CN109976309B - 一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法 - Google Patents

一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法 Download PDF

Info

Publication number
CN109976309B
CN109976309B CN201910246663.4A CN201910246663A CN109976309B CN 109976309 B CN109976309 B CN 109976309B CN 201910246663 A CN201910246663 A CN 201910246663A CN 109976309 B CN109976309 B CN 109976309B
Authority
CN
China
Prior art keywords
signal
module
control
switching value
analog quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910246663.4A
Other languages
English (en)
Other versions
CN109976309A (zh
Inventor
王淑炜
卢頔
黄晨
张素明
刘巧珍
容易
王之平
王晓林
张宏德
岳玮
穆晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Astronautical Systems Engineering
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Astronautical Systems Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Institute of Astronautical Systems Engineering filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201910246663.4A priority Critical patent/CN109976309B/zh
Publication of CN109976309A publication Critical patent/CN109976309A/zh
Application granted granted Critical
Publication of CN109976309B publication Critical patent/CN109976309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法,通过通用化、智能化、小型化设计,使其具备结构简单构型统一,兼容性及可维修性高的特点,可实现模块级至单机级的动态重构,便于功能扩展以及维修更换,以满足不同阶段以及不同工况的测试需求,提高设备通用性和型号兼容性,提高航天地面测试效率和任务可靠性,通过对测控需求以及测控资源的整合,对测控设备进行通用化、小型化、模块化设计,实现以功能需求为导向的设备组合化构型,满足快速维修更换的使用要求;综合应用背板总线技术,满足模块级至单机级的级联扩展以及不同阶段以及不同工况的测试需求,同时采用独立总线对板卡状态进行健康监测,提高测控设备的智能化水平和健康管理水平。

Description

一种动态可重构的通用型地面测控设备及其信号输入和输出 控制方法
技术领域
本发明涉及一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法,属于运载火箭地面测发控系统技术领域。
背景技术
火箭地面测试发射设备负责箭上电气系统、动力系统等功能、性能检查,地面测控信息传输及指挥控制,加注过程中气液供给及控制、地面增压控制,测试发射流程控制,数据存储、判读及管理等任务。火箭地面测试发射系统经过多年发展,已基本形成功能完善、安全可靠的火箭测试发射能力,能够完成火箭电气系统、动力系统的测试发射,但存在型号之间兼容性差、设备规模大、自动化程度低、操作复杂、操作岗位多、测试发射效低等问题,综合目前现役火箭地面测发控系统的特征,目前存在的问题如下:
(a)各型号各自独立配套,型号之间兼容性差;地面测发控系统针对各自箭上系统研制,各系统分立配套,数据分散,未统一管理;
(b)各型号地面测发模式各异,且与目前国际主流火箭测发模式相比有差距;地面测试设备规模大,智能化程度低,操作复杂,操作人员多,不满足实战化需求;
(c)地面设备设计针对具体测发功能要求开展,对于长期使用的测试及维修性前期考虑不足,自动化测试以及后期维修更换难度高。
发明内容
本发明解决的技术问题为:克服现有技术不足,提供一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法,通过通用化、智能化、小型化设计,使其具备结构简单构型统一,兼容性及可维修性高的特点,可实现模块级至单机级的动态重构,便于功能扩展以及维修更换,以满足不同阶段以及不同工况的测试需求,提高设备通用性和型号兼容性,提高航天地面测试效率和任务可靠性。
本发明解决的技术方案为:如图2所示,一种动态可重构的通用型地面测控设备,包括:机箱、主控模块、电源模块、多个功能模块、信号转接板、机箱背板、航插;航插均安装在航插背板上;
机箱为主控模块、电源模块、多个功能模块、信号转接板、机箱背板以及航插提供安装结构,并提供设备工作的基本显示以及控制开关;
各个功能模块均采用CPCI架构的接口形式,机箱背板上设有主控模块的插槽、电源模块的插槽、多个能够接插功能模块的插槽,插槽采用CPCI架构的接口形式,主控模块、电源模块和各个功能模块能够配合插接在对应的插槽内;
各功能模块能够产生模拟量信号、开关量信号和功率控制信号;各功能模块的输出信号通过机箱背板,送至信号转接板;
信号转接板与机箱背板通过连接器进行对接、各个功能模块的输出信号通过连接器送至信号转接板,输出信号包括:模拟量信号、开关量信号、功率控制信号;
信号转接板对功能模块输出的模拟量信号进行隔离后、对开关量信号进行隔离,建立信号转接板与航插的相应映射关系,将功率控制信号、隔离后的模拟量和开关量分别送至对应的航插输出;同种类型的输出信号采用相同型号的航插输出;
同种类型的输入信号从相同型号的航插输入信号转接板,输入信号:包括:模拟量信号、开关量信号、电源信号;电源信号通过对应的航插直接进入机箱背板,给电源模块供电,电源模块产生二次电源给各功能模块和主控模块供电;模拟量信号,包括模拟量电压信号和模拟量电流信号;
信号转接板对模拟量信号调理,即对输入的模拟量电压信号进行隔离、对模拟量电流信号进行电流至电压的转换,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;对开关量信号进行调理,即对开关量信号进行隔离、然后对开关量信号进行幅值范围转换后,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;
各功能模块插接在机箱背板的插槽内,机箱背板将转换后的模拟量信号和开关量信号,送至对应的功能模块。
信号转接板能够将从航插输入的一个信号分成两路以上,通过机箱背板送至多个相同类型的功能模块,完成冗余采集功能。
功能模块,包括:开关量输出模块和功率控制模块,开关量输出模块为多个,各开关量输出模块输出的开关量信号通过机箱背板送至信号转接板后,由信号转接板将多个开关量输出模块输出的开关量信号进行并联输出形成一路开关量信号通过对应的航插对外输出。
各功率控制模块输出的功率控制信号,通过机箱背板送至信号转接板后,由信号转接板将多个功率控制模块输出的功率控制信号进行并联输出形成一路功率控制信号通过对应的航插对外输出。
功能模块,包括:开关量输出模块、DA模块、AD模块;各模块具体功能为:
信号转接板与机箱背板的相应映射关系,具体如下:依据具体的测控对象(优选测控对象为火箭动力系统、助推部段、火箭全箭),部署对应数量和功能的功能模块,选择4块开关量输出模块、6块DA模块、4块AD模块,并依据具体的功能模块与测控对象的测控需求,完成信号转接板与机箱背板之间的信号转接(隔离、变换等)以及从信号转接版至机箱背板的插槽的信号分配工作。
建立信号转接板与航插的相应映射关系,具体如下:根据输出的信号的类型,从信号转接板将信号分配至不同的航插。
信号转接板对模拟量信号及开关量信号进行隔离、完成电压、电流信号转换,具体如下:对模拟量信号进行二极管隔离、光电隔离或磁隔离;对输入的电流信号进行电流至电压的转换,并将输入的模拟量电压信号转换值合理的幅值范围内,即将负电压转换为正电压、将大幅值范围电压信号转换至0-5V范围内。
对开关量信号进行隔离、然后进行幅值范围转换,具体如下:对开关量信号进行光电隔离或磁隔离,然后对输入的开关量信号进行幅值转换,将其按照一定关系转换到功能模块能够进行采集的范围内。
主控模块,具体功能为:主控模块与各功能模块之间设有机箱背板总线,主控模块通过机箱背板总线与各功能模块进行信息交互,完成功能模块数据的采集、处理和汇总,执行控制逻辑判断,通过控制策略对功能模块下达具体控制指令,并完成功能模块之间的通信调度,安排所有功能模块协同工作,执行具体的测控动作。
主控模块还对各功能模块的健康情况进行监测,及时发现存在故障的功能模块,并依据预先设定的故障处理预案对故障的功能模块进行重启、断电操作,保证整个测控设备高可靠长时间的正常工作。
一种动态可重构的通用型地面测控设备的信号输出控制方法,其步骤依次如下:
(1)将各个功能模块均采用CPCI架构的接口形式,机箱背板上设有主控模块的插槽、电源模块的插槽、多个能够接插功能模块的插槽,插槽采用CPCI架构的接口形式,将主控模块、电源模块和各个功能模块能够配合插接在对应的插槽内;
(2)各功能模块能够产生模拟量信号、开关量信号和功率控制信号;各功能模块的输出信号通过机箱背板,送至信号转接板;
(3)将信号转接板与机箱背板通过连接器进行对接、各个功能模块的输出信号通过连接器送至信号转接板,输出信号包括:模拟量信号、开关量信号、功率控制信号;
(4)信号转接板对功能模块输出的模拟量信号进行隔离后、对开关量信号进行隔离,建立信号转接板与航插的相应映射关系,将功率控制信号、隔离后的模拟量和开关量分别送至对应的航插输出;同种类型的输出信号采用相同型号的航插输出。
一种动态可重构的通用型地面测控设备的信号输入控制方法,步骤依次如下:
(1)同种类型的输入信号从相同型号的航插输入信号转接板,输入信号:包括:模拟量信号、开关量信号、电源信号;电源信号通过对应的航插直接进入机箱背板,给电源模块供电,电源模块产生二次电源给各功能模块和主控模块供电;模拟量信号,包括模拟量电压信号和模拟量电流信号;
(2)信号转接板对模拟量信号调理,即对输入的模拟量电压信号进行隔离、对模拟量电流信号进行电流至电压的转换,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;对开关量信号进行调理,即对开关量信号进行隔离、然后对开关量信号进行幅值范围转换后,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;
(3)各功能模块插接在机箱背板的插槽内,机箱背板将转换后的模拟量信号和开关量信号,送至对应的功能模块,完成信号输入。
本发明与现有技术相比的优点在于:
(1)本发明针对目前型号之间地面测试设备兼容性差、设备规模大、自动化程度低、维修复杂等问题进行了动态可重构的通用型地面测控设备设计,提高地面测试设备的通用化程度以及测试维修水平。
(2)本发明主要针对目前型号之间地面测发控设备兼容性差、设备规模大、自动化程度低、操作复杂、操作岗位多、测试发射效低等问题,主要通过通用化、智能化、小型化设计,使其具备结构简单构型统一,兼容性及可维修性高的特点,可实现模块级至单机级的动态重构,便于功能扩展以及维修更换,以满足不同阶段以及不同工况的测试需求,提高设备通用性和型号兼容性,提高航天地面测试效率和任务可靠性。动态可重构地面测控设备主要实现以下目标。
(3)本发明通过对测控需求以及测控资源的整合,对测控设备进行通用化、小型化、模块化设计,实现以功能需求为导向的设备组合化构型,满足快速维修更换的使用要求。
(4)本发明综合应用背板总线技术,满足模块级至单机级的级联扩展要求,同时采用备份总线对板卡状态进行健康监测,可以针对不同阶段以及不同工况的测试需求进行快速动态重构。
(5)本发明利用智能化设计,使测控设备具备模块级的智能管理调度以及多层次的自测自检功能,达到单机设备免测试使用以及长时无人值守的使用目标。
附图说明
图1为本发明的设备框图;
图2为本发明的地面测控系统的结构图;
图3为本发明的测控设备协同工作方案示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细描述。
本发明一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法,通过通用化、智能化、小型化设计,使其具备结构简单构型统一,兼容性及可维修性高的特点,可实现模块级至单机级的动态重构,便于功能扩展以及维修更换,以满足不同阶段以及不同工况的测试需求,提高设备通用性和型号兼容性,提高航天地面测试效率和任务可靠性,通过对测控需求以及测控资源的整合,对测控设备进行通用化、小型化、模块化设计,实现以功能需求为导向的设备组合化构型,满足快速维修更换的使用要求;综合应用背板总线技术,满足模块级至单机级的级联扩展以及不同阶段以及不同工况的测试需求,同时采用独立总线对板卡状态进行健康监测,提高测控设备的智能化水平和健康管理水平。
动态可重构地面测控设备优选用于运载火箭综合试验、出厂测试、部段级测试以及地面测发各阶段,对于火箭动力系统、测量系统、控制系统或地面配气台等控制对象进行测试及控制,对控制对象的基本参数进行测量采集,并依据具体控制策略以及参数情况进行控制输出,控制系统内电磁阀动作,驱动被测系统按照测试流程动作,完成对于运载火箭的地面测试及测发工作。
动态可重构地面测控设备,单机采用统一的模块化架构,由机箱、背板以及主控模块、电源模块及其他功能模块构成。机箱采用无导线设计,机箱内部后出线设计采用定制信号转接板加航插背板输出,通过印制板的栈接来实现信号的输出,提高设备的可靠性。设备采用前插板,后出线的方式,模块与背板间采用CPCI接口形式,通过产品化的背板设计,板卡可实现动态插拔以及功能重构,以功能需求为导向实现不同测试场合的设备灵活化构型和扩展。各功能模块均采用智能化设计,具有独立的智能控制器,通过背板总线与主控模块实现互连,主控模块通过汇总个功能模块的数据信息,对测试数据进行集中处理,并依据预置的控制策略实现对个功能模块的信号采集以及控制输出,功能板卡及单机具备状态重构及级联扩展功能,以适应不同的测控需求。此外,背板采用业务总线、健康管理总线双总线分布式拓扑架构。业务总线作为设备控制和数据交互总线,完成设备控制指令的下发和上传数据的交互。健康管理总线,完成设备健康管理信号的交互,采用独立总线对各模块的健康状态进行监测和管理,对故障模块可进行断电、重启等控制操作。通过双总线来实现数据分流以及通道冗余,提高设备的可靠性。
各个功能模块均采用CPCI架构的接口形式,具体为:功能模块与机箱背板采用标准CPCI接口进行连接,CPCI接口内的节点定义符合CPCI规范,模块接口统一,机箱背板的插槽不对功能模块进行限制,实现功能模块随机更换,机箱背板设有地址码,每个槽位对应一个唯一的地址码,功能模块通过机箱背板的地址码对槽位情况进行识别反馈给主控模块,以完成主控模块对于功能模块的管理和控制,更好的实现测控设备的可靠性。
一种动态可重构的通用型地面测控设备,包括:机箱、主控模块、电源模块、多个功能模块、信号转接板、机箱背板、航插;航插均安装在航插背板上;
机箱为主控模块、电源模块、多个功能模块、信号转接板、机箱背板以及航插提供安装结构,并提供设备工作的基本显示以及控制开关;
各个功能模块均采用CPCI架构的接口形式,机箱背板上设有主控模块的插槽、电源模块的插槽、多个能够接插功能模块的插槽,插槽采用CPCI架构的接口形式,主控模块、电源模块和各个功能模块能够配合插接在对应的插槽内;
各功能模块能够产生模拟量信号、开关量信号和功率控制信号;各功能模块的输出信号通过机箱背板,送至信号转接板;
信号转接板与机箱背板通过连接器进行对接、各个功能模块的输出信号通过连接器送至信号转接板,输出信号包括:模拟量信号、开关量信号、功率控制信号;
信号转接板对功能模块输出的模拟量信号进行隔离后、对开关量信号进行隔离,建立信号转接板与航插的相应映射关系,将功率控制信号、隔离后的模拟量和开关量分别送至对应的航插输出;同种类型的输出信号采用相同型号的航插输出;
同种类型的输入信号从相同型号的航插输入信号转接板,输入信号:包括:模拟量信号、开关量信号、电源信号;电源信号通过对应的航插直接进入机箱背板,给电源模块供电,电源模块产生二次电源给各功能模块和主控模块供电;模拟量信号,包括模拟量电压信号和模拟量电流信号;
信号转接板对模拟量信号调理,即对输入的模拟量电压信号进行隔离、对模拟量电流信号进行电流至电压的转换,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;对开关量信号进行调理,即对开关量信号进行隔离、然后对开关量信号进行幅值范围转换后,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;
各功能模块插接在机箱背板的插槽内,机箱背板将转换后的模拟量信号和开关量信号,送至对应的功能模块。
信号转接板能够将从航插输入的一个信号分成两路以上,通过机箱背板送至多个相同类型的功能模块,完成冗余采集功能。
功能模块,包括:开关量输出模块和功率控制模块,开关量输出模块为多个,各开关量输出模块输出的开关量信号通过机箱背板送至信号转接板后,由信号转接板将多个开关量输出模块输出的开关量信号进行并联输出形成一路开关量信号通过对应的航插对外输出。
各功率控制模块输出的功率控制信号,通过机箱背板送至信号转接板后,由信号转接板将多个功率控制模块输出的功率控制信号进行并联输出形成一路功率控制信号通过对应的航插对外输出。
本发明的一种动态可重构的通用型地面测控设备的信号输出控制方法,其步骤依次如下:
(1)将各个功能模块均采用CPCI架构的接口形式,机箱背板上设有主控模块的插槽、电源模块的插槽、多个能够接插功能模块的插槽,插槽采用CPCI架构的接口形式,将主控模块、电源模块和各个功能模块能够配合插接在对应的插槽内;
(2)各功能模块能够产生模拟量信号、开关量信号和功率控制信号;各功能模块的输出信号通过机箱背板,送至信号转接板;
(3)将信号转接板与机箱背板通过连接器进行对接、各个功能模块的输出信号通过连接器送至信号转接板,输出信号包括:模拟量信号、开关量信号、功率控制信号;
(4)信号转接板对功能模块输出的模拟量信号进行隔离后、对开关量信号进行隔离,建立信号转接板与航插的相应映射关系,将功率控制信号、隔离后的模拟量和开关量分别送至对应的航插输出;同种类型的输出信号采用相同型号的航插输出。
本发明的一种动态可重构的通用型地面测控设备的信号输入控制方法,步骤依次如下:
(1)同种类型的输入信号从相同型号的航插输入信号转接板,输入信号:包括:模拟量信号、开关量信号、电源信号;电源信号通过对应的航插直接进入机箱背板,给电源模块供电,电源模块产生二次电源给各功能模块和主控模块供电;模拟量信号,包括模拟量电压信号和模拟量电流信号;
(2)信号转接板对模拟量信号调理,即对输入的模拟量电压信号进行隔离、对模拟量电流信号进行电流至电压的转换,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;对开关量信号进行调理,即对开关量信号进行隔离、然后对开关量信号进行幅值范围转换后,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;
(3)各功能模块插接在机箱背板的插槽内,机箱背板将转换后的模拟量信号和开关量信号,送至对应的功能模块,完成信号输入。
上述本发明的系统和方法中,具有如下优选方案:
如图1所示,功能模块,包括:开关量输出模块、DA模块、AD模块、功率输出模块、开关量输入模块,均通过总线与主控模块与电源模块相连;
机箱背板实现了整个设备的拓扑,采用双总线分布式拓扑构架,业务总线总线作为设备控制和数据交互总线,完成设备控制指令的下发和上传数据的交互。健康管理总线,完成设备健康管理信号的交互,采用独立总线对各模块的健康状态进行监测和管理。
地面测试设备的动态可重构设计分为2级,1是单个设备内部模块的动态可重构,2是设备间系统功能的动态可重构。
功能模块的的动态可重构性通过以下优选方案或者优选方案的组合实现:
每个模块采用独立的控制MCU和健康管理MCU;模块间的硬件和软件资源完全独立,不会互相影响;
模块间通过背板总线连接,每个模块为总线的一个子节点,各个模块可随意组合;
每个模块有独立的MCU控制,和主控板数据通讯采用CAN协议,不存在其他主从总线,软件设计时主控板不用考虑各个模块的驱动,各个模块的采集和输出控制也不占用主控板资源;模块增加对主控的影响很小;
系统采用不同的模块构架时,只需要更换不同的信号转接板完成模块输入输出信号与航插输入输出信号的映射关系即可,其他硬件和软件部分设计保持不变,重构极其方便;
模块采用热插拔设计,当模块出现故障时,可以不断电直接更换,新模块插入后,直接接入系统,主控计算机不用进行任何处理,即可对新接入的模块进行操作控制。
设备动态可重构主要体现在地面测控设备间也可以实现动态可重构,从而可灵活构架一个复杂的分布式测控系统。
设备间的总线拓扑采用和设备内部一样的CAN总线和RS485总线拓扑,每个设备是一个独立的总线节点,理论上可同时接入128个节点设备,能满足大部分测试系统需求;
每个设备完全独立,设备运行统一的软件程序,设备内通过槽位地址码进行模块识别,设备间通过设备间的级联扩展码进行设备识别,在原有的模块识别码上增加设备识别码,保证软件和协议的兼容性;
根据不同的测试任务,可以动态重构单个设备内部的各个模块实现不同的设备功能,也可以连接多个动态可重构设备,实现不同系统测试功能。
优选的,在针对运载火箭动力系统进行测控时,地面测控设备对动力系统地面配气台的电磁阀以及火箭箭上动力系统的电磁阀进行控制,同时对配气台、箭上动力系统的母线供电电压、动力管路温度、贮箱压力等模拟量信号进行监测,同时采集测控流程过程中的反馈开关量信号,进行时序动作控制。针对动力系统的构成,以及模拟量、开关量以及时序控制信号的需求,配备相应数量的功能模块;将地面测控设备与动力系统的交互信号分配至相应的设备航插完成输入输出,并依据功能模块与航插之间信号的映射关系对应设计开发相应的信号转接板,完成设备功能重构。在测试阶段,地面测控设备首先进行加电自检,设备加电后对所有功能模块进行自检测,将模块的健康信息通过健康管理总线汇总至主控模块,主控模块对设备的健康状态进行评定,若有模块出现故障,则通过网络发送至后端指挥控制计算机,由系统指挥决定是否进行模块更换,若设备自检正常则进入后续正常测试。进入分系统测试阶段,地面测控设备通过网络接收后端指挥控制计算机的测试指令以及测试进程信息,依据指挥控制计算机指令执行相应的自动流程。测控设备加电自检通过后,自动执行对模拟量以及开关量的采集,输入信号通过航插-信号转接板-机箱背板送入相应的AD模块以及开关量输入模块,功能模块执行信号采集并对信号进行滤波和处理,将采集数据结果通过背板总线汇总至主控模块,主控模块依据后端指挥控制计算机的进程信息、控制指令判断当前的测试阶段,并执行对应的控制子流程(如发动机预冷、氧箱增压等),按照时序动作、开关量输入信号的反馈情况决定控制相应模块的对应通道的开关量以及功率控制信号进行输出,模块的输出信号通过机箱背板送至信号转接板,在信号转接板完成信号的串、并联处理、隔离后通过航插输出至具体被控对象,控制多个配气台以及箭上电磁阀按照时序动作要求协同工作,完成具体的测试项目。
当转换测试场景以及测试对象时,无需设计研发新的测控设备,只需重新对测控需求进行评定,配置相应数量的功能模块,并依据模块与测控对象的具体交互信号需求设计相应的信号转接板,通过信号转接板建立信号的映射关系。通过单机设备内的模块组合以及多个单机设备级联扩展,完成对当下测试场景以及测试对象的测控。
动态可重构的通用性地面测控设备与原有的定制化的地面测控设备比较,有如下优势:
定制化地面测控设备设计研制周期约在1年左右,需要针对特定型号开发专门的测试设备,以及相应的测试软件,设备只能型号专用,只能应对少量的测控需求变化(在设备设计考虑的备份余量范围内);而通用型地面测控设备只需针对对象配置对应功能模块,仅需要开发信号转接板来满足特定系统的信号映射关系,开发周期可缩短至2个月左右,且设备灵活度高,可通过增加模块配备甚至设备级联扩展来满足增加的测控需求。定制化地面测控设备采用整体设计,如果出现问题需要对设备进行断电,然后进行相应的维修更换,工序复杂且对测试进程影响较大;通用型地面测控设备采用模块化、智能化设计,单个模块可对自身健康状态进行管理,可实现热插拔替换,降低了维修更换的难度和时间,提高了系统的可靠性。
动态可重构地面测控设备,单机优选采用CPCI架构,结构紧凑。每个终端设备均由主控模块、电源模块及功能模块构成。动态可重构地面测控设备除主控及电源模块外,通过产品化的背板设计,板卡可实现动态插拔以及功能重构,以功能需求为导向实现不同测试场合的设备灵活化构型和扩展。主控板优选采用X86低功耗高性能处理器,其他功能板卡包括模拟量采集板卡、开关量输入板卡、开关量输出板卡等,各板卡具备智能化,完成各节点不同的信号采集和控制,通过背板总线与主控实现互连,控制板卡完成对设备中各个节点的控制和节点数据的处理。功能板卡及单机具备状态重构及级联扩展功能,以适应不同的测控需求。
测控设备优选采用前插板,后出线的方式,机箱内部后出线设计采用定制后出线航插背板加航插输出。为了提高设备可靠性,设计时机箱内部采用无导线设计,所有信号都是通过印制板的栈接来实现输出,对外航插选用焊板式航插,直接焊接在航插背板上。
背板实现了整个设备的拓扑,采用双总线分布式拓扑构架。业务总线总线作为设备控制和数据交互总线,完成设备控制指令的下发和上传数据的交互。健康管理总线,完成设备健康管理信号的交互,采用独立总线对各模块的健康状态进行监测和管理。
为了实现从机箱模块背板到航插背板的信号连接,每个设备需要定制一块信号转接板,根据机箱内部模块的组合和出线,以及不同测控对象的接口电路情况,在信号转接板上进行线路分配、冗余连接、接口适配以及信号转接,将对应测控对象的模块信号连接到航插背板上。
动态可重构地面测控设备有效适应了不同运载火箭在综合试验、出厂测试、部段级测试以及地面测发各阶段的测试控制需求,是提高地面测发控系统地面设备智能化、测试性水平的有效措施,极大的简化了地面测试设备的规模和构成,提高了地面测试设备的维修性及适应性,具有广阔的应用前景和巨大的市场潜力。
动态可重构地面测试设备,单机结构采用高强度铝合金机箱,3U CPCI架构,结构紧凑,整机无风扇散热设计。主控板采用X86低功耗高性能处理器,其他功能模块包括AD模块、DA模块、开关量输入模块、开关量输出模块等,各模块具备智能化,完成各节点不同的信号采集和控制,通过CAN总线与主控实现互连,控制模块完成对设备中各个节点的控制和节点数据的处理。背板实现了整个设备的拓扑,在本设计中,采用双总线分布式拓扑构架。2路冗余CAN总线作为设备控制和数据交互总线,完成设备控制指令的下发和上传数据的交互。2路RS485总线作为健康管理总线,完成设备健康管理信号的交互。
地面测控设备的动态可重构设计分为2级,1是单个设备内部模块的动态可重构,2是设备间系统功能的动态可重构。
测控设备动态可重构主要体现在地面测控设备间也可以实现动态可重构,从而可灵活构架一个复杂的动态可重构测控系统。
设备间的总线拓扑采用和设备内部一样的CAN总线和RS485总线拓扑,每个设备是一个独立的总线节点,理论上可同时接入128个节点设备,能满足大部分测试系统需求;
每个设备完全独立,设备运行的统一的软件程序,设备内通过12位报文识别码进行模块识别,设备间采用29位报文识别码进行设备识别,在原有的模块识别码上增加设备识别码,保证软件和协议的兼容性;
每个模块为独立的CAN和RS485节点设备,总线采用隔离总线,可以在系统不断电的情况下,直接接入系统后设备加电运行,也可以在设备断电后从系统移除,不影响系统工作;
根据不同的测试任务,可以动态重构单个设备内部的各个模块实现不同的设备功能,也可以连接多个动态可重构设备,实现不同系统测试功能。
优选的,主控模块与各功能模块之间设有机箱背板总线和健康管理总线,使用CAN及RS485双总线作为背板总线,完成主控模块与各功能模块间的信息交互,具体为:功能模块通过CAN总线与主控模块进行业务数据交互,接收主控模块的测试控制指令,功能模块将模拟量信号、开关量信号转换成测试数据,并上传测试数据至主控模块;各个功能模块将自身的健康监测信息通过健康管理总线向主控模块进行反馈,主控模块通过健康管理总线上反馈的健康监测信息对功能模块的健康水平进行评估,判断功能模块是否能够正常工作,若功能模块有故障情况存在,则通过健康管理总线下达模块断电、重启指令,保证整个测控设备工作的高可靠性。
如图3所示,本发明的测控设备间能够通过级联扩展线,连接多个测控设备间的航插,级联扩展线所连接的每个测控的航插均采用同样的类型,使多个测控设备协同工作,实现了高效的工作,且保持了各测控设备的工作独立性。
本发明针对目前型号之间地面测试设备兼容性差、设备规模大、自动化程度低、维修复杂等问题进行了动态可重构的通用型地面测控设备设计,提高地面测试设备的通用化程度以及测试维修水平,且本发明主要针对目前型号之间地面测发控设备兼容性差、设备规模大、自动化程度低、操作复杂、操作岗位多、测试发射效低等问题,主要通过通用化、智能化、小型化设计,使其具备结构简单构型统一,兼容性及可维修性高的特点,可实现模块级至单机级的动态重构,便于功能扩展以及维修更换,以满足不同阶段以及不同工况的测试需求,提高设备通用性和型号兼容性,提高航天地面测试效率和任务可靠性。动态可重构地面测控设备主要实现以下目标。
本发明通过对测控需求以及测控资源的整合,对测控设备进行通用化、小型化、模块化设计,实现以功能需求为导向的设备组合化构型,满足快速维修更换的使用要求,本发明综合应用背板总线技术,满足模块级至单机级的级联扩展要求,同时采用备份总线对板卡状态进行健康监测,可以针对不同阶段以及不同工况的测试需求进行快速动态重构,利用智能化设计,使测控设备具备模块级的智能管理调度以及多层次的自测自检功能,达到单机设备免测试使用以及长时无人值守的使用目标。

Claims (10)

1.一种动态可重构的通用型地面测控设备,其特征在于包括:机箱、主控模块、电源模块、多个功能模块、信号转接板、机箱背板、航插;航插均安装在航插背板上;
机箱为主控模块、电源模块、多个功能模块、信号转接板、机箱背板以及航插提供安装结构,并提供设备工作的基本显示以及控制开关;
各个功能模块均采用CPCI架构的接口形式,机箱背板上设有主控模块的插槽、电源模块的插槽、多个能够接插功能模块的插槽,插槽采用CPCI架构的接口形式,主控模块、电源模块和各个功能模块能够配合插接在对应的插槽内;
各功能模块能够产生模拟量信号、开关量信号和功率控制信号;各功能模块的输出信号通过机箱背板,送至信号转接板;
信号转接板与机箱背板通过连接器进行对接、各个功能模块的输出信号通过连接器送至信号转接板,输出信号包括:模拟量信号、开关量信号、功率控制信号;
信号转接板对功能模块输出的模拟量信号进行隔离后、对开关量信号进行隔离,建立信号转接板与航插的相应映射关系,将功率控制信号、隔离后的模拟量和开关量分别送至对应的航插输出;同种类型的输出信号采用相同型号的航插输出;
同种类型的输入信号从相同型号的航插输入信号转接板,输入信号:包括:模拟量信号、开关量信号、电源信号;电源信号通过对应的航插直接进入机箱背板,给电源模块供电,电源模块产生二次电源给各功能模块和主控模块供电;模拟量信号,包括模拟量电压信号和模拟量电流信号;
信号转接板对模拟量信号调理,即对输入的模拟量电压信号进行隔离、对模拟量电流信号进行电流至电压的转换,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;对开关量信号进行调理,即对开关量信号进行隔离、然后对开关量信号进行幅值范围转换后,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;
各功能模块插接在机箱背板的插槽内,机箱背板将转换后的模拟量信号和开关量信号,送至对应的功能模块;
信号转接板对模拟量信号及开关量信号进行隔离、完成电压、电流信号转换,具体如下:对模拟量信号进行二极管隔离、光电隔离或磁隔离;对输入的电流信号进行电流至电压的转换,并将输入的模拟量电压信号转换至 合理的幅值范围内,即将负电压转换为正电压、将大幅值范围电压信号转换至0-5V范围内;
主控模块,具体功能为:主控模块与各功能模块之间设有机箱背板总线,主控模块通过机箱背板总线与各功能模块进行信息交互,完成功能模块数据的采集、处理和汇总,执行控制逻辑判断,通过控制策略对功能模块下达具体控制指令,并完成功能模块之间的通信调度,安排所有功能模块协同工作,执行具体的测控动作;
主控模块还对各功能模块的健康情况进行监测,及时发现存在故障的功能模块,并依据预先设定的故障处理预案对故障的功能模块进行重启、断电操作,保证整个测控设备高可靠长时间的正常工作。
2.根据权利要求1所述的一种动态可重构的通用型地面测控设备,其特征在于:信号转接板能够将从航插输入的一个信号分成两路以上,通过机箱背板送至多个相同类型的功能模块,完成冗余采集功能。
3.根据权利要求1所述的一种动态可重构的通用型地面测控设备,其特征在于:功能模块,包括:开关量输出模块和功率控制模块,开关量输出模块为多个,各开关量输出模块输出的开关量信号通过机箱背板送至信号转接板后,由信号转接板将多个开关量输出模块输出的开关量信号进行并联输出形成一路开关量信号通过对应的航插对外输出;
各功率控制模块输出的功率控制信号,通过机箱背板送至信号转接板后,由信号转接板将多个功率控制模块输出的功率控制信号进行并联输出形成一路功率控制信号通过对应的航插对外输出。
4.根据权利要求1所述的一种动态可重构的通用型地面测控设备,其特征在于:功能模块,包括:开关量输出模块、DA模块、AD模块;开关量输出模块能够输出开关量信号,DA模块能够将输入的数字信号转换模拟信号,AD模块能够将输入的模拟信号转换成数字信号。
5.根据权利要求1所述的一种动态可重构的通用型地面测控设备,其特征在于:信号转接板与机箱背板的相应映射关系,具体为:依据具体的测控对象,部署对应数量和功能的功能模块。
6.根据权利要求1所述的一种动态可重构的通用型地面测控设备,其特征在于:依据具体的测控对象,部署对应数量和功能的功能模块,具体为:测控对象为火箭动力系统、助推部段或火箭全箭,功能模块选择4块开关量输出模块、6块DA模块、4块AD模块,并依据具体的功能模块与测控对象的测控需求,完成信号转接板与机箱背板之间的信号转接、隔离、变换,以及从信号转接版至机箱背板的插槽的信号分配工作。
7.根据权利要求1所述的一种动态可重构的通用型地面测控设备,其特征在于:建立信号转接板与航插的相应映射关系,具体为:根据输出的信号的类型,从信号转接板将信号分配至不同的航插。
8.根据权利要求1所述的一种动态可重构的通用型地面测控设备,其特征在于:对开关量信号进行隔离、然后进行幅值范围转换,具体如下:对开关量信号进行光电隔离或磁隔离,然后对输入的开关量信号进行幅值转换,将其按照设定的关系转换到功能模块能够进行采集的范围内。
9.一种动态可重构的通用型地面测控设备的信号输出控制方法,其特征在于步骤依次如下:
(1)将各个功能模块均采用CPCI架构的接口形式,机箱背板上设有主控模块的插槽、电源模块的插槽、多个能够接插功能模块的插槽,插槽采用CPCI架构的接口形式,将主控模块、电源模块和各个功能模块能够配合插接在对应的插槽内;主控模块,具体功能为:主控模块与各功能模块之间设有机箱背板总线,主控模块通过机箱背板总线与各功能模块进行信息交互,完成功能模块数据的采集、处理和汇总,执行控制逻辑判断,通过控制策略对功能模块下达具体控制指令,并完成功能模块之间的通信调度,安排所有功能模块协同工作,执行具体的测控动作;
主控模块还对各功能模块的健康情况进行监测,及时发现存在故障的功能模块,并依据预先设定的故障处理预案对故障的功能模块进行重启、断电操作,保证整个测控设备高可靠长时间的正常工作;
(2)各功能模块能够产生模拟量信号、开关量信号和功率控制信号;各功能模块的输出信号通过机箱背板,送至信号转接板;
(3)将信号转接板与机箱背板通过连接器进行对接、各个功能模块的输出信号通过连接器送至信号转接板,输出信号包括:模拟量信号、开关量信号、功率控制信号;
(4)信号转接板对功能模块输出的模拟量信号进行隔离后、对开关量信号进行隔离,建立信号转接板与航插的相应映射关系,将功率控制信号、隔离后的模拟量和开关量分别送至对应的航插输出;同种类型的输出信号采用相同型号的航插输出;
信号转接板对模拟量信号及开关量信号进行隔离、完成电压、电流信号转换,具体如下:对模拟量信号进行二极管隔离、光电隔离或磁隔离;对输入的电流信号进行电流至电压的转换,并将输入的模拟量电压信号转换至 合理的幅值范围内,即将负电压转换为正电压、将大幅值范围电压信号转换至0-5V范围内。
10.一种动态可重构的通用型地面测控设备的信号输入控制方法,其特征在于步骤依次如下:
(1)同种类型的输入信号从相同型号的航插输入信号转接板,输入信号:包括:模拟量信号、开关量信号、电源信号;电源信号通过对应的航插直接进入机箱背板,给电源模块供电,电源模块产生二次电源给各功能模块和主控模块供电;模拟量信号,包括模拟量电压信号和模拟量电流信号;
(2)信号转接板对模拟量信号调理,即对输入的模拟量电压信号进行隔离、对模拟量电流信号进行电流至电压的转换,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;对开关量信号进行调理,即对开关量信号进行隔离、然后对开关量信号进行幅值范围转换后,通过信号转接板将调理后的输入信号通过连接器分配到对应的功能模块对应的机箱背板内的相应插槽;
信号转接板对模拟量信号及开关量信号进行隔离、完成电压、电流信号转换,具体如下:对模拟量信号进行二极管隔离、光电隔离或磁隔离;对输入的电流信号进行电流至电压的转换,并将输入的模拟量电压信号转换至 合理的幅值范围内,即将负电压转换为正电压、将大幅值范围电压信号转换至0-5V范围内;
主控模块,具体功能为:主控模块与各功能模块之间设有机箱背板总线,主控模块通过机箱背板总线与各功能模块进行信息交互,完成功能模块数据的采集、处理和汇总,执行控制逻辑判断,通过控制策略对功能模块下达具体控制指令,并完成功能模块之间的通信调度,安排所有功能模块协同工作,执行具体的测控动作;
主控模块还对各功能模块的健康情况进行监测,及时发现存在故障的功能模块,并依据预先设定的故障处理预案对故障的功能模块进行重启、断电操作,保证整个测控设备高可靠长时间的正常工作;
(3)各功能模块插接在机箱背板的插槽内,机箱背板将转换后的模拟量信号和开关量信号,送至对应的功能模块,完成信号输入。
CN201910246663.4A 2019-03-29 2019-03-29 一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法 Active CN109976309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910246663.4A CN109976309B (zh) 2019-03-29 2019-03-29 一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910246663.4A CN109976309B (zh) 2019-03-29 2019-03-29 一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法

Publications (2)

Publication Number Publication Date
CN109976309A CN109976309A (zh) 2019-07-05
CN109976309B true CN109976309B (zh) 2020-11-20

Family

ID=67081479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910246663.4A Active CN109976309B (zh) 2019-03-29 2019-03-29 一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法

Country Status (1)

Country Link
CN (1) CN109976309B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541974B (zh) * 2018-11-26 2020-10-23 北京宇航系统工程研究所 一种插拔连接器控制电路
CN111443651A (zh) * 2020-02-21 2020-07-24 固安华电天仁控制设备有限公司 一种通过以太网背板总线进行功能模块扩展的系统
CN112484587A (zh) * 2020-12-09 2021-03-12 凯迈(洛阳)测控有限公司 一种小型化通用导弹测试系统
CN112601431B (zh) * 2020-12-29 2022-11-01 杭州迪普科技股份有限公司 一种电子设备
CN114671049B (zh) * 2022-05-31 2022-09-13 中国民航大学 一种动态可重构飞机客舱娱乐系统集成测试方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680706A (zh) * 2017-02-27 2017-05-17 国网上海市电力公司 一种换流站断路器电寿命预测及健康状态在线监测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7409189B2 (en) * 2004-03-30 2008-08-05 Intel Corporation Calibration and testing architecture for receivers
CN204576333U (zh) * 2015-04-30 2015-08-19 四川迈迪测控技术有限公司 一种用于发动机地面测控系统的信号隔离调理箱
CN106969674B (zh) * 2017-05-03 2018-08-10 北京电子工程总体研究所 一种基于plc模块的通用化地面测试设备
CN208188215U (zh) * 2018-02-06 2018-12-04 中国航天空气动力技术研究院 基于实时串行通讯的飞行器地面自动测试系统
CN109387775A (zh) * 2018-12-14 2019-02-26 中国科学院长春光学精密机械与物理研究所 基于pxi总线的微纳卫星通用测试系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680706A (zh) * 2017-02-27 2017-05-17 国网上海市电力公司 一种换流站断路器电寿命预测及健康状态在线监测装置

Also Published As

Publication number Publication date
CN109976309A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109976277B (zh) 一种基于通信协议的动态可重构的通用型地面测控设备及其信号输入和输出控制方法
CN109976309B (zh) 一种动态可重构的通用型地面测控设备及其信号输入和输出控制方法
CN110134115B (zh) 新能源车动力电池管理系统硬件在环测试平台及测试方法
CN108891622B (zh) 一种自主可控通用测试发控系统
CN107024652A (zh) 板级测试系统
CN101342946B (zh) 空客系列飞机音频管理组件自动测试装置及方法
CN110908274A (zh) 一种基于sspc的运载火箭高可靠冗余测控系统
CN110901950A (zh) 一种用于直升机电气系统的自动检测试验平台
CN114415572B (zh) 一种用于液体运载火箭的一体化测发控方法及设备
CN109063339A (zh) 数字航天器部件级嵌入式仿真系统
CN114488847A (zh) 一种车载网络控制系统的半实物仿真系统
CN213403042U (zh) 一种通用化网络硬件在环测试系统
CN111122994B (zh) 一种模拟断路器人机交互测试装置
CN213754821U (zh) 报警接口板
CN112965398B (zh) 一种具有负载功率模拟的机电综合管理系统试验验证平台
CN114826993A (zh) 一种电能表模块模拟测试系统
CN113204225A (zh) 一种汽车负载仿真装置及测试方法
CN210038085U (zh) 电池管理单元的测试装置
CN114115187A (zh) 一种飞机自动驾驶控制系统的通用检测平台及检测方法
CN107894760B (zh) 一种基于等效激励测试模块的宇航元器件应用验证平台
CN112098855A (zh) 一种锂电池在轨模拟试验系统
CN216561521U (zh) 适用于核电站工业控制系统的信号通道校验装置
CN115766906B (zh) 单硬件平台的多协议融合通信检测系统
CN221303880U (zh) 储能系统测试装置
CN216673034U (zh) 一种基于pxi总线的多类型总线模块测试平台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant