CN109980347B - Monopole microstrip antenna of coplanar waveguide feed - Google Patents

Monopole microstrip antenna of coplanar waveguide feed Download PDF

Info

Publication number
CN109980347B
CN109980347B CN201910321738.0A CN201910321738A CN109980347B CN 109980347 B CN109980347 B CN 109980347B CN 201910321738 A CN201910321738 A CN 201910321738A CN 109980347 B CN109980347 B CN 109980347B
Authority
CN
China
Prior art keywords
branch
vertical
coplanar waveguide
horizontal
microstrip antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910321738.0A
Other languages
Chinese (zh)
Other versions
CN109980347A (en
Inventor
程云鹏
单志勇
鲁思维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201910321738.0A priority Critical patent/CN109980347B/en
Publication of CN109980347A publication Critical patent/CN109980347A/en
Application granted granted Critical
Publication of CN109980347B publication Critical patent/CN109980347B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Abstract

The invention relates to a monopole microstrip antenna fed by coplanar waveguide, which comprises a feeding part, wherein the feeding part adopts coplanar waveguide feeding, the coplanar waveguide comprises a dielectric substrate and a feeder line, a transmission conduction band unit is arranged in the center of the dielectric substrate, ground plate units are arranged on two sides of the transmission conduction band unit, a radiation unit is pasted on the dielectric substrate and is a rectangular frame, an 1/4 circular unit is loaded on the first inner angle of the rectangular frame, a square ring unit is loaded on the second inner angle, 1/4 circular units are loaded on the third inner angle and the fourth inner angle, and one of the two 1/4 circular units is connected with a resonance branch; the feeder line is located at the notch of the bottom edge of the rectangular frame and connected with the quasi-L-shaped unit. The invention breaks through the defects of narrower frequency band, lower gain and the like, and expands the range of the application of the microstrip patch antenna in the frequency band.

Description

Monopole microstrip antenna of coplanar waveguide feed
Technical Field
The invention relates to the technical field of microstrip antennas, in particular to a monopole microstrip antenna with coplanar waveguide feed.
Background
The development period of the antenna can be counted from the end of the 20 th century and the 50 th century, and with the continuous expansion of the application field of wireless communication and the gradual improvement of integrated circuits, people also put forward various requirements on the antenna, such as high gain/broadband/multiband in performance, simple/small volume/light weight in structure, easy manufacturing in process planarization and the like. The traditional antenna is fixed due to the component constitution, the concealment and the anti-interference performance are poor, the integration level is not high, the application in some fields is faded out slowly, and people begin to research high-quality antennas in order to meet the requirements of wireless communication. With the rapid development of information technology, the antenna is also developed to miniaturization, multi-frequency, high-performance, wide-frequency band and high integration with modern communication systems or detection systems. The microstrip antenna is a novel antenna, and has unique advantages, so that the microstrip antenna is widely concerned by researchers at home and abroad, such as small volume, low profile, light weight, easy processing and integration, easy conformality and the like. At present, with the deepening of the theoretical research and the expansion of the application of the microstrip antenna, the microstrip antenna technology has become widely permeated in a large number of wireless communication systems such as space technology, medicine, mobile communication, remote measurement, satellite and the like, and is researched in a plurality of subjects.
In recent decades, researchers have studied and continuously improved microstrip antennas, and numerous methods are brought to the design of microstrip antennas, for example, a multi-band technology usually adopts a stacking method, a multi-branch method (an L-shaped branch, an F-shaped branch, a G-shaped branch, and the like), and a slotting method; the broadband technical method comprises the following steps: the technologies of a loading parasitic patch method, a multi-slot method, a short circuit probe method and the like can effectively realize the miniaturization, broadband, multi-splicing and high-gain indexes of the antenna, thereby improving the communication quality of the system and meeting the requirements of practical application.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a monopole microstrip antenna with coplanar waveguide feed, which breaks through the defects of narrower frequency band, lower gain and the like and expands the range of the microstrip patch antenna applied in the frequency band.
The technical scheme adopted by the invention for solving the technical problems is as follows: the monopole microstrip antenna comprises a feeding part, wherein the feeding part adopts coplanar waveguide feeding, the coplanar waveguide comprises a dielectric substrate and a feeder line, a transmission conduction band unit is arranged in the center of the dielectric substrate, ground plate units are arranged on two sides of the transmission conduction band unit, a radiation unit is attached to the dielectric substrate and is a rectangular frame, an 1/4 circular unit is loaded on a first inner angle of the rectangular frame, a square ring unit is loaded on a second inner angle, 1/4 circular units are loaded on a third inner angle and a fourth inner angle, and one of two 1/4 circular units is connected with a resonance branch; the feeder line is located at the notch of the bottom edge of the rectangular frame and connected with the quasi-L-shaped unit.
The resonance branch comprises a horizontal branch, a first vertical branch, a second vertical branch and a third vertical branch, one end of the first vertical branch is connected with one of the two 1/4 circular units, the other end of the first vertical branch is connected with one end of the horizontal branch, the other end of the horizontal branch is connected with one end of the second vertical branch, and the other end of the second vertical branch is positioned below the horizontal branch; the horizontal branch is also connected with one end of a third vertical branch, and the other end of the third vertical branch is positioned above the horizontal branch; the distance from the third vertical branch to the first vertical branch is less than the distance from the third vertical branch to the second vertical branch.
The quasi-L-shaped unit comprises a vertical rectangular part, a horizontal rectangular part and a semicircular part, the feeder line is connected to the middle of the horizontal rectangular part, the vertical rectangular part is connected to the side face of the horizontal rectangular part, and the semicircular part is connected to the upper portion of the vertical rectangular part.
The width of the upper edge and the lower edge of the rectangular frame is 7mm, and the width of the left edge and the right edge of the rectangular frame is 6 mm.
The radius of the inner circle of the 1/4 circular ring unit is 6mm, and the width is 3 mm.
The interior limit length of quad ring unit is 5mm, and the width is 3 mm.
The radius of the 1/4 circular element is 12 mm.
The length of the first vertical branch is 18mm, the length of the second vertical branch is 11mm, the length of the third vertical branch is 4mm, and the length of the horizontal branch is 25 mm; the widths of the horizontal branch knot, the first vertical branch knot, the second vertical branch knot and the third vertical branch knot are all 3 mm.
The length of the horizontal rectangular part is 16.5mm, and the width of the horizontal rectangular part is 5.2 mm; the vertical rectangular part is 13.8mm in length and 9.5mm in width; the radius of the semi-circular portion is 4.75 mm.
The gap between the feeder line and the rectangular frame is 0.5mm, the length of the feeder line is 7.5mm, and the width of the feeder line is 3.2 mm.
Advantageous effects
Due to the adoption of the technical scheme, compared with the prior art, the invention has the following advantages and positive effects:
the antenna of the invention has the main advantages that: firstly, the antenna adopts coplanar waveguide feed to realize the requirements of miniaturization and broadband, the size of an antenna medium is 54mm multiplied by 54mm, and the achieved bandwidth range is 1.8-4.8 GHz; secondly, the bandwidth of the antenna is expanded through a multi-branch loading method and the like on the basis of a square ring patch, and the voltage standing wave ratio VSVR is consistent with the return loss bandwidth; thirdly, the whole antenna structure is very simple and is easy to integrate into various communication application systems.
Drawings
FIG. 1 is an overall block diagram of the present invention;
FIG. 2 is a return loss diagram of the present invention;
FIG. 3 is a schematic voltage standing wave ratio of the present invention;
fig. 4 is a schematic diagram of the gain parameter of the present invention.
Detailed Description
The invention will be further illustrated with reference to the following specific examples. It should be understood that these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. Further, it should be understood that various changes or modifications of the present invention may be made by those skilled in the art after reading the teaching of the present invention, and such equivalents may fall within the scope of the present invention as defined in the appended claims.
The embodiment of the invention relates to a monopole microstrip antenna fed by coplanar waveguide, which comprises a feeding part, wherein the feeding part adopts coplanar waveguide feeding, the coplanar waveguide comprises a dielectric substrate and a feeder line, a transmission conduction band unit is arranged in the center of the dielectric substrate, grounding plate units are arranged on two sides of the transmission conduction band unit, and the back surface of the dielectric substrate is not provided with a metal floor. A radiation unit is pasted on the medium substrate and is a rectangular frame 1, 1/4 circular units 2 are loaded on a first inner angle of the rectangular frame 1, a square ring unit 3 is loaded on a second inner angle, 1/4 circular units 4 are loaded on a third inner angle and a fourth inner angle, and one of the two 1/4 circular units 4 is connected with the resonant branch; the feeder line 6 is located at a notch of the bottom side of the rectangular frame 1 and connected to the pseudo-L-shaped unit.
The resonance branch comprises a horizontal branch 51, a first vertical branch 52, a second vertical branch 53 and a third vertical branch 54, one end of the first vertical branch 52 is connected with one of the two 1/4 round units, the other end of the first vertical branch is connected with one end of the horizontal branch 51, the other end of the horizontal branch 51 is connected with one end of the second vertical branch 53, and the other end of the second vertical branch 53 is positioned below the horizontal branch 51; the horizontal branch 51 is also connected with one end of a third vertical branch 54, and the other end of the third vertical branch 54 is positioned above the horizontal branch 51; the distance from the third vertical branch 54 to the first vertical branch 52 is smaller than the distance to the second vertical branch 53. The loading of the resonant branch can change the surface current of the antenna radiation patch so as to prolong the effective path of the current, expand the bandwidth and ensure that the voltage standing wave ratio VSVR is consistent with the return loss bandwidth.
The quasi-L-shaped unit includes a vertical rectangular portion 71, a horizontal rectangular portion 72, and a semicircular portion 73, the feeder 6 is connected at a middle position of the horizontal rectangular portion 72, the vertical rectangular portion 71 is connected to a side of the horizontal rectangular portion 72, and the semicircular portion 73 is connected to an upper portion of the vertical rectangular portion 71. The impedance bandwidth of the antenna can be further increased by loading the pseudo-L-shaped element on the feed line.
The antenna structure of the embodiment mainly comprises a dielectric layer, a quasi-L-shaped unit, a square ring unit, a resonance branch node and a feeder line, wherein the radiation units are printed on a Tastic TLT (tm) with the thickness of 1mm, the size of the radiation units is 54mm multiplied by 54mm, and the relative dielectric constant of the radiation units isr2.25, loss tangent tan 0.0006, without a metal ground plate on the lower surface of the dielectric substrate. The size calculation in antenna design is derived from the analysis and calculation of a monopole microstrip antenna by means of a dipole, the monopole microstrip antenna usually operates in a quarter-wavelength mode, and the corresponding free-space wavelength and the wavelength in a medium can be calculated by the formula lambda ═ c/f. The specific dimensional parameters of the antenna are shown in table 1.
Antenna size parameter Parameter value (mm) Antenna size parameter Parameter value (mm)
G 54 a 5
L1 5.2 W1 1.5
L2 16.5 W2 5.2
L3 13.8 W3 9.5
L4 18 W4 25
L5 4 W5 3
L6 11 W6 3
L7 7 W7 8.47
b 3 W8 6
R1 12 R2 4.75
R3 6 g 0.5
Wf 3.2 h 1
TABLE 1 antenna parameter table
Because the antenna works in free space, in order to enable the designed antenna working parameters to be closer to reality, after the antenna structure model is established, when HFSS13.0 is used for analyzing the antenna performance parameters, the boundary condition of the antenna needs to be set as an ideal conductor boundary, the distance between the radiation boundary surface (namely an air cavity surface) and a radiator needs to be not less than lambda/4, the bottom surface of the antenna model dielectric substrate needs to be set as an ideal boundary, the input port of the antenna is set as waveguide port excitation, the microstrip feeder is positioned at the center of the port, the antenna is set as a fast frequency sweeping type, and the performance of the antenna in a 1-5GHz frequency band is analyzed and calculated.
The antenna of the present invention achieves good performance criteria with a return loss parameter (S11) of 91% (3GHz, 1.8-4.8GHz) as shown in fig. 2. FIG. 3 shows the variation of the voltage standing wave ratio of the antenna with frequency, and it can be seen from FIG. 3 that VSVR <2dB in the frequency band of 1.8-4.8GHz, which meets the technical index. Fig. 4 shows the gain of the antenna, and it can be seen from fig. 4 that the gain of the antenna is substantially above 2.7dB and can reach 4.5dB at most in this frequency band.
In general, each characteristic parameter of an antenna is a function of frequency, and the antenna may have the best characteristics at the center frequency. The return loss S11 and the Gain are two important parameters for the antenna performance, wherein the theoretical requirement is that S11< -10dB and the Gain is more than 2.5dB in the same bandwidth to indicate that the antenna has practical application value. The frequency band range of the antenna is 1.8-4.8GHz, the relative working bandwidth is 91%, the voltage standing wave ratio VSVR of the antenna is consistent with the return loss bandwidth, the input impedance matching of the antenna is good, the gain extreme value is 4.5dB, and the frequency band of Bluetooth and WiMAX working is covered, so that the designed antenna structure can be applied to a wireless communication system working in the frequency band. The invention fully exerts the characteristics of small volume, low profile, easy integration and the like of the microstrip patch antenna, breaks through the defects of narrower frequency band, lower gain and the like, and expands the range of the microstrip patch antenna applied in the frequency band.

Claims (9)

1. A monopole microstrip antenna fed by coplanar waveguide comprises a feeding part, wherein the feeding part adopts coplanar waveguide feeding, the coplanar waveguide comprises a dielectric substrate and a feeder line, a transmission conduction band unit is arranged in the center of the dielectric substrate, and ground plate units are arranged on two sides of the transmission conduction band unit, the monopole microstrip antenna is characterized in that a radiation unit is pasted on the dielectric substrate, the radiation unit is a rectangular frame, an 1/4 circular unit is loaded on a first inner angle of the rectangular frame, a square ring unit is loaded on a second inner angle, 1/4 circular units are loaded on a third inner angle and a fourth inner angle, and one of two 1/4 circular units is connected with a resonance stub; the feeder line is positioned at the notch on the bottom edge of the rectangular frame and connected with the quasi-L-shaped unit; the resonance branch comprises a horizontal branch, a first vertical branch, a second vertical branch and a third vertical branch, one end of the first vertical branch is connected with one of the two 1/4 circular units, the other end of the first vertical branch is connected with one end of the horizontal branch, the other end of the horizontal branch is connected with one end of the second vertical branch, and the other end of the second vertical branch is positioned below the horizontal branch; the horizontal branch is also connected with one end of a third vertical branch, and the other end of the third vertical branch is positioned above the horizontal branch; the distance from the third vertical branch to the first vertical branch is less than the distance from the third vertical branch to the second vertical branch.
2. The coplanar waveguide fed monopole microstrip antenna as claimed in claim 1 wherein the quasi-L shaped element comprises a vertical rectangular portion, a horizontal rectangular portion and a semicircular portion, the feed line is connected at a middle position of the horizontal rectangular portion, the vertical rectangular portion is connected to a side surface of the horizontal rectangular portion, and the semicircular portion is connected to an upper portion of the vertical rectangular portion.
3. The coplanar waveguide fed monopole microstrip antenna as claimed in claim 1 wherein the rectangular frame has upper and lower sides 7mm wide and left and right sides 6mm wide.
4. A coplanar waveguide fed monopole microstrip antenna as claimed in claim 1 wherein the 1/4 circular ring element has an inner circular radius of 6mm and a width of 3 mm.
5. The coplanar waveguide fed monopole microstrip antenna as claimed in claim 1 wherein the quad ring element has an inner edge length of 5mm and a width of 3 mm.
6. A coplanar waveguide fed monopole microstrip antenna as claimed in claim 1 wherein the radius of the 1/4 circular element is 12 mm.
7. The coplanar waveguide fed monopole microstrip antenna as claimed in claim 1 wherein the first vertical leg has a length of 18mm, the second vertical leg has a length of 11mm, the third vertical leg has a length of 4mm, and the horizontal leg has a length of 25 mm; the widths of the horizontal branch knot, the first vertical branch knot, the second vertical branch knot and the third vertical branch knot are all 3 mm.
8. A coplanar waveguide fed monopole microstrip antenna according to claim 2 wherein the horizontal rectangular section has a length of 16.5mm and a width of 5.2 mm; the vertical rectangular part is 13.8mm in length and 9.5mm in width; the radius of the semi-circular portion is 4.75 mm.
9. The coplanar waveguide fed monopole microstrip antenna as claimed in claim 1 wherein the gap between the feed line and the rectangular frame is 0.5mm, the feed line has a length of 7.5mm and a width of 3.2 mm.
CN201910321738.0A 2019-04-22 2019-04-22 Monopole microstrip antenna of coplanar waveguide feed Active CN109980347B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910321738.0A CN109980347B (en) 2019-04-22 2019-04-22 Monopole microstrip antenna of coplanar waveguide feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910321738.0A CN109980347B (en) 2019-04-22 2019-04-22 Monopole microstrip antenna of coplanar waveguide feed

Publications (2)

Publication Number Publication Date
CN109980347A CN109980347A (en) 2019-07-05
CN109980347B true CN109980347B (en) 2021-01-01

Family

ID=67085587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910321738.0A Active CN109980347B (en) 2019-04-22 2019-04-22 Monopole microstrip antenna of coplanar waveguide feed

Country Status (1)

Country Link
CN (1) CN109980347B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745791B (en) * 2020-05-29 2022-11-01 合肥本源量子计算科技有限责任公司 Method for constructing coplanar waveguide resonator layout and method for constructing air bridge layer
CN112909526A (en) * 2021-01-22 2021-06-04 宁波大学 Dual-frequency point ultrahigh-frequency bandwidth tagged antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205159512U (en) * 2015-12-08 2016-04-13 南京信息工程大学 Four leaves of coplane waveguide feed polarization restructural grass antenna
CN108110415A (en) * 2017-12-14 2018-06-01 东华大学 A kind of compact double frequency round polarized microstrip antenna
CN208478558U (en) * 2018-06-21 2019-02-05 福州大学 A kind of low section wideband directional slot antenna applied to GNSS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW591821B (en) * 2003-08-08 2004-06-11 Chien-Jen Wang A miniaturized CPW-fed slot antenna with the dual-frequency operation
US20130021207A1 (en) * 2011-07-18 2013-01-24 Lee Youn M Coplanar-waveguide fed monopole antenna
CN106067596A (en) * 2016-05-23 2016-11-02 重庆邮电大学 Miniaturization broadband medium resonator antenna based on coplanar wave guide feedback
CN207572523U (en) * 2017-12-22 2018-07-03 吉林医药学院 A kind of cupuliform super wide band plane single pole sub antenna with ladder open-circuit structure floor
CN108429002A (en) * 2018-03-20 2018-08-21 东华大学 A kind of pocket super-broadband antenna applied to high band
CN108666756B (en) * 2018-06-21 2023-07-28 福州大学 Low-profile broadband directional slot antenna applied to GNSS
CN109586025B (en) * 2019-01-30 2024-01-19 福州大学 Miniaturized low-profile broadband directional antenna and terminal applied to WiFi and WiMAX

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205159512U (en) * 2015-12-08 2016-04-13 南京信息工程大学 Four leaves of coplane waveguide feed polarization restructural grass antenna
CN108110415A (en) * 2017-12-14 2018-06-01 东华大学 A kind of compact double frequency round polarized microstrip antenna
CN208478558U (en) * 2018-06-21 2019-02-05 福州大学 A kind of low section wideband directional slot antenna applied to GNSS

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A CPW-Fed Broadband Circularly Polarized Regular-Hexagonal Slot Antenna With L-Shape Monopole";Shui-Wei Zhou, Ping-Hui Li, Yang Wang, Wei-Hua Feng等;《 IEEE Antennas and Wireless Propagation Letters ( Volume: 10 )》;20111019;第2栏第3段,图1 *
"A New CPW-Fed Circularly Polarized Square Slot Antenna Design";Saeid KARAMZADEH, Hemrah HIVEHCHI;《Istanbul University - Journal of Electrical and Electronics Engineering 17(1):3141-3145》;20170131;第2栏第2段,第3栏第1段,图1 *
"Design of miniature CPW-Fed dual band antenna using coupling strips for GSM/Wi-Fi/WLAN applications";V Praveen Naidu, Raj Kumar;《2013 Annual IEEE India Conference (INDICON)》;20131215;第2栏第2段,图1 *
"Guitar-Shaped Patch Antenna With CPW Feed Line For WLAN and WiMAX Band Applications";Amit Verma, Amit Birwal, Kamlesh Patel;《 2018 IEEE Indian Conference on Antennas and Propogation (InCAP)》;20181219;第2栏第3段,图1 *

Also Published As

Publication number Publication date
CN109980347A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
CN104396086B (en) A kind of antenna and mobile terminal
EP2797165A1 (en) Rfid tag aerial with ultra-thin dual-frequency microstrip patch aerial array
CN202712422U (en) Ultra wide-band antenna
CN101752665A (en) UWB (ultra wide band) antenna with band-stop characteristic
CN105305058B (en) A kind of ultra wide band mimo antennas with three frequency range trap characteristics
CN104103897A (en) Compact UWB (ultra wide band) antenna based on L-shaped parasitic strip
CN109980347B (en) Monopole microstrip antenna of coplanar waveguide feed
CN104681955A (en) UWB (ultra wide band) antenna with dual resistance band function
Wu et al. Compact UWB–MIMO antenna with quad-band-notched characteristic
US7567210B2 (en) Small size ultra-wideband antenna
CN107706546B (en) Multi-band antenna with parasitic coupling feed
CN105406182B (en) A kind of UWB mimo antennas that notch bandwidth is controllable
CN105161831B (en) A kind of double five frequency-band antennas of inverted L-shaped slot in defect ground
CN104681925A (en) Ultra wide band antenna with cross-shaped groove structure and dual-notch characteristics
CN107994330B (en) UHF/VHF broadband planar printed antenna
CN205050986U (en) Drum -shaped rattle shape coplane formula ultra wide band microstrip antenna
CN104681949A (en) Dual-notch UWB (ultra wide band) antenna based on Mushroom-EBG (electromagnetic band gap) structure
CN110165395B (en) Miniaturized compact three-frequency-band antenna
CN104681966A (en) Novel attenuation band steep UWB (Ultra Wide Band) band-notch antenna
CN102760944A (en) Omnidirectional radiation vibrator array antenna for loaded coupled feeding
Ramli et al. Design of Sierpinski gasket fractal antenna with slits for multiband application
Ogunlade et al. Design of multiband microstrip antenna for mobile wireless communication
CN109687130B (en) Broadband miniaturized antenna
KR100858969B1 (en) Wide band bow-tie monopole antenna having improved band rejection characteristic
KR101816018B1 (en) Compact, wideband log-periodic dipole array antenna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant