unit is used for solving the upper-layer thermal power generating unit model to obtain the output p of the thermal power generating unit of the nth iterationvAnd the lower boundary value of the energy consumption of the thermal power generating unitAnd let v be v +1, and then return to the first solving unit.
The cascade hydropower station-thermal power plant combined optimization scheduling system can improve the power generation capacity of clean energy, and achieves the purposes of saving the consumption of traditional fossil energy and reducing the emission of atmospheric pollutants.
For the system disclosed by the embodiment, the description is relatively simple because the system corresponds to the method disclosed by the embodiment, and the relevant points can be referred to the method part for description.
The principles and embodiments of the present invention have been described herein using specific examples, which are provided only to help understand the method and the core concept of the present invention; meanwhile, for a person skilled in the art, according to the idea of the present invention, the specific embodiments and the application range may be changed. In view of the above, the present disclosure should not be construed as limiting the invention.

Claims (8)

1. A cascade hydropower station-thermal power plant joint optimization scheduling method is characterized by comprising the following steps:
constructing an output model of a thermal power plant thermal power generating unit in a water, fire and electricity combined system;
constructing a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station and the output of the wind generating set;
solving the hydropower-thermal power combined system optimization scheduling model by adopting a Benders decomposition algorithm to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model; the optimal solution comprises the optimal output of the thermal power generating unit and the optimal output of the hydroelectric generating unit;
and determining the optimal output of the thermal power generating unit and the total energy consumption corresponding to the optimal output of the hydroelectric generating unit as the optimal total energy consumption of the water, fire and electricity combined system.
2. The cascaded hydropower station-thermal power plant joint optimization scheduling method according to claim 1, wherein the output model of the thermal power plant thermal power unit is specifically:
wherein N isTIndicating the number of thermal power generating units, Pn,tRepresenting the output, P, of the nth thermal power generating unit at time tLtRepresenting the total load, Δ P, of the gridtIs the total loss of the grid.
3. The method according to claim 2, wherein the step hydropower station-thermal power plant combined optimization scheduling method is constructed by the output model of the thermal power plant thermal power unit, the output of the step hydropower station hydroelectric power unit and the output of the fan, and specifically comprises the following steps:
target function for establishing hydropower-thermal power combined system optimization scheduling model
min Fa=FH+FT+FW
Wherein,
wherein, FaRepresenting the total energy consumption of the water-fire-electricity combined system, FHRepresenting the energy consumption of a thermal power unit, FTRepresenting the energy consumption of a hydroelectric generating set, FWRepresenting the energy consumption of the wind generating set, T is the scheduling time, NHNumber of hydroelectric generating sets, NTNumber of thermal power generating units, NWNumber of fans, qk,tFor the output of the kth hydroelectric generating set at time t, Pn,tFor the output of the nth thermal power generating unit at time t, pw,tThe output of the w-th fan at the time t, htThe number of hours in a time period t is, a, b and c are a quadratic term coefficient, a primary term coefficient and a constant term of a water consumption function of the hydroelectric generating set respectively, mu is the coal consumption rate of a thermal power plant in unit time, and lambda is the energy consumption coefficient of wind power generation;
establishing a constraint condition of a hydropower-thermal power combined system optimization scheduling model; the constraint conditions of the hydropower-thermal power combined system optimization scheduling model comprise power balance constraint conditions, hydroelectric generating set constraint conditions and thermal power generating set constraint conditions; the constraint conditions of the hydroelectric generating set comprise a hydroelectric generating set output constraint condition, a hydroelectric generating set output limit constraint condition and a water quantity balance constraint condition; the thermal power unit constraint conditions comprise thermal power unit output limit constraint conditions, conventional unit climbing limit constraint conditions and power grid branch flow constraint conditions;
the power balance constraint condition is
Wherein, PDtThe total load of the hydropower station-thermal power plant combined system is shown;
the output constraint condition of the hydroelectric generating set is
Wherein, Vk,tWater storage capacity, Q, of the kth hydroelectric generating set at time tk,tWater yield of hydroelectric generating set, c1k,c2kSecondary term coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set, c3kA first order coefficient which is the product of the water storage capacity and the water yield, c4k,c5kFirst order coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set respectively, c6kIs a constant term parameter;
the output limit constraint condition of the hydroelectric generating set is
Wherein,is the minimum output of the kth hydroelectric generating set,the maximum output of the kth hydroelectric generating set;
the water quantity balance constraint condition is
Wherein, Vk,t-1Water storage capacity of kth hydroelectric generating set at t-1 moment, Ik,tIs the water inflow of the kth hydroelectric generating set at the moment t, Qk,tWater yield of kth hydroelectric generating set at time t, Sk,tThe water overflow amount of the kth hydroelectric generating set at the time t,representing the amount of water remaining due to the time delay; rukRepresenting the total number of upstream units of the kth hydroelectric generating set; tau ismkRepresenting a time delay of water delivery from the mth hydro-power unit to the kth hydro-power unit in the upstream unit;representing the water yield of the mth hydroelectric generating set in the upstream generating set due to time delay;indicating the overflow amount of the mth hydroelectric generating set in the upstream generating set due to time delay; Δ t represents the time interval between time t-1 and time t;
the output limit constraint condition of the thermal power generating unit is
Wherein,represents the minimum output of the nth thermal power generating unit,representing the maximum output of the nth thermal power generating unit;
the conventional unit climbing restriction condition is
pdown,n≤pn,t≤pup,n
Wherein p isdown,nRepresenting the maximum turndown active quantity, p, of the nth thermal power generating unitup,nRepresenting the maximum up-regulation active power quantity of the nth thermal power generating unit;
the power grid branch flow constraint condition is
Wherein,representing the minimum power flow of the mth line in the grid,representing the maximum power flow of the mth line in the grid,representing the power flow of the mth line in the power grid at time t.
4. The cascaded hydropower station-thermal power plant combined optimization scheduling method according to claim 3, wherein the optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model is obtained by solving the hydropower-thermal power combined system optimization scheduling model by adopting a Benders decomposition algorithm, and specifically comprises the following steps:
step 31: respectively establishing a lower-layer hydroelectric generating set model and an upper-layer thermal generating set model according to the hydropower-thermal power combined system optimization scheduling model;
step 32: solving the lower layer hydroelectric generating set model to obtain the output q of the hydroelectric generating set of the nth iterationvAnd an upper limit value of the energy consumption of the hydroelectric generating set
Step 33: acquiring output p of thermal power generating unit of v-1 iterationv-1And the lower boundary value of the energy consumption of the thermal power generating unit
Step 34: determining an upper boundary value of the energy consumption of the hydroelectric generating set of the v-th iterationAnd the lower boundary value of the energy consumption of the thermal power generating unit of the v-1 th iterationWhether a preset convergence condition is met; if so, the output q of the hydroelectric generating set of the v-th iteration is calculatedvAs the optimal output of the hydroelectric generating set, the first stepv-1 iteration thermal power generating unit output pv-1If not, executing step 35; the preset convergence condition is
Step 35: solving the upper-layer thermal power generating unit model to obtain the output p of the thermal power generating unit of the nth iterationvAnd the lower boundary value of the energy consumption of the thermal power generating unitAnd let v be v +1 and then return to the step 32.
5. A cascade hydropower station-thermal power plant joint optimization scheduling system is characterized by comprising:
the first model building module is used for building an output model of a thermal power plant thermal power generating unit in the water, fire and electricity combined system;
the second model building module is used for building a hydropower-thermal power combined system optimization scheduling model according to the output model of the thermal power unit of the thermal power plant, the output of the hydroelectric power unit of the cascade hydropower station and the output of the wind power generator unit;
the solving module is used for solving the hydropower-thermal power combined system optimization scheduling model by adopting a decomposition optimization algorithm to obtain an optimal solution corresponding to the hydropower-thermal power combined system optimization scheduling model; the optimal solution comprises the optimal output of the thermal power generating unit and the optimal output of the hydroelectric generating unit;
and the energy consumption determining module is used for determining the optimal output of the thermal power generating unit and the total energy consumption corresponding to the optimal output of the hydroelectric generating unit as the optimal total energy consumption of the water, fire and electricity combined system.
6. The cascaded hydropower station-thermal power plant joint optimization scheduling system of claim 5, wherein the first model building module is specifically:
wherein N isTIndicating the number of thermal power generating units, Pn,tRepresenting the output, P, of the nth thermal power generating unit at time tLtRepresenting the total load, Δ P, of the gridtIs the total loss of the grid.
7. The cascaded hydropower station-thermal power plant joint optimization scheduling system of claim 6, wherein the second model building module specifically comprises:
an objective function establishing unit for establishing an objective function of a hydropower-thermal power combined system optimization scheduling model
min Fa=FH+FT+FW
Wherein,
wherein, FaRepresenting the total energy consumption of the water-fire-electricity combined system, FHRepresenting the energy consumption of a thermal power unit, FTRepresenting the energy consumption of a hydroelectric generating set, FWRepresenting the energy consumption of the wind generating set, T is the scheduling time, NHNumber of hydroelectric generating sets, NWNumber of fans, qk,tFor the output of the kth hydroelectric generating set at time t, Pn,tFor the output of the nth thermal power generating unit at time t, pw,tThe output of the w-th fan at the time t, htThe number of hours in the t time period is a, b and c are respectively a quadratic term coefficient, a primary term coefficient and a constant term of a water consumption function of the hydroelectric generating set, and mu is fireThe coal consumption rate of the power plant in unit time, wherein lambda is the energy consumption coefficient of wind power generation;
the constraint condition establishing unit is used for establishing constraint conditions of a hydropower-thermal power combined system optimization scheduling model; the constraint conditions of the hydropower-thermal power combined system optimization scheduling model comprise power balance constraint conditions, hydroelectric generating set constraint conditions and thermal power generating set constraint conditions; the constraint conditions of the hydroelectric generating set comprise a hydroelectric generating set output constraint condition, a hydroelectric generating set output limit constraint condition and a water quantity balance constraint condition; the thermal power unit constraint conditions comprise thermal power unit output limit constraint conditions, conventional unit climbing limit constraint conditions and power grid branch flow constraint conditions;
the power balance constraint condition is
Wherein, PDtThe total load of the hydropower station-thermal power plant combined system is shown;
the output constraint condition of the hydroelectric generating set is
Wherein, Vk,tWater storage capacity, Q, of the kth hydroelectric generating set at time tk,tWater yield of hydroelectric generating set, c1k,c2kSecondary term coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set, c3kA first order coefficient which is the product of the water storage capacity and the water yield, c4k,c5kFirst order coefficients of water storage capacity and water output capacity in the power constraint of the hydroelectric generating set respectively, c6kIs a constant term parameter;
the output limit constraint condition of the hydroelectric generating set is
Wherein,is the minimum output of the kth hydroelectric generating set,the maximum output of the kth hydroelectric generating set;
the water quantity balance constraint condition is
Wherein, Vk,t-1Water storage capacity of kth hydroelectric generating set at t-1 moment, Ik,tIs the water inflow of the kth hydroelectric generating set at the moment t, Qk,tWater yield of kth hydroelectric generating set at time t, Sk,tThe water overflow amount of the kth hydroelectric generating set at the time t,representing the amount of water remaining due to the time delay; rukRepresenting the total number of upstream units of the kth hydroelectric generating set; tau ismkRepresenting a time delay of water delivery from the mth hydro-power unit to the kth hydro-power unit in the upstream unit;representing the water yield of the mth hydroelectric generating set in the upstream generating set due to time delay;indicating the overflow amount of the mth hydroelectric generating set in the upstream generating set due to time delay; Δ t represents the time interval between time t-1 and time t;
the output limit constraint condition of the thermal power generating unit is
Wherein,represents the minimum output of the nth thermal power generating unit,representing the maximum output of the nth thermal power generating unit;
the conventional unit climbing restriction condition is
pdown,n≤pn,t≤pup,n
Wherein p isdown,nRepresenting the maximum turndown active quantity, p, of the nth thermal power generating unitup,nRepresenting the maximum up-regulation active power quantity of the nth thermal power generating unit;
the power grid branch flow constraint condition is
Wherein,representing the minimum power flow of the mth line in the grid,representing the maximum power flow of the mth line in the grid,representing the power flow of the mth line in the power grid at time t.
8. The cascaded hydropower station-thermal power plant joint optimization scheduling system of claim 7, wherein the solving module specifically comprises:
the two-layer model conversion unit is used for respectively establishing a lower-layer hydroelectric generating set model and an upper-layer thermal generating set model according to the hydropower-thermal power combined system optimization scheduling model;
a first solving unit for hydraulically solving the lower layerSolving the generator set model to obtain the output q of the hydroelectric generating set of the nth iterationvAnd an upper limit value of the energy consumption of the hydroelectric generating set
The obtaining unit is used for obtaining the output p of the thermal power generating unit of the v-1 th iterationv-1And the lower boundary value of the energy consumption of the thermal power generating unit
A determination unit for determining an upper boundary value of the energy consumption of the hydroelectric generating set of the v-th iterationAnd the lower boundary value of the energy consumption of the thermal power generating unit of the v-1 th iterationWhether a preset convergence condition is met; if so, the output q of the hydroelectric generating set of the v-th iteration is calculatedvAs the optimal output of the hydroelectric generating set, the output p of the thermal power generating set of the v-1 th iteration is usedv-1The optimal output of the thermal power generating unit is used, if not, the second solving unit is switched to; the preset convergence condition is
The second solving unit is used for solving the upper-layer thermal power generating unit model to obtain the output p of the thermal power generating unit of the nth iterationvAnd the lower boundary value of the energy consumption of the thermal power generating unitAnd let v be v +1, and then return to the first solving unit.
CN201910332439.7A 2019-04-24 2019-04-24 Cascade hydropower station-thermal power plant combined optimization scheduling method and system Active CN109995084B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910332439.7A CN109995084B (en) 2019-04-24 2019-04-24 Cascade hydropower station-thermal power plant combined optimization scheduling method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910332439.7A CN109995084B (en) 2019-04-24 2019-04-24 Cascade hydropower station-thermal power plant combined optimization scheduling method and system

Publications (2)

Publication Number Publication Date
CN109995084A true CN109995084A (en) 2019-07-09
CN109995084B CN109995084B (en) 2020-11-06

Family

ID=67135015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910332439.7A Active CN109995084B (en) 2019-04-24 2019-04-24 Cascade hydropower station-thermal power plant combined optimization scheduling method and system

Country Status (1)

Country Link
CN (1) CN109995084B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854931A (en) * 2019-11-20 2020-02-28 广东电网有限责任公司 Pumped storage unit day-ahead power generation planning method, system and equipment
CN113657722A (en) * 2021-07-26 2021-11-16 西安理工大学 Power plant energy-saving scheduling method based on social spider optimization algorithm

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105868841A (en) * 2016-03-21 2016-08-17 广西电网有限责任公司电力科学研究院 Wind-water-fire combined dispatching method based on wind power priority grid connection
CN106130079A (en) * 2016-07-08 2016-11-16 华北电力大学 A kind of edema due to wind pathogen fire short-term joint optimal operation method
CN106208075A (en) * 2016-08-29 2016-12-07 清华大学 Based on the multizone composition decomposition dynamic economic dispatch method revising generalized benders decomposition
CN106655246A (en) * 2016-10-18 2017-05-10 国网黑龙江省电力有限公司哈尔滨供电公司 Method of solving robust two-layer optimization model based on wind power prediction and demand response
US9831677B2 (en) * 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
CN108155674A (en) * 2018-02-01 2018-06-12 清华大学 Consider the Hydro-Thermal Systems combined scheduling method and system of uncertain distribution character
CN108596388A (en) * 2018-04-23 2018-09-28 广西大学 A kind of optimal extreme misery combined scheduling method for abandoning water of consideration step power station
CN108711892A (en) * 2018-05-30 2018-10-26 南京工程学院 A kind of Optimization Scheduling of multi-energies hybrid power generating system
CN109510238A (en) * 2018-12-07 2019-03-22 国网辽宁省电力有限公司大连供电公司 A kind of coordinated scheduling Unit Combination method of Efficient Solution water power thermoelectricity wind-powered electricity generation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831677B2 (en) * 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
CN105868841A (en) * 2016-03-21 2016-08-17 广西电网有限责任公司电力科学研究院 Wind-water-fire combined dispatching method based on wind power priority grid connection
CN106130079A (en) * 2016-07-08 2016-11-16 华北电力大学 A kind of edema due to wind pathogen fire short-term joint optimal operation method
CN106208075A (en) * 2016-08-29 2016-12-07 清华大学 Based on the multizone composition decomposition dynamic economic dispatch method revising generalized benders decomposition
CN106655246A (en) * 2016-10-18 2017-05-10 国网黑龙江省电力有限公司哈尔滨供电公司 Method of solving robust two-layer optimization model based on wind power prediction and demand response
CN108155674A (en) * 2018-02-01 2018-06-12 清华大学 Consider the Hydro-Thermal Systems combined scheduling method and system of uncertain distribution character
CN108596388A (en) * 2018-04-23 2018-09-28 广西大学 A kind of optimal extreme misery combined scheduling method for abandoning water of consideration step power station
CN108711892A (en) * 2018-05-30 2018-10-26 南京工程学院 A kind of Optimization Scheduling of multi-energies hybrid power generating system
CN109510238A (en) * 2018-12-07 2019-03-22 国网辽宁省电力有限公司大连供电公司 A kind of coordinated scheduling Unit Combination method of Efficient Solution water power thermoelectricity wind-powered electricity generation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CONG LIU ETAL.: "Extended Benders Decomposition for Two-Stage SCUC", 《IEEE TRANSACTIONS ON POWER SYSTEMS》 *
汪洋 等: "考虑电网N−1闭环安全校核的最优安全发电计划", 《中国电机工程学报》 *
郭小璇: "水火电力系统一次能源消耗最小模型及其算法研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854931A (en) * 2019-11-20 2020-02-28 广东电网有限责任公司 Pumped storage unit day-ahead power generation planning method, system and equipment
CN113657722A (en) * 2021-07-26 2021-11-16 西安理工大学 Power plant energy-saving scheduling method based on social spider optimization algorithm
CN113657722B (en) * 2021-07-26 2023-07-21 西安理工大学 Power plant energy-saving scheduling method based on social spider optimization algorithm

Also Published As

Publication number Publication date
CN109995084B (en) 2020-11-06

Similar Documents

Publication Publication Date Title
CN109919399B (en) Day-ahead economic dispatching method and system for comprehensive energy system
CN104463697A (en) Risk assessment method for power system including large-scale wind power
CN109325621A (en) A kind of garden energy internet two stages optimal dispatch control method
CN109995084B (en) Cascade hydropower station-thermal power plant combined optimization scheduling method and system
CN104167765A (en) Admitting ability distribution-based maximum wind power installed capacity calculation method
CN114285034B (en) Day-ahead regulation and optimization method and system considering power supply and new energy fluctuation
CN110610303A (en) Direct-current power distribution network reliability assessment method considering source-load uncertainty
CN109193714A (en) System and method for analyzing influence of pumped storage power station working condition conversion on power grid
CN108847661B (en) Annual production simulation operation method and system for regional power system
CN109921459A (en) A kind of active power and frequency control method after the high accounting sending end power grid direct current locking of photovoltaic
CN117096856B (en) Virtual power plant scheduling method considering three-phase electricity price and phase-to-phase voltage unbalance of distribution network
CN111342501B (en) Reactive power control method for microgrid with distributed power supply
CN111898850A (en) Method and system for calculating heat supply capacity of electric heating comprehensive energy system with flexible thermal power plant
CN115549138A (en) Energy storage capacity optimal configuration method and system in multiple complementary delivery systems
CN115276051A (en) Receiving-end urban power grid elasticity evaluation method considering new energy and energy storage response characteristics
CN113592125B (en) Matching optimization comparison selection method and system for extra-high voltage direct current matched power supply
CN103050977B (en) Point distribution optimizing method of emergency control device under single-element overload condition
Zhang et al. Research on the wind power accommodation based on peak shaving by using heat storage electric boiler
CN109447715A (en) A kind of node electricity price calculation method considering wind-electricity integration transmission nargin value
CN110707760A (en) Method and system for obtaining new energy critical occupation ratio based on conventional power supply startup
CN112350359B (en) Method and system for selecting access point of multi-terminal flexible direct-current power transmission receiving-terminal power grid
Si et al. Reliability Evaluation of Hybrid Energy Storage System Considering Flexible Resources of Source, Network and Load
CN110458343B (en) Method for predicting regional photovoltaic power generation capacity attenuation
Wei et al. Economic assessment of large grid-connected wind farms—Avoided cost method
Guo et al. Minimum Load Shedding Method across Electricity and Gas Systems Based on the Sensitivity Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant