CN109979591A - 一种基于图神经网络分析斑块进展因子的方法及装置 - Google Patents
一种基于图神经网络分析斑块进展因子的方法及装置 Download PDFInfo
- Publication number
- CN109979591A CN109979591A CN201910184156.2A CN201910184156A CN109979591A CN 109979591 A CN109979591 A CN 109979591A CN 201910184156 A CN201910184156 A CN 201910184156A CN 109979591 A CN109979591 A CN 109979591A
- Authority
- CN
- China
- Prior art keywords
- network
- factor
- stage
- node
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Primary Health Care (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910184156.2A CN109979591B (zh) | 2019-03-12 | 2019-03-12 | 一种基于图神经网络分析斑块进展因子的方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910184156.2A CN109979591B (zh) | 2019-03-12 | 2019-03-12 | 一种基于图神经网络分析斑块进展因子的方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109979591A true CN109979591A (zh) | 2019-07-05 |
CN109979591B CN109979591B (zh) | 2021-01-01 |
Family
ID=67078478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910184156.2A Active CN109979591B (zh) | 2019-03-12 | 2019-03-12 | 一种基于图神经网络分析斑块进展因子的方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109979591B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110705709A (zh) * | 2019-10-14 | 2020-01-17 | 支付宝(杭州)信息技术有限公司 | 训练图神经网络模型的方法和装置 |
CN111681204A (zh) * | 2020-04-30 | 2020-09-18 | 北京深睿博联科技有限责任公司 | 基于图神经网络的ct肋骨骨折病灶关系建模方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100086532A1 (en) * | 2006-07-05 | 2010-04-08 | The Scripps Research Institute | Chimeric zinc finger recombinases optimized for catalysis by directed evolution |
RU2009100519A (ru) * | 2009-06-01 | 2010-12-10 | Федеральное государственное учреждение здравоохранения "Иркутский ордена Трудового Красного Знамени научно-исследовательский против | Способ обнаружения антигенов чумного микроба |
CN104794321A (zh) * | 2014-01-21 | 2015-07-22 | 中国科学院上海生命科学研究院 | 用于对前疾病状态进行检测的检测装置及检测方法 |
CN105518684A (zh) * | 2013-08-27 | 2016-04-20 | 哈特弗罗公司 | 用于预测冠状动脉病变的位置、开始、和/或变化的系统和方法 |
CN106447645A (zh) * | 2016-04-05 | 2017-02-22 | 天津大学 | 增强ct图像中冠脉钙化检测及量化装置和方法 |
CN109091167A (zh) * | 2018-06-29 | 2018-12-28 | 东南大学 | 冠状动脉粥样硬化斑块增长的预测方法 |
-
2019
- 2019-03-12 CN CN201910184156.2A patent/CN109979591B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100086532A1 (en) * | 2006-07-05 | 2010-04-08 | The Scripps Research Institute | Chimeric zinc finger recombinases optimized for catalysis by directed evolution |
RU2009100519A (ru) * | 2009-06-01 | 2010-12-10 | Федеральное государственное учреждение здравоохранения "Иркутский ордена Трудового Красного Знамени научно-исследовательский против | Способ обнаружения антигенов чумного микроба |
CN105518684A (zh) * | 2013-08-27 | 2016-04-20 | 哈特弗罗公司 | 用于预测冠状动脉病变的位置、开始、和/或变化的系统和方法 |
CN104794321A (zh) * | 2014-01-21 | 2015-07-22 | 中国科学院上海生命科学研究院 | 用于对前疾病状态进行检测的检测装置及检测方法 |
CN106447645A (zh) * | 2016-04-05 | 2017-02-22 | 天津大学 | 增强ct图像中冠脉钙化检测及量化装置和方法 |
CN109091167A (zh) * | 2018-06-29 | 2018-12-28 | 东南大学 | 冠状动脉粥样硬化斑块增长的预测方法 |
Non-Patent Citations (3)
Title |
---|
BENEDIKT BUNZ: "Graph neural networks and boolean satisfiability", 《COMPUTERING REVIEWS》 * |
孙夏: "基于卷积神经网络的颈动脉斑块超声图像特征识别", 《中国医疗器械信息》 * |
李小英: "基于相似性网络的疾病miRNAs预测方法研究及应用", 《中国博士学位论文全文数据库 基础科学辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110705709A (zh) * | 2019-10-14 | 2020-01-17 | 支付宝(杭州)信息技术有限公司 | 训练图神经网络模型的方法和装置 |
CN110705709B (zh) * | 2019-10-14 | 2021-03-23 | 支付宝(杭州)信息技术有限公司 | 训练图神经网络模型的方法和装置 |
CN111681204A (zh) * | 2020-04-30 | 2020-09-18 | 北京深睿博联科技有限责任公司 | 基于图神经网络的ct肋骨骨折病灶关系建模方法及装置 |
CN111681204B (zh) * | 2020-04-30 | 2023-09-26 | 北京深睿博联科技有限责任公司 | 基于图神经网络的ct肋骨骨折病灶关系建模方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109979591B (zh) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11875277B2 (en) | Learning and applying contextual similiarities between entities | |
KR101953814B1 (ko) | 순환 신경망들을 사용하는 건강 이벤트들의 분석 | |
CN112530594B (zh) | 一种基于卷积生存网络的血透并发症长期风险预测系统 | |
Zhang et al. | Lstm for septic shock: Adding unreliable labels to reliable predictions | |
CN108417272A (zh) | 带时序约束的相似病例推荐方法及装置 | |
CN111612278A (zh) | 生命状态预测方法、装置、电子设备及存储介质 | |
Reddy et al. | Evaluation of deep belief network to predict hospital readmission of diabetic patients | |
CN114822849A (zh) | 基于数字孪生的数据监测方法、装置、设备和存储介质 | |
Kwakye et al. | Machine learning-based classification algorithms for the prediction of coronary heart diseases | |
WO2022121705A1 (zh) | 信息处理方法、装置和设备 | |
CN118411573B (zh) | 一种基于oct图像的罕见眼底病自动分类方法及系统 | |
CN109979591A (zh) | 一种基于图神经网络分析斑块进展因子的方法及装置 | |
Reddy et al. | Diabetes Correlated Renal Fault Prediction through Deep Learning. | |
CN115966314B (zh) | 一种数据处理方法、装置、电子设备及存储介质 | |
CN118969253A (zh) | 一种基于医疗知识图谱的疾病症状推荐方法 | |
Sivaranjani et al. | Artificial intelligence model for earlier prediction of cardiac functionalities using multilayer perceptron | |
Sumangali et al. | A classifier based approach for early detection of diabetes mellitus | |
Vijayaganth et al. | Smart sensor based prognostication of cardiac disease prediction using machine learning techniques | |
JP6422512B2 (ja) | 計算機システム及びグラフィカルモデルの管理方法 | |
CN116562266A (zh) | 文本分析方法、计算机设备及计算机可读存储介质 | |
CN106202847A (zh) | 一种就诊预测方法 | |
US11676733B2 (en) | Learning and applying contextual similarities between entities | |
CN115858925A (zh) | 序列推荐方法、装置、电子设备及存储介质 | |
CN115719647B (zh) | 融合主动学习和对比学习的血透并发心血管疾病预测系统 | |
Kaur et al. | Assessing Machine Learning Approaches for Imputing Missing Values in Cardiovascular Dataset |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240306 Address after: Room 1179, W Zone, 11th Floor, Building 1, No. 158 Shuanglian Road, Qingpu District, Shanghai, 201702 Patentee after: Shanghai Zhongan Information Technology Service Co.,Ltd. Country or region after: China Address before: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.) Patentee before: ZHONGAN INFORMATION TECHNOLOGY SERVICE Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240415 Address after: Room 1179, W Zone, 11th Floor, Building 1, No. 158 Shuanglian Road, Qingpu District, Shanghai, 201702 Patentee after: Shanghai Zhongan Information Technology Service Co.,Ltd. Country or region after: China Address before: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.) Patentee before: ZHONGAN INFORMATION TECHNOLOGY SERVICE Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right | ||
CP03 | Change of name, title or address |
Address after: 3F-24, Group A, Qianhai Shenzhen Hong Kong Innovation Center, No. 4008 Menghai Avenue, Nanshan Street, Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen, Guangdong Province 518054 Patentee after: Zhong'an Xinke (Shenzhen) Co.,Ltd. Country or region after: China Address before: Room 1179, W Zone, 11th Floor, Building 1, No. 158 Shuanglian Road, Qingpu District, Shanghai, 201702 Patentee before: Shanghai Zhongan Information Technology Service Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |