CN109975828B - Self-triggering gating laser imaging method - Google Patents
Self-triggering gating laser imaging method Download PDFInfo
- Publication number
- CN109975828B CN109975828B CN201910340576.5A CN201910340576A CN109975828B CN 109975828 B CN109975828 B CN 109975828B CN 201910340576 A CN201910340576 A CN 201910340576A CN 109975828 B CN109975828 B CN 109975828B
- Authority
- CN
- China
- Prior art keywords
- electron beam
- image
- gating
- microchannel plate
- trigger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 29
- 238000010894 electron beam technology Methods 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 230000001960 triggered effect Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 2
- 238000011895 specific detection Methods 0.000 claims description 2
- 238000004377 microelectronic Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4818—Constructional features, e.g. arrangements of optical elements using optical fibres
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种自触发选通激光成像方法,属于激光主动成像探测技术领域。The invention relates to a self-triggering gating laser imaging method, which belongs to the technical field of laser active imaging detection.
背景技术Background technique
现有距离选通激光主动成像探测技术是由激光成像光源发出红外短脉冲激光,经准直后分束,一束照明目标后由目标反射成为探测图像信号并成像于选通摄像机;另一束照明目标后由目标反射成为外部触发源并由外部触发器件(如APD)接收,作为延时基准脉冲;根据激光成像光源到目标之间的距离确定同步控制电路的延迟时间,根据成像探测景深确定选通门开启的持续时间,在选通瞬间,所述探测图像信号刚好进入选通摄像机选通成像,其余时间选通门关闭。该方案有效去除非脉冲成像时间背景杂光进入选通摄像机,提高成像探测信噪比。只是该方案采取的分光方案使得一部分激光并未用于成像,势必降低探测图像信号光功率,不利于成像探测信噪比的提高。The existing range-gated laser active imaging detection technology is that a laser imaging light source emits an infrared short pulse laser, which is collimated and then split into beams. One beam illuminates the target and is reflected by the target to become a detection image signal and imaged on the gating camera; After illuminating the target, it is reflected by the target to become an external trigger source and received by an external trigger device (such as APD) as a delay reference pulse; the delay time of the synchronous control circuit is determined according to the distance between the laser imaging light source and the target, and the depth of field is determined according to the imaging detection. The duration of the gate opening is that at the moment of gate, the detection image signal just enters the gate camera for gate imaging, and the gate is closed for the rest of the time. The scheme effectively removes the background stray light entering the gated camera during non-pulse imaging time, and improves the signal-to-noise ratio of imaging detection. However, the spectroscopic scheme adopted in this scheme makes some lasers not used for imaging, which will inevitably reduce the optical power of the detection image signal, which is not conducive to the improvement of the imaging detection signal-to-noise ratio.
发明内容SUMMARY OF THE INVENTION
为了进一步提高选通激光主动成像探测信噪比,我们发明了一种自触发选通激光成像方法,以一种电真空放大器件为主体,旁路已经经过一次放大的图像信号的部分作为触发信号,触发微孔阵列栅极选通,经过一次放大的图像信号通过微孔阵列栅极后再放大一次,最后成像于选通摄像机。In order to further improve the detection signal-to-noise ratio of gated laser active imaging, we have invented a self-triggered gated laser imaging method, which takes an electric vacuum amplifier as the main body and bypasses the part of the image signal that has been amplified once as the trigger signal , trigger the gate of the micro-hole array, the image signal amplified once passes through the gate of the micro-hole array and then amplified again, and finally imaged on the gated camera.
本发明之自触发选通激光成像方法其特征在于,如图1所示,红外脉冲激光照射目标及背景后反射,产生的光学探测图像入射一种自触发选通激光成像装置,透过玻璃窗口1聚焦于光电阴极3,激发产生光电子,形成电子束图像,在外加正向电场作用下入射一级微通道板4增强图像;在常态下,脉冲电源在一级微通道板4的出射端面电极和二级微通道板6的入射端面电极之间加入50~100V反向电压,当自一级微通道板4出射的电子束图像在时间上处在两个激光脉冲之间,此时的电子束图像实际上对应的是背景噪光图像,即使得到一级微通道板4增强,依然较弱,将被所述反向电压阻止,或许此时的电子束图像较强,落到微孔阵列栅极5的触发信号旁路电极11上,产生电流并作为触发信号流向触发电路;由于已在一个具体的探测项目进行前,根据目标、背景方面的实际探测条件,为触发电路调整预设了一个电流阈值,由与背景噪光图像对应的电子束图像产生的电流小于该电流阈值,触发电路不输出选通信号,背景噪光图像被彻底阻止;当自一级微通道板4出射的电子束图像在时间上处在激光脉冲中,尽管此时的电子束图像仍处在反向电压下,在构成电子束图像的电子中一部分具有较大动能,到达触发信号旁路电极11并向触发电路输入触发电流,该触发电流大于预设的电流阈值,于是触发电路输出与激光脉冲时长相同的选通信号;脉冲电源收到选通信号后,瞬时将输出的反向电压转换为200~250V的正向电压,使得此时的电子束图像正常通过微孔阵列栅极5,由二级微通道板6再次放大,在正向高压作用下,透射到荧光屏7上,并被还原为光学图像,由光纤光锥8耦合给选通摄像机9。The self-triggered gated laser imaging method of the present invention is characterized in that, as shown in FIG. 1 , the infrared pulsed laser irradiates the target and the background and then reflects, and the generated optical detection image is incident on a self-triggered gated laser imaging device, and passes through the glass window. 1 Focus on the
一种有助于实现本发明之自触发选通激光成像方法的自触发选通激光成像装置如下所述。A self-triggered gated laser imaging device that is helpful for realizing the self-triggered gated laser imaging method of the present invention is as follows.
如图1所示,玻璃窗口1封堵于绝缘壳体2一端,自该端在绝缘壳体2内部依次镶嵌光电阴极3、一级微通道板4、微孔阵列栅极5、二级微通道板6,荧光屏7封堵于绝缘壳体2另一端,荧光屏7出光一侧依次接光纤光锥8、选通摄像机9;微孔阵列栅极5其结构特点为:如图2所示,在圆形薄板状玻璃基体中沿轴向密布微米级通孔10,所有通孔10平行且与所述玻璃基体轴线成7~15°角,在所述玻璃基体顶面镀有金属膜作为触发信号旁路电极11;微孔阵列栅极5的底面与二级微通道板6的入射端面接触;触发信号旁路电极11接触发电路的触发信号输入端,触发电路的选通信号输出端分别与脉冲电源、控制电路各自的选通信号输入端连接,脉冲电源的两个电极端分别接一级微通道板4的出射端面电极和二级微通道板6的入射端面电极,在该两个电极之间加入50~100V反向电压或者200~250V正向电压;控制电路的驱动信号输出端接选通摄像机9的电子快门。As shown in FIG. 1 , the
本发明其技术效果在于,本发明利用激光探测图像信号能量的一部分,将其作为触发信号,同时,在发明中特别提出一种电控选通器件,即微孔阵列栅极5,收到达到阈值电流的触发信号,触发电路则向脉冲电源发送选通信号,脉冲电源则以改变电压方向的方式控制选通器件的通与关,这就是所谓的“自触发”。反向电压控制在50~100V范围内,使得不超过40%的电子束图像能量被旁路作为触发信号,何况所述电子束图像此前还经过了一次增强,更何况电子束图像的保留部分还有二次增益过程。这一选通方式还带来一个附带效果,那就是选通动态效果得到改善,这是因为选通过程是在一个十分集中的环节中完成。The technical effect of the present invention is that the present invention utilizes a part of the energy of the laser to detect the image signal as a trigger signal, and at the same time, an electronically controlled gating device is specially proposed in the invention, that is, the
附图说明Description of drawings
图1是本发明之自触发选通激光成像方法选通成像过程示意图,该图也是一种有助于本发明实现的自触发选通激光成像装置结构示意图,该图同时作为摘要附图。图2是一种有助于本发明实现的自触发选通激光成像装置中的微孔阵列栅极结构局部放大剖视示意图。FIG. 1 is a schematic diagram of the gating imaging process of the self-triggering gating laser imaging method of the present invention, which is also a structural schematic diagram of a self-triggering and gating laser imaging device that is helpful for the realization of the present invention, and the figure is also an abstract drawing. FIG. 2 is a partial enlarged cross-sectional schematic view of a micro-hole array gate structure in a self-triggered gating laser imaging device that is helpful for the realization of the present invention.
具体实施方式Detailed ways
本发明之自触发选通激光成像方法的一个非必要特征是选通摄像机9的电子快门的常态为关闭,触发电路输出的选通信号一部分传送给控制电路,经过延时处理作为驱动信号输出给选通摄像机9,驱动其电子快门开启,由选通摄像机9摄取所述光学图像。可见,本发明利用选通摄像机9中的电子快门实现二次选通,进一步提高激光探测图像信号的信噪比。A non-essential feature of the self-triggering gating laser imaging method of the present invention is that the electronic shutter of the
另外,本发明设定了以下四个工作电压,光电阴极3与一级微通道板4之间的电压V1为200V;一级微通道板4、二级微通道板6各自的两端电压V2、V3均为800~1000V;二级微通道板6与荧光屏7导电膜之间的电压V4为2000~4000V。In addition, the present invention sets the following four working voltages, the voltage V1 between the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910340576.5A CN109975828B (en) | 2019-04-25 | 2019-04-25 | Self-triggering gating laser imaging method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910340576.5A CN109975828B (en) | 2019-04-25 | 2019-04-25 | Self-triggering gating laser imaging method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109975828A CN109975828A (en) | 2019-07-05 |
CN109975828B true CN109975828B (en) | 2020-08-21 |
Family
ID=67086310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910340576.5A Active CN109975828B (en) | 2019-04-25 | 2019-04-25 | Self-triggering gating laser imaging method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109975828B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112782718B (en) * | 2021-01-04 | 2023-04-07 | 北京环境特性研究所 | Perspective glass imaging method and system based on laser gating |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1869731A (en) * | 2006-06-29 | 2006-11-29 | 哈尔滨工业大学 | Distance gate type laser 3D imaging radar system |
US7224901B2 (en) * | 2002-10-21 | 2007-05-29 | Main Street Ventures Llc | All-optical packet routing gates and demultiplexing systems |
CN101487896A (en) * | 2009-02-23 | 2009-07-22 | 哈尔滨工业大学 | Index gain modulation distance imager |
CN102096388A (en) * | 2010-12-21 | 2011-06-15 | 中国科学院半导体研究所 | Range gating based laser imaging synchronous control system |
CN105070629A (en) * | 2015-08-19 | 2015-11-18 | 长春理工大学 | Micro-channel photomultiplier with composite waveguide anode for spatial optical communication |
-
2019
- 2019-04-25 CN CN201910340576.5A patent/CN109975828B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7224901B2 (en) * | 2002-10-21 | 2007-05-29 | Main Street Ventures Llc | All-optical packet routing gates and demultiplexing systems |
CN1869731A (en) * | 2006-06-29 | 2006-11-29 | 哈尔滨工业大学 | Distance gate type laser 3D imaging radar system |
CN101487896A (en) * | 2009-02-23 | 2009-07-22 | 哈尔滨工业大学 | Index gain modulation distance imager |
CN102096388A (en) * | 2010-12-21 | 2011-06-15 | 中国科学院半导体研究所 | Range gating based laser imaging synchronous control system |
CN105070629A (en) * | 2015-08-19 | 2015-11-18 | 长春理工大学 | Micro-channel photomultiplier with composite waveguide anode for spatial optical communication |
Non-Patent Citations (2)
Title |
---|
一种用于距离选通的ICCD设计与实现;何欢等;《光子学报》;20150630;第44卷(第6期);全文 * |
利用微通道板极间耦合损失实现复合探测的空间束导栅型调制机制;母一宁等;《真空科学与技术学报》;20180331;第38卷(第3期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109975828A (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100917387B1 (en) | Electron beam detector, scanning electron microscope, mass spectrometer, and ion detector | |
CN108257844B (en) | Gating focusing type photomultiplier | |
CN108594204A (en) | A kind of high accuracy remote narrow-pulse laser range unit | |
JPH01157050A (en) | Photomultiplier and apparatus using it | |
CN110095785B (en) | Self-triggering gating laser imaging device | |
US4825066A (en) | Photomultiplier with secondary electron shielding means | |
CN108020325B (en) | A time-of-flight measurement system based on microchannel plate gating technology | |
TWI722158B (en) | Photomultiplier tube detector assembly and related inspection system | |
CN109975828B (en) | Self-triggering gating laser imaging method | |
JP6699971B2 (en) | Fluorescence inspection system | |
CN207798271U (en) | A kind of time-of-flight measurement system based on microchannel plate gating technique | |
JPH0670613B2 (en) | Optical waveform measuring device | |
CN111584332B (en) | Electron bombardment imaging type photoelectric device and high-speed camera | |
CN109273345B (en) | Non-contact object surface charge photomultiplier amplifier | |
CN209133447U (en) | Scanning Camera with Electronic Pulse Collimation | |
Salzmann et al. | Proposal for a time‐of‐flight Thomson backscattering technique for large fusion devices | |
US4264375A (en) | Detector for high intensity laser radiation | |
CN207896063U (en) | Gating focusing type photomultiplier | |
CN217426380U (en) | Time broadening framing camera performance measurement system | |
US3934170A (en) | Image tube and method and apparatus for gating same | |
Chang et al. | Demonstration of a 0.54 picosecond x-ray streak camera | |
KR101155412B1 (en) | Photodetector included MicroChannelPlate, Method for Detecting Photo, Analysis system for analyzing sample and Method thereof | |
JP2954963B2 (en) | Electron source device using photocathode | |
Koç et al. | High-flux table-top hard X-ray source driven by femtosecond mid-infrared pulses at a 1 kHz repetition rate | |
CN114935445B (en) | A method for measuring the frame size of a widened frame camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |