CN109967105A - 一种Co,Mo共掺杂碳化钒的制备方法 - Google Patents

一种Co,Mo共掺杂碳化钒的制备方法 Download PDF

Info

Publication number
CN109967105A
CN109967105A CN201910322374.8A CN201910322374A CN109967105A CN 109967105 A CN109967105 A CN 109967105A CN 201910322374 A CN201910322374 A CN 201910322374A CN 109967105 A CN109967105 A CN 109967105A
Authority
CN
China
Prior art keywords
reactant feed
preparation
codope
powder
porcelain boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910322374.8A
Other languages
English (en)
Inventor
曹丽云
李晓艺
张宁
冯亮亮
黄剑锋
李嘉胤
冯永强
赵亚娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910322374.8A priority Critical patent/CN109967105A/zh
Publication of CN109967105A publication Critical patent/CN109967105A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

一种Co,Mo共掺杂碳化钒的制备方法,将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵和柠檬酸混合均匀得反应物原料A;将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在保护气氛下固相煅烧得产物粉体B;将粉体B移入H2SO4中浸泡后离心分离,去除上层清液,得到固体产物C;将分离后的固体产物C真空干燥后,研磨得到Co,Mo‑VC材料。本发明以三聚氰胺、偏钒酸铵、四水合钼酸铵与六水合硝酸钴为原料,固相煅烧法制备出Co,Mo‑VC材料。采用煅烧法操作简单、材料形貌尺寸均匀。反应物原料中的六水合硝酸钴促进了碳层的晶化,四水钼酸铵影响VC晶粒的大小,通过调控二者含量,使得生成的VC粒子尺寸均匀、分散性好。

Description

一种Co,Mo共掺杂碳化钒的制备方法
技术领域
本发明涉及纳米粉体材料制备领域,具体涉及一种Co,Mo共掺杂碳化钒的制备方法。
背景技术
水裂解制氢被认为是替代传统化石燃料和改善环境污染的一种有前途的清洁能源。虽然铂基材料是最活跃的析氢反应电催化剂(HER),但受其稀有、昂贵的限制。HER研究的首要任务是开发高效、稳定、经济,且可代替铂基催化剂的非贵金属电催化剂,包括过渡金属碳化物、硫化物、氮化物、磷化物等。在过渡金属碳化物中,较便宜的VC具有优异的氢吸附性能,具有更小的密度,更适合作为催化剂。
碳化钼材料以其类pt的d电子结构、良好的化学稳定性和较低的成本而受到广泛的关注,拥有特殊的发展前景。为了提高碳化钼的催化性能,许多研究都集中在纳米级对应物的制备上,以增加活性位点的密度和导电性,如纳米颗粒、纳米线、纳米薄片、纳米棒和纳米管等。若设计纳米结构的VC基材料,既可以揭示更多的催化活性位点,也可以有效解决其导电性弱等问题。
发明内容
本发明的目的在于提供一种操作简单、材料形貌尺寸均匀,导电性好、稳定性好的Co,Mo共掺杂碳化钒(Co,Mo-VC)的制备方法。
为达到上述目的,本发明采用的技术方案是:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以(15~18):(3~9):(1~8):(1~4):(1~2)的质量比混合均匀得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在保护气氛下,以3~5℃/min的升温速率自室温升温至600~900℃固相煅烧3~6h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡9~18h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。
所述步骤1)的反应物原料A于玛瑙研钵中充分研磨。
所述步骤2)的保护气氛为Ar气。
本发明以三聚氰胺、偏钒酸铵、四水合钼酸铵与六水合硝酸钴为原料,固相煅烧法制备出Co,Mo-VC材料。采用煅烧法操作简单、材料形貌尺寸均匀。反应物原料中的六水合硝酸钴促进了碳层的晶化,四水钼酸铵影响VC晶粒的大小,通过调控二者含量,使得生成的VC粒子尺寸均匀、分散性好。
按本发明的制备方法制得的Co,Mo-VC材料,碳化钒粒径约为5-10nm,晶化的碳原子层为1-5层,合成操作简单、材料形貌尺寸均匀,导电性好、稳定性好,具有一定电催化性能,可应用于电催化领域。
与现有技术相比,本发明具有以下有益的技术效果:
1)原料中钴原子的引入,使得碳化钒与Co纳米粒子产生协同作用,增加活性位点;
2)钼原子掺杂在一定程度上对VC大小有一定影响,为碳层生成作了贡献;
3)该方法制备的Co,Mo-VC材料可作为产氢电催化剂,结构中的碳层保护了碳化钒粒子,使其免受电解液的腐蚀,结构更稳定。
附图说明
图1为本发明实施例1制备的Co,Mo-VC的XRD图;
图2为本发明实施例3制备的Co,Mo-VC的TEM图;
图3为本发明实施例4制备的Co,Mo-VC的LSV图。
具体实施方式
下面结合附图及实施实例对本发明作进一步详细说明。
实施例1:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以15:3:1:1:1的质量比混合,于玛瑙研钵中充分研磨得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在Ar气保护气氛下,以3℃/min的升温速率自室温升温至600℃固相煅烧3h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡9h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。
由图1可以看出本实施例所制备的Co,Mo-VC材料对应的VC标准PDF卡片号为73-0476,四个衍射峰尖锐,且强度高,说明该实施例得到的碳化钒结晶性很好,钴为嵌入碳层的钴(无碳层包覆的钴物种已被酸溶解除去),碳为石墨化碳。
实施例2:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以16:5:2:2:1的质量比混合,于玛瑙研钵中充分研磨得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在Ar气保护气氛下,以3℃/min的升温速率自室温升温至700℃固相煅烧4h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡12h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。
实施例3:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以17:7:5:3:2的质量比混合,于玛瑙研钵中充分研磨得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在Ar气保护气氛下,以5℃/min的升温速率自室温升温至800℃固相煅烧5h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡15h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。
由图2可以看出本实施例所制备的Co,Mo-VC材料,微观结构为碳原子层包覆的碳化钒纳米颗粒,碳化钒粒径约为5-10nm,晶化的碳原子层为1-5层,晶格条纹明显,说明为石墨碳,与XRD结果一致。
实施例4:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以18:9:8:4:2的质量比混合,于玛瑙研钵中充分研磨得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在Ar气保护气氛下,以5℃/min的升温速率自室温升温至900℃固相煅烧6h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡18h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。
图3是本实施例所制备的Co,Mo-VC产氢电催化剂的LSV图,表示当电流密度为10mA/cm2,扫描速率为3mV/s时,该样品过电势为115mV,说明样品的催化产氢活性优异。
实施例5:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以16.5:6:4:2.5:1.5的质量比混合,于玛瑙研钵中充分研磨得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在Ar气保护气氛下,以4℃/min的升温速率自室温升温至600℃固相煅烧6h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡10h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。
实施例6:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以17.5:8:7:3.5:1.8的质量比混合,于玛瑙研钵中充分研磨得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在Ar气保护气氛下,以4℃/min的升温速率自室温升温至900℃固相煅烧3h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡16h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。

Claims (3)

1.一种Co,Mo共掺杂碳化钒的制备方法,其特征在于包括以下步骤:
1)将三聚氰胺,偏钒酸铵,六水合硝酸钴,四水合钼酸铵,柠檬酸以(15~18):(3~9):(1~8):(1~4):(1~2)的质量比混合均匀得反应物原料A;
2)将反应物原料A置于瓷舟中,将瓷舟放入高温管式炉中,在保护气氛下,以3~5℃/min的升温速率自室温升温至600~900℃固相煅烧3~6h,冷却得产物粉体B;
3)将粉体B移入1mol/L的H2SO4中,浸泡9~18h,离心分离,去除上层清液,得到固体产物C;
4)将分离后的固体产物C真空干燥后,研磨得到Co,Mo-VC材料。
2.根据权利要求1所述的Co,Mo共掺杂碳化钒的制备方法,其特征在于:所述步骤1)的反应物原料A于玛瑙研钵中充分研磨。
3.根据权利要求1所述的Co,Mo共掺杂碳化钒的制备方法,其特征在于:所述步骤2)的保护气氛为Ar气。
CN201910322374.8A 2019-04-22 2019-04-22 一种Co,Mo共掺杂碳化钒的制备方法 Pending CN109967105A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910322374.8A CN109967105A (zh) 2019-04-22 2019-04-22 一种Co,Mo共掺杂碳化钒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910322374.8A CN109967105A (zh) 2019-04-22 2019-04-22 一种Co,Mo共掺杂碳化钒的制备方法

Publications (1)

Publication Number Publication Date
CN109967105A true CN109967105A (zh) 2019-07-05

Family

ID=67085567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910322374.8A Pending CN109967105A (zh) 2019-04-22 2019-04-22 一种Co,Mo共掺杂碳化钒的制备方法

Country Status (1)

Country Link
CN (1) CN109967105A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721713A (zh) * 2019-10-29 2020-01-24 广东工业大学 一种Mo2C催化材料及其制备方法与应用
CN115537840A (zh) * 2022-10-12 2022-12-30 成都理工大学 一种复合电催化材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108837838A (zh) * 2018-05-09 2018-11-20 陕西科技大学 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用
CN109592683A (zh) * 2019-01-24 2019-04-09 陕西科技大学 一种超小碳化钒嵌入碳原子层材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108837838A (zh) * 2018-05-09 2018-11-20 陕西科技大学 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用
CN109592683A (zh) * 2019-01-24 2019-04-09 陕西科技大学 一种超小碳化钒嵌入碳原子层材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELISA NAVARRO-FLORES ET AL.: ""Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium"", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL 226》 *
YIQIANG SUN ET AL.: ""Mo doped Ni2P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values"", 《NANOSCALE》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721713A (zh) * 2019-10-29 2020-01-24 广东工业大学 一种Mo2C催化材料及其制备方法与应用
CN110721713B (zh) * 2019-10-29 2022-07-29 广东工业大学 一种Mo2C催化材料及其制备方法与应用
CN115537840A (zh) * 2022-10-12 2022-12-30 成都理工大学 一种复合电催化材料及其制备方法

Similar Documents

Publication Publication Date Title
Kundu et al. Ni-Doped CuS as an efficient electrocatalyst for the oxygen evolution reaction
Handoko et al. Theory-guided materials design: two-dimensional MXenes in electro-and photocatalysis
Jiang et al. Bimetallic‐based electrocatalysts for oxygen evolution reaction
Li et al. Hierarchical trimetallic sulfide FeCo2S4–NiCo2S4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting
Wang et al. Efficient oxygen evolution reaction from iron-molybdenum nitride/molybdenum oxide heterostructured composites
CN110176606A (zh) 一种Co@NC高分散核壳结构催化剂、制备方法及其应用
CN108837838B (zh) 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用
Xiang et al. Tuning interfacial structures for better catalysis of water electrolysis
Qian et al. Synergistic Enhancement of Electrocatalytic Nitrogen Reduction over Few-Layer MoSe2-Decorated Ti3C2T x MXene
CN107681166B (zh) 一种碳模板诱导Fe-N生长制备碳催化剂的方法及碳催化剂
He et al. Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia
Guo et al. Synergistic effect of Co and Fe bimetallic oxides/hydroxides composite structure as a bifunctional electrocatalyst for enhancing overall water splitting performance
Qiu et al. Rapid synthesis of large-size Fe2O3 nanoparticle decorated NiO nanosheets via electrochemical exfoliation for enhanced oxygen evolution electrocatalysis
CN113026047B (zh) 一种电化学催化转化二氧化碳合成甲醇的方法
Feng et al. Ultrafine VN nanoparticles confined in Co@ N-doped carbon nanotubes for boosted hydrogen evolution reaction
Lin et al. A review on catalysts for electrocatalytic and photocatalytic reduction of N 2 to ammonia
CN111450862A (zh) 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法
Alharbi et al. Novel lanthanum sulfide–decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction
Zhang et al. MOF-derived bimetallic NiMo-based sulfide electrocatalysts for efficient hydrogen evolution reaction in alkaline media
Zhang et al. Reversing Mg suppression effect on Co-site water oxidation of MgCo 2 O 4 based on vanadium-atom electronic affinity synergy with Mg sites toward electronic redistribution
CN109967105A (zh) 一种Co,Mo共掺杂碳化钒的制备方法
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Qian et al. A novel monoclinic metal oxide catalyst for oxygen evolution reactions in alkaline media
Zhang et al. Recent advances of transition‐metal metaphosphates for efficient electrocatalytic water splitting
Chen et al. Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190705