CN109979591A - 一种基于图神经网络分析斑块进展因子的方法及装置 - Google Patents
一种基于图神经网络分析斑块进展因子的方法及装置 Download PDFInfo
- Publication number
- CN109979591A CN109979591A CN201910184156.2A CN201910184156A CN109979591A CN 109979591 A CN109979591 A CN 109979591A CN 201910184156 A CN201910184156 A CN 201910184156A CN 109979591 A CN109979591 A CN 109979591A
- Authority
- CN
- China
- Prior art keywords
- network
- factor
- node
- stage
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 42
- 238000004458 analytical method Methods 0.000 title claims abstract description 39
- 238000003062 neural network model Methods 0.000 claims abstract description 57
- 230000006870 function Effects 0.000 claims description 56
- 238000012545 processing Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 230000000644 propagated effect Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 230000011218 segmentation Effects 0.000 claims description 7
- 230000001902 propagating effect Effects 0.000 claims description 3
- 208000019553 vascular disease Diseases 0.000 abstract description 10
- 230000009471 action Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 82
- 238000010586 diagram Methods 0.000 description 10
- 208000031481 Pathologic Constriction Diseases 0.000 description 9
- 210000001367 artery Anatomy 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 230000036262 stenosis Effects 0.000 description 9
- 208000037804 stenosis Diseases 0.000 description 9
- 239000008280 blood Substances 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 230000036772 blood pressure Effects 0.000 description 7
- 150000002632 lipids Chemical group 0.000 description 7
- 238000010606 normalization Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 208000032843 Hemorrhage Diseases 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 241001269238 Data Species 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 206010008190 Cerebrovascular accident Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000035487 diastolic blood pressure Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- 210000004218 nerve net Anatomy 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000035488 systolic blood pressure Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 206010007687 Carotid artery stenosis Diseases 0.000 description 1
- 206010008092 Cerebral artery thrombosis Diseases 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 206010053648 Vascular occlusion Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 208000006170 carotid stenosis Diseases 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 230000003455 independent Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000035778 pathophysiological process Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000006441 vascular event Effects 0.000 description 1
- 208000021331 vascular occlusion disease Diseases 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Primary Health Care (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radiology & Medical Imaging (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Quality & Reliability (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910184156.2A CN109979591B (zh) | 2019-03-12 | 2019-03-12 | 一种基于图神经网络分析斑块进展因子的方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910184156.2A CN109979591B (zh) | 2019-03-12 | 2019-03-12 | 一种基于图神经网络分析斑块进展因子的方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109979591A true CN109979591A (zh) | 2019-07-05 |
CN109979591B CN109979591B (zh) | 2021-01-01 |
Family
ID=67078478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910184156.2A Active CN109979591B (zh) | 2019-03-12 | 2019-03-12 | 一种基于图神经网络分析斑块进展因子的方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109979591B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110705709A (zh) * | 2019-10-14 | 2020-01-17 | 支付宝(杭州)信息技术有限公司 | 训练图神经网络模型的方法和装置 |
CN111681204A (zh) * | 2020-04-30 | 2020-09-18 | 北京深睿博联科技有限责任公司 | 基于图神经网络的ct肋骨骨折病灶关系建模方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100086532A1 (en) * | 2006-07-05 | 2010-04-08 | The Scripps Research Institute | Chimeric zinc finger recombinases optimized for catalysis by directed evolution |
RU2009100519A (ru) * | 2009-06-01 | 2010-12-10 | Федеральное государственное учреждение здравоохранения "Иркутский ордена Трудового Красного Знамени научно-исследовательский против | Способ обнаружения антигенов чумного микроба |
CN104794321A (zh) * | 2014-01-21 | 2015-07-22 | 中国科学院上海生命科学研究院 | 用于对前疾病状态进行检测的检测装置及检测方法 |
CN105518684A (zh) * | 2013-08-27 | 2016-04-20 | 哈特弗罗公司 | 用于预测冠状动脉病变的位置、开始、和/或变化的系统和方法 |
CN106447645A (zh) * | 2016-04-05 | 2017-02-22 | 天津大学 | 增强ct图像中冠脉钙化检测及量化装置和方法 |
CN109091167A (zh) * | 2018-06-29 | 2018-12-28 | 东南大学 | 冠状动脉粥样硬化斑块增长的预测方法 |
-
2019
- 2019-03-12 CN CN201910184156.2A patent/CN109979591B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100086532A1 (en) * | 2006-07-05 | 2010-04-08 | The Scripps Research Institute | Chimeric zinc finger recombinases optimized for catalysis by directed evolution |
RU2009100519A (ru) * | 2009-06-01 | 2010-12-10 | Федеральное государственное учреждение здравоохранения "Иркутский ордена Трудового Красного Знамени научно-исследовательский против | Способ обнаружения антигенов чумного микроба |
CN105518684A (zh) * | 2013-08-27 | 2016-04-20 | 哈特弗罗公司 | 用于预测冠状动脉病变的位置、开始、和/或变化的系统和方法 |
CN104794321A (zh) * | 2014-01-21 | 2015-07-22 | 中国科学院上海生命科学研究院 | 用于对前疾病状态进行检测的检测装置及检测方法 |
CN106447645A (zh) * | 2016-04-05 | 2017-02-22 | 天津大学 | 增强ct图像中冠脉钙化检测及量化装置和方法 |
CN109091167A (zh) * | 2018-06-29 | 2018-12-28 | 东南大学 | 冠状动脉粥样硬化斑块增长的预测方法 |
Non-Patent Citations (3)
Title |
---|
BENEDIKT BUNZ: "Graph neural networks and boolean satisfiability", 《COMPUTERING REVIEWS》 * |
孙夏: "基于卷积神经网络的颈动脉斑块超声图像特征识别", 《中国医疗器械信息》 * |
李小英: "基于相似性网络的疾病miRNAs预测方法研究及应用", 《中国博士学位论文全文数据库 基础科学辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110705709A (zh) * | 2019-10-14 | 2020-01-17 | 支付宝(杭州)信息技术有限公司 | 训练图神经网络模型的方法和装置 |
CN110705709B (zh) * | 2019-10-14 | 2021-03-23 | 支付宝(杭州)信息技术有限公司 | 训练图神经网络模型的方法和装置 |
CN111681204A (zh) * | 2020-04-30 | 2020-09-18 | 北京深睿博联科技有限责任公司 | 基于图神经网络的ct肋骨骨折病灶关系建模方法及装置 |
CN111681204B (zh) * | 2020-04-30 | 2023-09-26 | 北京深睿博联科技有限责任公司 | 基于图神经网络的ct肋骨骨折病灶关系建模方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109979591B (zh) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tripathy et al. | A framework for intelligent medical diagnosis using rough set with formal concept analysis | |
CN109785928A (zh) | 诊疗方案推荐方法、装置及存储介质 | |
CN107582037A (zh) | 基于脉搏波设计医疗产品的方法 | |
CN109800789A (zh) | 基于图网络的糖尿病视网膜病变分类方法及装置 | |
CN109979591A (zh) | 一种基于图神经网络分析斑块进展因子的方法及装置 | |
CN111785366B (zh) | 患者治疗方案的确定方法、装置及计算机设备 | |
Jamshidi et al. | Symptom prediction and mortality risk calculation for COVID-19 using machine learning | |
EP3796226A1 (en) | Data conversion/symptom scoring | |
CN109829892A (zh) | 一种预测模型的训练方法、使用该模型的预测方法及装置 | |
KR102304339B1 (ko) | 인공 신경망을 활용하여 혈관 초음파 영상에 대한 분석 정보를 제공하기 위한 방법 및 컴퓨팅 장치 | |
CN107292385A (zh) | 一种类Alexnet网络的模型训练方法和装置 | |
Kwakye et al. | Machine learning-based classification algorithms for the prediction of coronary heart diseases | |
CN116992980A (zh) | 一种基于超网络和联邦学习的预后预测预警模型训练方法、系统及设备 | |
CN113345581B (zh) | 一种基于集成学习的脑卒中溶栓后出血概率预测方法 | |
Duan et al. | MADNN: A multi-scale attention deep neural network for arrhythmia classification | |
Murshid et al. | Data mining techniques to predict chronic kidney disease | |
Mushtaq et al. | A review on predicting brain stroke using machine learning | |
CN112052795B (zh) | 一种基于多尺度时空特征聚合的视频行为识别方法 | |
CN116898451A (zh) | 用具有多尺度注意力机制的神经网络实现房颤预测的方法 | |
Ben-Assayag et al. | Train on small, play the large: Scaling up board games with alphazero and gnn | |
CN110012238A (zh) | 多媒体拼接方法、装置、终端及存储介质 | |
CN109117946A (zh) | 神经网络计算处理模型 | |
Omankwu et al. | Hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) | |
Zakur et al. | Apriori Algorithm and Hybrid Apriori Algorithm in the Data Mining: A Comprehensive Review | |
Lee et al. | Self-supervised contrastive learning for predicting game strategies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240306 Address after: Room 1179, W Zone, 11th Floor, Building 1, No. 158 Shuanglian Road, Qingpu District, Shanghai, 201702 Patentee after: Shanghai Zhongan Information Technology Service Co.,Ltd. Country or region after: China Address before: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.) Patentee before: ZHONGAN INFORMATION TECHNOLOGY SERVICE Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240415 Address after: Room 1179, W Zone, 11th Floor, Building 1, No. 158 Shuanglian Road, Qingpu District, Shanghai, 201702 Patentee after: Shanghai Zhongan Information Technology Service Co.,Ltd. Country or region after: China Address before: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.) Patentee before: ZHONGAN INFORMATION TECHNOLOGY SERVICE Co.,Ltd. Country or region before: China |