CN109975523A - 一种爆炸挤淤泥石混合层工程性质预测方法 - Google Patents
一种爆炸挤淤泥石混合层工程性质预测方法 Download PDFInfo
- Publication number
- CN109975523A CN109975523A CN201910354812.9A CN201910354812A CN109975523A CN 109975523 A CN109975523 A CN 109975523A CN 201910354812 A CN201910354812 A CN 201910354812A CN 109975523 A CN109975523 A CN 109975523A
- Authority
- CN
- China
- Prior art keywords
- mudstone
- mud
- mixed layer
- rockfills
- determined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004880 explosion Methods 0.000 title claims abstract description 13
- 239000004575 stone Substances 0.000 claims abstract description 21
- 238000012360 testing method Methods 0.000 claims description 11
- 230000003204 osmotic effect Effects 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 4
- 238000001739 density measurement Methods 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004927 clay Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N9/00—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
- G01N9/36—Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N2015/0277—Average size only
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供了一种爆炸挤淤泥石混合层工程性质预测方法,包括确定单位长度内分布的填石块数n、块石的平均横截面积A、块石的平均等效粒直径d,由此得到单位面积内块石的填充率m;确定泥石混合层粘聚力及内摩擦角;确定淤泥及填石重度等多步骤。应用本技术方案可实现泥石混合层工程性质的可靠预测,具有预测简单、流程性强和结果可靠的优点。
Description
技术领域
本发明涉及领域,具体是指一种爆炸挤淤泥石混合层工程性质预测方法。
背景技术
爆炸挤淤是处理深厚软土,特别是水下软土地基较为经济和实用的方法。但对于深厚软土,特别是沿海港湾淤泥厚达30m,该项处理技术仍存在一些问题,比如深厚软土底部难以完全置换,即存在泥石混合层,或存在一定深度的未置换软土层,处理效果欠佳。对于泥石混合层,其工程性质除了与淤泥工程性质相关外,还与填石工程性质、填石填充率等有关。目前,对于泥石混合层的工程性质,如粘聚力、内摩擦角、重度等,尚无可靠的方法进行预测。
发明内容
本发明的目的在于提供一种爆炸挤淤泥石混合层工程性质预测方法,实现泥石混合层工程性质的可靠预测,具有预测简单、流程性强和结果可靠的优点。
为了解决上述技术问题,本发明提供了一种爆炸挤淤泥石混合层工程性质预测方法,包括以下步骤:
(一)确定单位长度内分布的填石块数n、块石的平均横截面积A、块石的平均等效粒直径d,由此得到单位面积内块石的填充率m,表示为
填石块数n通过钻探取样或物探方法确定,即通过钻探单位长度的深度,数清其填石块数n;块石的平均横截面积A通过统计得到;
(二)取典型淤泥和填石样品,进行直剪试验,分别确定淤泥的粘聚力cm和内摩擦角填石的粘聚力cs和内摩擦角
(三)确定泥石混合层的粘聚力c和内摩擦角由面积置换率得到,
c=(1-dn)cm+dncs (2)
(四)现场取淤泥和填石的样品,进行密度测试,乘以重力加速度得到淤泥的重度γm和填石的重度γs;
(五)确定泥石混合层的重度γ,根据面积置换率得到,
(六)现场取填石样品,进行渗透性测试,测试出填石的渗透系数ks;
(七)确定泥石混合层的渗透系数k,
k=mks (5)。
相较于现有技术,本发明的技术方案具备以下有益效果:
本发明提供了一种爆炸挤淤泥石混合层工程性质预测方法,能够准确可靠地预测出泥石混合层的工程性质,例如粘聚力、内摩擦角及重度等数据,对于处理深厚软土具有非常积极地作用,具有预测简单、流程性强和结果可靠的优点。
具体实施方式
下文结合具体实施方式对本发明做进一步说明。
1.一种爆炸挤淤泥石混合层工程性质预测方法,包括以下步骤:
(一)确定单位长度内分布的填石块数n、块石的平均横截面积A、块石的平均等效粒径d,由此得到单位面积内块石的填充率m,表示为
填石块数n通过钻探取样或物探方法确定,即通过钻探单位长度的深度,数清其填石块数n;块石的平均横截面积A通过统计得到;在本实施例中中,单位面积取1m;
(二)取典型淤泥和填石样品,进行直剪试验,将淤泥和填石样品分别放入直剪剪切试验仪里,对样品施加50~300kPa大小不同的正应力,然后施加剪应力,记录破坏时的最大剪应力,通过对正应力与最大剪应力进行线性回归,得到抗剪强度线,进一步求得相应的粘聚力和内摩擦角,其中淤泥的粘聚力cm和内摩擦角填石的粘聚力cs和内摩擦角
(三)确定泥石混合层的粘聚力c和内摩擦角由面积置换率得到,
c=(1-dn)cm+dncs (2)
(四)现场取淤泥和填石的样品,进行密度测试,乘以重力加速度得到淤泥的重度γm和填石的重度γs;
(五)确定泥石混合层的重度γ,根据面积置换率得到,
(六)现场取填石样品,进行渗透性测试,即将样品放入常水头渗透仪里,通过测量一定时间内通过样品的水流量和水头差,进一步得到填石的渗透系数ks;
(七)确定泥石混合层的渗透系数k,
k=mks (5)。
以下结合具体数据对上述方法进行更加详细的描述:
某一围堤软基处理爆炸挤淤工程,泥面以上围堤高8m,顶宽9.4m,采用斜坡堤的结构型式。该围堤地质条件较差,存在厚达30m的淤泥层,地层状况为(以泥面为深度零点):1)0~3m,淤泥混砂,灰黄色;2)3~30m,淤泥,深灰色;3)30~39m,粉质粘土,黄褐色,上部夹少量砂土;4)39m以下,粉质粘土,夹碎石。
在爆炸挤淤过程中,炸药布设在堤头位置,布药宽度为42m,药包平均埋深为15m,药包间距为2m,单药包重量为36kg。爆炸挤淤完毕后采用钻探和物探的方法,检验挤淤效果,即填石置换淤泥的深度及程度。经检验,围堤上部完全由填石置换,填石厚度位于23~28m之间;填石下部为泥石混合层,厚度位于1.4~3.7m之间。某钻孔显示泥石混合层厚度为3.2m,1m深度处的填石块数n为3,根据统计结果,块石的平均横截面积A为0.035m2,由此计算出块石的平均等效粒径d为0.21m,单位面积内块石的填充率m为0.31。进一步,现场取典型淤泥和填石,进行直剪试验,得到淤泥的粘聚力cm为12kPa,内摩擦角为8°,填石的粘聚力cs为3kPa,内摩擦角为37°。然后根据式(2)、(3)计算得到泥石混合层的粘聚力c为6.3kPa,内摩擦角为26°。
现场取典型淤泥和填石,进行密度测试,乘以重力加速度,得到淤泥的重度γm为17.5kN/m3,填石的重度γs为21.3kN/m3,根据式(4)计算得到泥石混合层的重度γ为18.7kN/m3。
现场取填石样品,运回实验室进行渗透性测试,测试出填石的渗透系数ks为24cm/s,根据式(5)计算得到泥石混合层的渗透系数k为7.4cm/s。
以上所述,仅为本发明较佳的具体实施方式,但本发明的设计构思并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,利用此构思对本发明进行非实质性的改动,均属于侵犯本发明保护范围的行为。
Claims (1)
1.一种爆炸挤淤泥石混合层工程性质预测方法,其特征在于,包括以下步骤:
(一)确定单位长度内分布的填石块数n、块石的平均横截面积A、块石的平均等效粒径d,由此得到单位面积内块石的填充率m,表示为
填石块数n通过钻探取样或物探方法确定,即通过钻探单位长度的深度,数清其填石块数n;块石的平均横截面积A通过统计得到;
(二)取典型淤泥和填石样品,进行直剪试验,分别确定淤泥的粘聚力cm和内摩擦角填石的粘聚力cs和内摩擦角
(三)确定泥石混合层的粘聚力c和内摩擦角由面积置换率得到,
c=(1-dn)cm+dncs (2)
(四)现场取淤泥和填石的样品,进行密度测试,乘以重力加速度得到淤泥的重度γm和填石的重度γs;
(五)确定泥石混合层的重度γ,根据面积置换率得到,
(六)现场取填石样品,进行渗透性测试,测试出填石的渗透系数ks;
(七)确定泥石混合层的渗透系数k,
k=mks (5)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910354812.9A CN109975523B (zh) | 2019-04-29 | 2019-04-29 | 一种爆炸挤淤泥石混合层工程性质预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910354812.9A CN109975523B (zh) | 2019-04-29 | 2019-04-29 | 一种爆炸挤淤泥石混合层工程性质预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109975523A true CN109975523A (zh) | 2019-07-05 |
CN109975523B CN109975523B (zh) | 2021-06-29 |
Family
ID=67087024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910354812.9A Active CN109975523B (zh) | 2019-04-29 | 2019-04-29 | 一种爆炸挤淤泥石混合层工程性质预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109975523B (zh) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1477271A (zh) * | 2003-03-13 | 2004-02-25 | 江礼茂 | 控制加载爆炸挤淤置换法 |
CN102116006A (zh) * | 2011-03-23 | 2011-07-06 | 大连市市政设计研究院有限责任公司 | 一种填海路堤的修建方法 |
CN102191769A (zh) * | 2010-03-10 | 2011-09-21 | 张建勋 | 一种卸压爆炸堆石挤淤置换方法 |
CN103114597A (zh) * | 2013-02-18 | 2013-05-22 | 宁波高新区围海工程技术开发有限公司 | 环保型爆破挤淤筑堤方法 |
CN103114558A (zh) * | 2013-02-18 | 2013-05-22 | 宁波高新区围海工程技术开发有限公司 | 陡坡带爆破挤淤筑堤方法 |
CN104406471A (zh) * | 2014-10-23 | 2015-03-11 | 沈雪松 | 潮间带爆破挤淤筑堤的引水爆破施工方法 |
CN106149674A (zh) * | 2016-08-08 | 2016-11-23 | 浙江省围海建设集团股份有限公司 | 一种圆弧段爆破挤淤的施工方法 |
CN106643359A (zh) * | 2016-08-17 | 2017-05-10 | 中交航局第三工程有限公司 | 一种爆破挤淤处理坡肩位置残留淤泥的方法 |
CN107083775A (zh) * | 2017-05-23 | 2017-08-22 | 中国地质科学院探矿工艺研究所 | 岩质边坡破裂面置换治理方法 |
CN107090802A (zh) * | 2017-05-02 | 2017-08-25 | 中交第三航务工程局有限公司 | 一种海上围堤合龙的施工方法 |
CN207109792U (zh) * | 2017-08-21 | 2018-03-16 | 水利部农村电气化研究所 | 一种海堤爆破挤淤软基处理施工质量检测装置 |
AU2016377392A1 (en) * | 2015-12-23 | 2018-05-10 | SUEZ Water Pty Ltd | Conducting a maintenance activity on an asset |
CN108562501A (zh) * | 2018-03-06 | 2018-09-21 | 长安大学 | 一种适用于隧道内岩土体原位直剪试验装置及方法 |
CN108999180A (zh) * | 2018-08-13 | 2018-12-14 | 北京理工北阳爆破工程技术有限责任公司 | 一种陆域形成中软土地基整体推进清淤方法 |
-
2019
- 2019-04-29 CN CN201910354812.9A patent/CN109975523B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1477271A (zh) * | 2003-03-13 | 2004-02-25 | 江礼茂 | 控制加载爆炸挤淤置换法 |
CN102191769A (zh) * | 2010-03-10 | 2011-09-21 | 张建勋 | 一种卸压爆炸堆石挤淤置换方法 |
CN102116006A (zh) * | 2011-03-23 | 2011-07-06 | 大连市市政设计研究院有限责任公司 | 一种填海路堤的修建方法 |
CN103114597A (zh) * | 2013-02-18 | 2013-05-22 | 宁波高新区围海工程技术开发有限公司 | 环保型爆破挤淤筑堤方法 |
CN103114558A (zh) * | 2013-02-18 | 2013-05-22 | 宁波高新区围海工程技术开发有限公司 | 陡坡带爆破挤淤筑堤方法 |
CN104406471A (zh) * | 2014-10-23 | 2015-03-11 | 沈雪松 | 潮间带爆破挤淤筑堤的引水爆破施工方法 |
AU2016377392A1 (en) * | 2015-12-23 | 2018-05-10 | SUEZ Water Pty Ltd | Conducting a maintenance activity on an asset |
CN106149674A (zh) * | 2016-08-08 | 2016-11-23 | 浙江省围海建设集团股份有限公司 | 一种圆弧段爆破挤淤的施工方法 |
CN106643359A (zh) * | 2016-08-17 | 2017-05-10 | 中交航局第三工程有限公司 | 一种爆破挤淤处理坡肩位置残留淤泥的方法 |
CN107090802A (zh) * | 2017-05-02 | 2017-08-25 | 中交第三航务工程局有限公司 | 一种海上围堤合龙的施工方法 |
CN107083775A (zh) * | 2017-05-23 | 2017-08-22 | 中国地质科学院探矿工艺研究所 | 岩质边坡破裂面置换治理方法 |
CN207109792U (zh) * | 2017-08-21 | 2018-03-16 | 水利部农村电气化研究所 | 一种海堤爆破挤淤软基处理施工质量检测装置 |
CN108562501A (zh) * | 2018-03-06 | 2018-09-21 | 长安大学 | 一种适用于隧道内岩土体原位直剪试验装置及方法 |
CN108999180A (zh) * | 2018-08-13 | 2018-12-14 | 北京理工北阳爆破工程技术有限责任公司 | 一种陆域形成中软土地基整体推进清淤方法 |
Non-Patent Citations (2)
Title |
---|
乔小利: "爆炸挤淤法处理地基爆淤参数确定", 《山西建筑》 * |
崔广强 等: "深厚淤泥爆炸挤淤填石围堤沉降分析", 《河北工程大学学报( 自然科学版)》 * |
Also Published As
Publication number | Publication date |
---|---|
CN109975523B (zh) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Research and practice on fluctuation water injection technology at low permeability coal seam | |
CN104806212B (zh) | 一种水驱油田优势通道形成机理及发育情况的分析方法 | |
Brattekås et al. | Gel dehydration by spontaneous imbibition of brine from aged polymer gel | |
RU2016134036A (ru) | Индексы структурного различия верхних зон заполнения ордовикского известняка и способ их определения | |
Mokhtari et al. | Impacts of stress, natural and induced fractures on mechanical properties of organic-rich shales | |
Shehata et al. | Spontaneous imbibition study: effect of connate water composition on low-salinity waterflooding in sandstone reservoirs | |
Opara | ESTIMATION OF MULTIPLE SOURCES OF OVERPRESSURES USING VERTICAL EFFECTIVE STRESS APPROACH: CASE STUDY OF THE NIGER DELTA, NIGERIA. | |
Åhnberg et al. | Strength degradation of clay due to cyclic loadings and enforced deformation | |
CN109975523A (zh) | 一种爆炸挤淤泥石混合层工程性质预测方法 | |
Abbas et al. | Practical approach for sand-production prediction during production | |
CN110306522A (zh) | 一种爆炸挤淤填石下陷深度预测方法 | |
Shi et al. | Features of hydraulic fracture behavior for natural gas hydrate deduced from acoustic emission and microscopy in tri-axial fracturing experiments | |
Wang et al. | Experimental Investigation on Frost Heaving Force (FHF) Evolution in Preflawed Rocks Exposed to Cyclic Freeze‐Thaw Conditions | |
Arroyo et al. | Sample quality examination on silty soils | |
Dande et al. | Elastic properties of propped and unpropped Eagle Ford shale and 3D-printed fractured models under iso-static stress | |
Tan et al. | A classification and description method for carbonate reservoir mechanical properties based on the Hoek-brown criterion | |
Wang | Ultradeep Carbonate Gas Reservoirs: Reservoir Characteristics and Percolation Mechanism | |
Renshaw et al. | Effect of compressive loading on first-year sea-ice permeability | |
Vásquez H et al. | The diagnosis, well damage evaluation and critical drawdown calculations of sand production problems in the Ceuta field, lake Maracaibo, Venezuela | |
Gates | Estimating the unconfined compressive strength of vesicular basalts via bulk specific gravity of the rock sample | |
Abugharara et al. | Study of the Influence of Shale Anisotropy Orientation on Directional Drilling Performance in Shale | |
Uslu et al. | Determination of the Deformability, Modulus Ratios and Anisotrophic Behavior of the Micaschists; A Case Study From Burgaz Dam Site, İzmir-Turkey | |
Liang et al. | Experimental Study on Fracture Conductivity in Hydraulic Fracturing | |
Iskandar et al. | A 3D Model of Hydraulic Conductivity Distribution of Fractured Rocks Using Packer Test Result and Geotechnical Log | |
Malaj et al. | The Characterization of Flysch Rock in Albania with Field and Laboratory Testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |