CN109964180A - 用于确定调节装置的参数的装置和方法 - Google Patents

用于确定调节装置的参数的装置和方法 Download PDF

Info

Publication number
CN109964180A
CN109964180A CN201780071248.9A CN201780071248A CN109964180A CN 109964180 A CN109964180 A CN 109964180A CN 201780071248 A CN201780071248 A CN 201780071248A CN 109964180 A CN109964180 A CN 109964180A
Authority
CN
China
Prior art keywords
model
parameter
controlled plant
simulation model
adjuster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780071248.9A
Other languages
English (en)
Other versions
CN109964180B (zh
Inventor
丹尼尔·拉比施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN109964180A publication Critical patent/CN109964180A/zh
Application granted granted Critical
Publication of CN109964180B publication Critical patent/CN109964180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42162Model reference adaptive control MRAC, correction fictive-real error, position

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种用于确定用于调节对象(1)的调节装置(8)的参数的装置和方法。根据调节对象(1)的所检测的输入和输出信号(u;y)识别用于调节对象(1)的模拟模型(10、12)。对于设计为模型跟踪调节器的调节装置,自动地根据基于模型的设计方法确定在预控制部(9)中应用的主调节器(11)和用于调节对象(1)的跟踪调节器(14)的参数。借助于随后的优化方法能够进一步改善闭合的调节回路的表现。有利地,能够在没有特别的调节技术知识的情况下执行调节器设计,并且因此明显提高具有其优点的模型跟踪调节器在实际应用中的应用频率。

Description

用于确定调节装置的参数的装置和方法
技术领域
本发明涉及一种确定用于调节对象的调节装置的参数的装置和方法,其中,装置设计用于,根据调节对象的所检测的输入和输出信号得出用于调节对象的模拟模型并且识别其参数。根据基于模型的设计方法和之前得出的模拟模型确定调节装置的参数以获得调节回路的所期望的性能。
背景技术
在评价和设计调节回路时,控制表现与干扰性能是不同的。控制表现的特征在于,调节参量如何对额定参量的改变做出反应,该调节参量是方法或过程技术设备中的过程变量。通常,为了评价调节回路的控制表现而通过提供具有阶跃形式曲线的额定值来激励调节回路并且评估阶跃响应。通常,预设所期望的振荡时间和最大超调量,调节参量在该振荡时间过后应当达到确定的目标地带。干扰表现则描述了,调节参量如何对干扰做出反应。如果例如有阶跃形式的干扰从外部作用于调节对象,那么调节参量就会产生偏差。调节器应当将该偏差保持得较小并且将调节参量再次快速反馈给额定值。
在应用传统的调节器、例如P、PD、PI或PID调节器时,不能够相互独立地预设控制和干扰表现。由此通常造成目标冲突,例如当期望快速调节干扰的时候,这却导致了控制表现中的所不期望的超调。因为原则上不允许超调变得过大,在一些应用情况中甚至必须完全避免,因此干扰表现的优化受到了一定的限制。另一方面,以完全避免阶跃响应中的超调的方式实现的调节器参数调整能够导致调节器的干扰表现明显更差,使得仅仅以不被允许的缓慢速度来校正干扰。
额外的问题在于,在调节对象中、即在设备或子设备的要调节的过程中存在时滞。例如当作为控制环节对过程产生影响的执行机构和检测过程的调节参量的实际值的传感器相互远离一定距离的时候,出现时滞。这应当在实例中阐述:对反应器的加热是借助于外部直通式加热器来实现的,被加热的水从该外部直通式加热器经由管路被泵送到反应器的壳体中。在此,执行机构是外部直通式加热器。测量温度作为调节参量是在反应器中借助于温度传感器进行的。直到被加热的水到达壳体中所度过的时间就是调节对象的时滞。
大多数情况下,时滞对可实现的调节回路性能引起负面影响。为了当存在时滞时也保障闭环调节回路的稳定表现,必须在应用经典的调节器时明显减缓其动态。尝试加速控制表现可能导致不期望的振荡甚至不稳定的表现。
用于改善调节回路表现的可行性方案能够在于,应用轨迹调节来替代经典的调节器,其中借助于调节对象的模型来计算匹配于调节参量的所期望的曲线的控制参量曲线。轨迹跟踪调节器在调节回路运行时承担的任务是,调节轨迹和实际调节参量之间的偏差。因为对此需要的计算可能有繁重的计算量,所以其通常离线地进行。这不利地导致在调节回路运行时仅提供预先计算的轨迹。
现在,上述问题的更好解决方案在于,使用模型跟踪调节对象作为调节装置。在此,借助于实际过程的模型作为调节对象来进行模拟并且在预控制部中利用主调节器进行调节。因为在对调节对象的模拟中不会出现干扰和偏差,所以能够利用主调节器精确地预设所期望的控制表现。借助基于对调节对象的模拟的预控制部,在线地生成调节参量的轨迹和控制参量匹配于此的轨迹。因此,相对于前述轨迹跟踪调节器,模型跟踪调节器的优点在于不需要先前计算的轨迹。另一方面,借助于跟踪调节器来调节在线生成的调节参量的轨迹与实际在调节对象中检测的调节参量实际值之间的偏差。在预控制部中计算的控制参量部分和通过跟踪调节器确定的控制参量部分之和作为控制参量被连接到调节对象上。经由布置在预控制部中的主调节器的设计,预设了表征控制表现的调节参量曲线和控制参量曲线的轨迹。利用跟踪调节器能够尽可能独立地调整干扰表现。因此,有利地,能够尽可能相互独立地预设控制表现和干扰参量表现。此外,两个调节器能够被有利地实施为经典的调节器,从而所使用的调节器类型对于应用者来说通常已经是实际已知的。
例如EP 0 520 233 A2披露了,如何能够识别调节对象模型的参数并据此对经典的PID调节器进行参数化。然而与经典的PID调节器相反,在模型跟踪调节对象中必须对相互作用的两个调节器以及一个模型进行参数化。因此,具有这种结构的参数化不是普通的并要求一些调节技术的专业知识。因此,尽管具有上述的优点,该模型跟踪调节对象的结构迄今为止很少被采用在方法或过程技术设备中。
发明内容
本发明的目的在于,提供一种确定用于调节对象的调节装置的参数的装置和方法,通过该装置和方法简化了模型跟踪调节器作为调节装置的应用,其中,尽可能自动化地实现调节装置的参数的得出和确定,从而能够使操作者在不具备特殊的调节技术知识的情况下进行参数化。
为了实现该目的,用于确定开头所述类型的调节装置的参数的新型装置具有权利要求1所述的特征。在从属权利要求中描述了本发明的改进方案,在权利要求8中描述了一种用于确定参数的方法,在权利要求9中描述了一种用于执行该方法的计算机程序并且在权利要求10中描述了一种相应的计算机程序产品。
为了确定用于调节对象的调节装置的参数,首先得出用于调节对象的模拟模型。能够评估“历史的”数据库以识别合适的模型结构和其参数,该数据库是在调节对象的之前的运行中在设备中检测到并且存储的,或者能够使用的可行性方案在于,例如通过提供阶跃形式的控制参量曲线来主动地激励调节对象。模拟模型的确定例如能够借助于从前面提到的EP 0520 233A2中披露的方法来实现。
所识别的模拟模型能够在控制装置的预控制部中被用作调节对象的模型,该控制装置设计为模型跟踪调节器。基于模型,对预控制部中的主调节器进行参数化以及对跟踪调节器进行参数化。在此,能够应用相互不同的基于模型的设计方法。对设计为P或PD调节器的主调节器参数化以获得良好的控制表现,对设计为PI或PID调节器的跟踪调节器参数化以获得良好的干扰表现。在选择合适的基于模型的设计方法时,能够分别参考已知的方法。例如,能够借助于绝对值最优来设计主调节器并且借助于对称最优来设计跟踪调节器,其中,例如以30度预设相位余量。这样参数化的模型跟踪调节器大体上已经显示出了相对于单个的、经典调节器明显改善的表现。
根据本发明的一个特别有利的设计方案,预控制部中的主调节器布置在位于预控制部中的模型调节回路的反馈中。在实际中,额定值的变化通常以阶跃形式进行。这引起了对位于预控制部中的模型调节回路的阶跃激励。如果该阶跃直接在位于正向分支中的PD调节器上,那么阶跃的微分就导致由调节器输出最大的控制参量值。相对地,如果PD调节器位于反馈中,则优点在于,阶跃形式的额定值改变先由调节对象的模拟模型过滤再被引导到PD调节器上。因此通常,通过将主调节器布置在反馈中能够实现,模型调节回路的控制参量更少地位于其控制参量界限中。
之前根据基于模型的设计方法而确定的调节装置的参量能够引起具有超调的调节表现,根据应用情况该超调可能是不期望的。此外,几乎不能够在实际中排除的模型错误能够造成控制表现恶化,因为跟踪调节器在该情况下也对调节装置的控制表现产生影响。根据本发明的一个特别有利的改进方案,能够执行对调节装置的参数的额外优化,其中,超调和模型不确定性这两个方面包含了专有的含义。为了进行优化而选择一质量标准,在其中优选地不仅考虑控制表现、还考虑干扰表现。合适的质量标准例如是调节对象上的二次调节错误和控制参量的平方之和。附加地在需要的情况下,在质量标准中包含有用于超调的最大值以及干扰偏移的最大值。
为了根据对调节的过程的模拟来计算质量标准而在预控制部中应用所识别的模型(接下来也被称为标准模型)。如果其也用于模拟过程,那么就会完全失去模型不确定性的影响。因此建立模型族,其成员在其动态表现、例如上升时间和/或静态表现、即静态增益上与标准模型不同。在此,关于各个模型变体之间的偏差的合适量的信息能够根据过程变量的历史数据得出,或者在为了过程识别而执行阶跃激励的情况中,从利用多个相互连续的阶跃激励的数据来得出。如果不存在这样的数据,那么就能够由操作者通过输入到操作装置中来预设识别的过程模型的不确定性,或者能够利用例如在百分之五和百分之十之间的默认值工作。为了计算质量标准,现在执行模拟计算,其中用于模拟被调节的过程分别采用模型族的不同成员。最后,整体质量标准作为从各个模拟计算得出的质量标准之和而被得出。为质量标准的优化提供了不同的优化算法。在调节装置的实际的试验中比较三种方法:有效集法、SQP法以及内点法。在此,内点法被证实为最适于优化的,因为其能够处理之后详细阐述的优化的附加条件,例如对闭合的调节回路的最小时间常数的预设、最小衰减或相位余量。
在实践中,在基于调节错误平方的优化中可能出现问题,这导致了闭合调节回路具有较差衰减和因此导致波动表现。为了规避该问题,能够作为用于优化的附加条件而预设用于闭合调节回路、即用于由调节装置调节的调节对象的最小衰减。最小衰减例如选择为d=0.3。在复数平面内,这对应于由两个向量界定的范围之外的极点,这两个向量分别相对于负实轴围成72.5度的角度。当然,根据应用情况,其他的衰减值也能够是有利的,并且被预设作为附加条件。
如已经介绍中描述的那样,调节对象中的时滞可能对于调节装置来说是具体的挑战。在调节对象具有时滞的情况下,能够有利地采用具有自动确定所需要的参数的模型跟踪调节装置。为了考虑时滞,在预控制部中应用的调节对象的标准模型能够划分成无时滞的子模型和时滞模型,它们以串联的方式连接在线性子模型的后面。在预控制部的模型调节回路中,无时滞的子模型的输出信号被反馈,而连接在后的时滞模型的输出信号作为预设额定值被引导到跟踪调节器上。因此,在调节对象具有时滞的情况中,也能够以特别有利的方式将新的调节装置与良好的控制表现和良好的干扰表现相结合。
在调节对象具有时滞的情况中,通过确定复数平面(也被称为S平面)中的极点的可靠区域,先前描述的最小衰减的预设失去了其有效性。因此,在调节对象具有时滞的情况下,有利地以最小相位余量的预设来补充调节装置的参数确定,例如能够以30度的值预设该最小相位余量。
将调节装置设计为模型跟踪调节器导致了在实施时要被克服的额外困难。数字的采样调节(即通过在计算单元上运行的调节程序实现的调节)通常以预设的、确定的采样时间运行,其遵循调节对象的动态或由调节装置调节的调节对象的动态。借助于预控制部、即主调节回路中的PD调节器,调节的过程的动态通常能够相对于未调节的过程明显地提高。
理想的PD调节器的传递函数R(s)为:
R(s)=K(1+TDs),
其中,K为调节器增益,并且TD为抑制时间。
因为这样的理想的PD调节器在实际中不能够实施,所以为其传递函数补充实际极以及实际时间常数TR。因此,实际的PD调节器的传递函数为:
该实际时间常数TR通常选取得非常小,例如为抑制时间的五分之一。在闭合的调节回路中,通常调节对象的动态通过调节而被提高,从而就在应用实际的PD调节器时通常也得出闭合调节回路的非常快的动态以及非常小的时间常数。由此造成的非常快的动态效果在阶跃响应中大概几乎看不到并且也被称为非主要的。然而能够出现的情况是,预控制部中的最快的时间常数小于采样时间的两倍。因此违反了奈奎斯特定理并且主调节回路的模拟能够在数字上变得不稳定。在预控制部中使用P调节器的情况中,这样的表现在原则上也是可能的,使用具有快速的时间常数的PD调节器然而额外地提高了这样的表现出现的概率。因为在大多数情况下不利的是,进一步减小调节的采样时间直到其对于实际过程调节所必要的,所以根据本发明的一个特别有利的设计方案,例如引入闭合的调节回路的最小时间常数的下限作为优化的附加条件,该下限为采样时间的两倍。
例如能够借助于过程控制系统的工程工具或者有利地在用于基于云的设备监视的软件环境中,实施对调节装置的参数的确定,该调节装置设计为模型跟踪调节器。这样的软件环境例如是西门子公司的基于数据的远程服务“Control Performance Analytics(控制性能分析)”。客户设备中的数据借助于软件代理收集、聚合并且发送到西门子服务运营中心,在该中心中数据被存储在远程服务计算机上。在那里借助于各种“数据分析”软件应用半自动地评估数据。在需要时,为远程服务专门训练的专业人士能够为在该数据基础上高效率地工作。数据分析和调节优化的结果能够在远程服务计算机的显示器上显示和/或在共享点上提供,从而使其能够由最终用户(即自动化过程工艺设备的操作者)例如在浏览器上进行观察。如果新的参数化的调节装置与在设备中已经存在的调节比较之后得出其对于使用者来说是有利的,那么能够提供给他们新的调节装置的购买和使用。
因此优选地,用于确定调节装置的参数的装置和方法以软件形式或软件/硬件组合的方式实施,该调节装置设计为模型跟踪调节器,从而本发明也涉及一种具有能由计算机执行的程序代码指令的计算机程序,该程序代码指令用于执行在合适的计算单元上实施该方法。关于此点,本发明还涉及一种计算机程序产品,、特别是数据载体或存储介质,其具有能由计算机执行的这样的计算机程序。这样的计算机程序例如能够存在于自动化的过程工艺设备的管理系统的存储器中或者在其中加载,从而在运行设备时自动地执行用于确定参数的方法,或者计算机程序能够在基于云地确定参数时在远程服务计算机的存储器中存在或者能在其中装载。此外,计算机程序也能够在与管理系统和远程服务计算机连接的计算机中存在,其经由网络与两个其它的系统通信。
附图说明
接下来根据示出了本发明的实施例的附图详细阐述本发明以及设计方案和优点。
在此示出:
图1示出具有用于确定参数的装置的调节对象的框图;
图2示出具有设计为模型跟踪调节器的调节装置的调节回路;以及
图3示出在应用各种调节器类型时的调节参量的时间曲线。
具体实施方式
根据图1,具有调节装置2的调节对象1形成了需要优化表现的自动化的过程工艺设备的一部分。调节对象1例如是反应器的温度调节装置,该反应器被工艺介质填充。反应器经由壳体被加热,该壳体与用于其加热的单独的水循环连接。水被电的直通式加热器加热并且被泵送回壳体中以加热工艺介质。过程变量“反应器中的温度”能够被测量作为调节参量y。输送给直通式加热器的电热功率作为控制参量u由调节装置2生成,该调节装置用于将温度调节到由操作单元3预设的额定值w。此外,由操作单元3借助于控制信号s能够选择调节装置2的结构,并且能够为在此确定的调节类型配置相应要求的参数p。这能够自动化地或与操作者4的输入相对应地进行。特别地,借助于控制信号s能选择模型跟踪调节器作为调节装置2的调节类型,其参数由装置5自动地确定,并且通过在操作单元3上显示而提供给操作者4以用于选择性地传输给调节装置2。用于确定调节装置2的参数p的装置5具有数据存储器6,在其中存储有作为调节对象1的输入信号的控制参量u的曲线,并且存储有作为调节对象1的输出信号调节参量y的曲线。在此,例如能够是历史的过程数据,其是在设备的先前运行中为过程变量“电热功率”或为过程变量“反应器中的温度”检测的,并且分别作为时间的数据序列存储,该数据序列与在测量窗口中得到的测量值对应。同样地,在存储器6中存储的数据能够是调节对象2的输入和输出信号的曲线,它们是通过对调节对象1的主动激励得到的,例如阶跃形式的激励,以更好地识别调节对象1的模拟模型。评估装置7根据在数据存储器6中存储的调节对象1的输入和输出信号来识别合适的模拟模型的结构及其参数。此外,在此得到的模拟模型的基础上以及在考虑操作者4的各种预设v的情况下,通过评估装置7来确定参数p,这些预设例如是在参数优化时要考虑的附加条件。用于确定调节装置1的参数的装置5例如能够通过管理系统的工程工具或通过基于云的设备监视的远程服务计算机实施。
图2示出了调节装置8的结构,当选择模型跟踪调节器作为调节装置2(图1)的调节器类型时得到该调节装置。调节对象1、控制参量u、调节参量y和额定值w已经根据图1阐述过。在模型跟踪调节器的预控制部9中,利用调节对象1的无时滞的子模型10和布置在反馈中的主调节器11形成模型调节回路。在无时滞的子模型10之后连接的时滞模型12形成了用于具有时滞的调节对象1的模拟模型的另一个组成部分。在预控制部9,无时滞的子模型10的输出信号被反馈,从而使得调节对象1的时滞不影响位于预控制部9中的调节回路。在该实施例的预控制部9中,应用PD调节器作为主调节器。因为额定值w通常以阶跃形式改变,所以常常在预控制部9中得出对模型调节回路的阶跃形式的激励。如果主调节器11与所示的实施例不同地布置在模型调节回路的正向分支中,那么阶跃就直接影响PD调节器并且阶跃的微分导致了调节输出端的最大控制参量。然而原则上,主调节器的这样的布置也同样是可行的。相应地,反馈中的主调节器11的所示的布置的优点在于,在以阶跃形式激励模型调节回路时通过无时滞的子模型10过滤的阶跃作用到主调节器11上。这有利地引起,主调节器11明显非常少见地运行到其控制参量界限中。
通常在调节器中应用的I部分的任务是,在出现恒定的干扰时保也障稳定的精度,从而调节这样的干扰并且调节参量随后再次对应于预设的额定值。因为在模型调节回路中可能不出现干扰,所以能够放弃主调节器11中的I部分。利用没有I部分的主调节器11能够以有利的方式在闭合的模型调节回路中实现更好的动态。在完全去掉I部分时,模型调节回路往往仍然不是静态准确的,并且得到模型调节回路的静态增益不是一。为了补偿该效果,在模型调节回路之前连接有P环节(即乘法环节)作为预滤波器13,其具有作为系数的模型调节回路的静态增益的倒值。当模型调节回路具有静态增益1时,或当主调节器如上所述可选地布置在正向分支中而不是在反馈中时,能够省略该措施。
因为调节对象1是时滞的对象,调节对象1的借助于装置5(图1)识别的模拟模型被分成无时滞的子模型10和时滞模型12。根据作为基于模型的第一设计方法的绝对值最优控制来进行对主调节器11的第一参数化。利用作为基于模型的第二设计方法的对称最优控制来执行PI或PID调节器的设计,该PI或PID调节器作为跟踪调节器14连接在调节装置8中的预控制部9之后。在此,为了得到调节回路的所期望的稳定性而预设有例如30度的相位余量。因为在预控制部9中实施的模拟中能够不出现干扰和偏差,所以能够利用主调节器11精确地预设所期望的控制表现。从模拟在线地、即在调节过程生成第一轨迹y_Traj以及第二轨迹u_Traj,其中,第一轨迹作为用于跟踪调节器14的额定值预设,第二轨迹根据干扰参量接入的类型而被接入在跟踪调节器13之后。因此,将控制参量的在模型调节回路中生成的轨迹u_Traj和通过跟踪调节器14生成的控制参量之和作为控制参量u接入到调节对象1上。经由轨迹y_Traj和u_Traj的设计来预设控制表现。实际上,能够与其不相关地以有利的方式利用跟踪调节器14来调整干扰表现。
与之前描述的绝对值最优控制和对称最优控制不同,当然也能够可替换地采用其它已知的基于模型的设计方法,以用于参数化主调节器11或跟踪调节器14。
根据一个或多个基于模型的设计方法对调节装置8的进行第一参数化,已经显示出了比仅应用经典调节器的调节装置明显更好的表现。额外的措施有利于进一步改善调节表现。如果在数据存储器6(图1)中存在调节对象的多个阶跃响应的数据,那么对它们相互进行比较以识别过程。通常能够假设,不总是精确地显示出调节对象的相同表现。如下的模型识别为调节对象1的模拟模型,其使得所有的阶跃响应的映射尽可能好,并且在本申请中称为标准模型。在调节对象具有时滞的情况下,该标准模型被划分成无时滞的子模型10和时滞模型12。要不然就省略时滞模型。对整个模型跟踪调节回路进行模拟以进行另外的优化,其中,标准模型经过小幅修改被用作为调节对象2的模型。也就是说,在该模拟中模型跟踪调节回路中的实际调节对象1也相应地由模型替换。对于不同的模拟过程,应用模型族的通过对标准模型进行置换而得到的成员。模型族对此包含如下的成员,它们的传递函数尽可能对应于数据存储器6(图1)中存储的识别数据的差异。为了确定合适的对应范围(Abbildungsbereich),根据识别数据来确定尽可能快的和最慢的时间常数以及最大的和最小的、可能的静态增益。这些差异根据下表相互置换,从而得出四种元素(参见行2至5)作为模型族的成员。
附加地,根据上表的行1的无变化的标准模型被应用为第一族成员。在行6中作为模型族中最后的成员而实施的模型对应于标准模型,在该标准模型附加有与此串联的PT1环节,其时间常数比标准模型的主要时间常数小5倍。这样快速的动态在调节对象2的阶跃响应中几乎不能被识别,并且因此在过程识别的步骤中在大多数情况下不被识别,然而其对闭合的调节回路的表现有影响。该实际情况与模型族的最后的成员一起考虑,该最后的成员被列在表格的行6中。
作为该方法过程的实例应考虑PT3标准模型,其具有传递函数
该标准模型产生了上面的表格中列出的模型族。
如果仅存在少数用于识别调节对象1的模拟模型的参数的阶跃响应,那么通过将时间常数和增益的改变预设为例如5%的方式,启发式地创建变体。
为了优化调节装置8,在每个模拟过程都计算质量标准的值,其中,该值作为来自调节错误的平方和控制参量的平方之和进行计算,从而在质量标准中不仅包含了控制表现、也包含了干扰表现。附加地,考虑最大超调和最大干扰偏移。最后,得出作为质量标准的值之和的整体质量标准,这些质量标准的值是对各个模拟过程获得的。借助于内点算法进行优化。调节回路的最小衰减被预设为用于优化的附加条件。因为调节对象1具有时滞,所以这有利地是通过为用于闭合的调节回路的相位余量预设30度的最小值来实现的。
为了说明因此获得的调节装置的优点,在根据图3的时间图表中示出了:在应用PI调节器作为常规的调节器时在调节装置中得到的调节参量的曲线20、在应用自动参数化模型跟踪调节对象时的调节参量的曲线21、在预控制部中计算的轨迹y_Traj的曲线22以及额定值的曲线23。横坐标是单位为s(秒)的时间t,纵坐标是单位为℃的温度T。所示的曲线20…23是利用作为调节对象的上面已经描述的反应器的温度调节装置得到的。借助于多个阶跃激励来识别反应器的动态表现,并且由偏差生成模型族。利用该模型族,根据上述方法实施模型自动地对跟踪调节装置进行参数化。对在时间点t=0s温度额定值从70℃到72℃的阶跃形式改变进行评估。在大约30s的时滞之后,温度的曲线20、21和22作为调节参量全部上升。直到72℃的新额定温度达到0.1K的精度所度过的时间,在具有曲线20的经典PI调节器中为大约300s。相对地,模型跟踪调节对象明显更快地调节到新的额定值并且已经在大约198s之后达到公差范围。以有利的方式,对于设计为模型跟踪调节器的调节装置的参数化来说不要求特殊的专业知识,从而能由每个应用者实施参数化。实际的调节参量y的曲线21和基于模拟模型计算的轨迹y_Traj之间的明显可见的偏差显示出,标准模型和实际调节对象之间存在可察觉的偏差。然而,这些借助于在应用模型族的情况下的优化来考虑,并且因此几乎不对闭合的调节回路产生负面的影响。
在所述的应用实例中变得明确的是,模型跟踪调节器的自动的参数化能特别有利地应用于
-具有小动态并且应当明显加速其控制表现的过程,
-期望快速的干扰调节与无超调的并且不过慢的控制表现的过程,和
-具有时滞的过程,因为在预控制部的调节回路中不影响时滞并且因此能够明显改善控制表现。
因为在该实施例的预控制部中采用了PD调节器,所以能够相对于经典的PI调节器显著地改善控制表现,并且也能够相对于经典的PID调节器作为调节装置明显改善控制表现。

Claims (10)

1.一种确定用于调节对象(1)的调节装置(2、8)的参数的装置,其中,所述装置(5)设计用于,根据所述调节对象(1)的被检测的输入和输出信号(u;y)来得出用于所述调节对象(1)的模拟模型(10、12)并且识别所述模拟模型的参数,其特征在于,
所述调节装置(8)设计为模型跟踪调节器,所述模型跟踪调节器具有用于所述调节对象(1)的跟踪调节器(14)和预控制部(9),所述预控制部具有主调节器(11)和用于所述调节对象(1)的所述模拟模型(10、12),并且用于确定参数的所述装置(5)设计用于,
-基于所得出的所述模拟模型(10、12)和所述模拟模型的被识别的参数来确定所述预控制部(9)中的所述模拟模型(10、12),根据基于模型的第一设计方法和所得出的所述模拟模型(10、12)确定作为所述预控制部(9)中的所述主调节器(11)的P调节器或PD调节器的参数,并且
-根据基于模型的第二设计方法和所得出的所述模拟模型(10、12)来确定作为用于所述调节对象(1)的所述跟踪调节器(14)的PI调节器或PID调节器的参数。
2.根据权利要求1所述的装置,其特征在于,
所述预控制部(9)中的所述主调节器(11)布置在模型调节回路的反馈中,
额定值(w)经由作为预滤波器(13)的乘法环节被引导至减法环节上,以形成借助于所述预滤波器(13)缩放的额定值与所述主调节器(11)的输出信号的差,
所形成的差被引导至所述预控制部(9)中的所述模拟模型(10、12)上,并且
用于确定参数的所述装置(5)还设计用于,根据所述基于模型的第一设计方法和所述模拟模型来确定所述预滤波器(13)的乘法因数以获得所述调节装置(8)的良好控制表现。
3.根据权利要求1或2所述的装置,其特征在于,
用于确定参数的所述装置(5)还设计用于,
基于所得出的所述模拟模型(10、12)和所述模拟模型的被识别的参数来生成模型族,所述模型族的成员在至少一个参数上是不同的,
根据使用所述模型族中的不同成员来代替所述调节对象(1)进行的模拟,分别计算质量标准的值,作为整体质量标准计算所述质量标准的值之和,并且
对所述整体质量标准进行优化以确定所述调节器(11、14)的优化的参数。
4.根据权利要求3所述的装置,其特征在于,
用于确定参数的所述装置(5)还设计用于,在优化所述整体质量标准时考虑由所述调节装置(8)调节的所述调节对象(1)的预设或能预设的最小衰减作为附加条件。
5.根据权利要求1至3中任一项所述的装置,其特征在于,
在所述调节对象(1)具有时滞的情况下,所述模拟模型由线性子模型(10)和在所述线性子模型之后连接的时滞模型(12)串联构成,并且在所述预控制部(9)的模型调节回路中反馈所述线性子模型(10)的输出信号。
6.根据权利要求5所述的装置,其特征在于,
用于确定参数的所述装置(5)还设计用于,在优化整体质量标准时考虑由所述调节装置(8)调节的所述调节对象(1)的预设或能预设的最小相位余量作为附加条件。
7.根据前述权利要求中任一项所述的装置,其特征在于,
用于确定参数的所述装置(5)还设计用于,在优化整体质量标准时考虑将由所述调节装置(8)调节的所述调节对象(1)的时间常数的下限作为附加条件,所述下限为双倍采样时间。
8.一种确定用于调节对象(1)的调节装置(8)的参数的方法,其中,根据所述调节对象(1)的被检测的输入信号和输出信号(u;y)得出所述调节对象(1)的模拟模型(10、12)并且识别所述模拟模型的参数,其特征在于,所述方法具有以下步骤,
-将所述调节装置(8)设计为模型跟踪调节器,所述模型跟踪调节器具有用于所述调节对象(1)的跟踪调节器(14)和预控制部(9),所述预控制部具有主调节器(11)和用于所述调节对象(1)的所述模拟模型(10、12),
-基于所得出的所述模拟模型(10、12)和所述模拟模型的被识别的参数来确定所述预控制部(9)中的所述模拟模型(10、12),
-根据基于模型的第一设计方法和所得出的所述模拟模型(10、12)来确定作为所述预控制部(9)中的所述主调节器(11)的P调节器或PD调节器的参数,并且
-根据基于模型的第二设计方法和所得出的所述模拟模型(10、12)来确定作为用于所述调节对象(1)的所述跟踪调节器(14)的PI调节器或PID调节器的参数。
9.一种计算机程序,具有能通过计算机实施的程序代码指令,所述程序代码指令用于当所述计算机程序在计算机上实施时,实现根据权利要求8所述的方法。
10.一种计算机程序产品,特别是数据载体或存储介质,具有能由计算机实施的根据权利要求9所述的计算机程序。
CN201780071248.9A 2016-11-17 2017-11-16 用于确定调节装置的参数的装置和方法 Active CN109964180B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16199391.0 2016-11-17
EP16199391.0A EP3324254A1 (de) 2016-11-17 2016-11-17 Einrichtung und verfahren zur bestimmung der parameter einer regeleinrichtung
PCT/EP2017/079482 WO2018091592A1 (de) 2016-11-17 2017-11-16 Einrichtung und verfahren zur bestimmung der parameter einer regeleinrichtung

Publications (2)

Publication Number Publication Date
CN109964180A true CN109964180A (zh) 2019-07-02
CN109964180B CN109964180B (zh) 2022-06-14

Family

ID=57460309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780071248.9A Active CN109964180B (zh) 2016-11-17 2017-11-16 用于确定调节装置的参数的装置和方法

Country Status (4)

Country Link
US (1) US11086277B2 (zh)
EP (2) EP3324254A1 (zh)
CN (1) CN109964180B (zh)
WO (1) WO2018091592A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018215089A1 (de) * 2018-09-05 2020-03-05 Siemens Aktiengesellschaft Automatisierte Parametrierung eines Reglers
CN113672002B (zh) * 2021-08-23 2022-03-22 九江学院 一种基于名义模型的冷原子重力仪主动隔振控制方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520233A2 (de) * 1991-06-24 1992-12-30 Siemens Aktiengesellschaft Einrichtung zur Identifikation einer Übertragungsstrecke
CN1233331A (zh) * 1996-10-08 1999-10-27 西门子公司 用于识别或预先计算随时间变化工业过程的过程参数的方法和装置
WO2001098845A1 (en) * 2000-06-20 2001-12-27 Fisher-Rosemount Systems, Inc. Adaptive feedback/feedforward pid controller
US20030012408A1 (en) * 2001-05-09 2003-01-16 Jean-Yves Bouguet Method and system using a data-driven model for monocular face tracking
CN1392459A (zh) * 2001-06-16 2003-01-22 Abb研究有限公司 起动或停车技术过程生产工艺技术部件的控制、调节方法及调节装置
WO2003014847A2 (en) * 2001-08-08 2003-02-20 Fpt Industrie S.P.A. Method for automatically correcting the systematic errors in measurement and manufacturing machines and apparatus for implementing the method
EP1311913A1 (en) * 2000-04-06 2003-05-21 ABB Automation Inc. System and methodology for adaptive, linear model predictive control based on rigorous, nonlinear process model
US20050096793A1 (en) * 2003-10-30 2005-05-05 Kabushiki Kaisha Toshiba Reference model tracking control system and method
US20050256663A1 (en) * 2002-09-25 2005-11-17 Susumu Fujimori Test system and control method thereof
EP1780392A2 (en) * 2001-07-25 2007-05-02 Honda Giken Kogyo Kabushiki Kaisha Control apparatus, control method and engine control unit
CN1965332A (zh) * 2004-02-20 2007-05-16 西门子共同研究公司 利用鲁棒信息融合来基于多模组成部分地跟踪对象的方法和系统
US20070271224A1 (en) * 2003-11-27 2007-11-22 Hassane Essafi Method for Indexing and Identifying Multimedia Documents
CN101339406A (zh) * 2007-07-04 2009-01-07 中国科学院自动化研究所 一种自适应控制器及方法
EP2062111A2 (fr) * 1999-04-21 2009-05-27 Jean-Marie Billiotte PROCEDE ET AUTOMATISME DE REGULATION D'UNE PRODUCTION INDUSTRIELLE ETAGEE AVEC MAITRISE D'UN STRESS ENCHAINE ALEATOIRE, APPLICATION AU CONTROLE DU BRUIT ET DU RISQUE VaR D'UNE CHAMBRE DE COMPENSATION
KR20090091290A (ko) * 2006-10-09 2009-08-27 지멘스 악티엔게젤샤프트 열간 압연 시이트 또는 열간 압연 스트립의 가공을 위한 판형 압연 트레인을 제어하는 동안 열간 압연 시이트 또는 열간 압연 스트립의 물리적 상태를 모니터링하는 방법
CN101604447A (zh) * 2009-07-09 2009-12-16 上海交通大学 无标记人体运动捕捉方法
WO2011120552A1 (de) * 2010-03-29 2011-10-06 Siemens Aktiengesellschaft Engineering-werkzeug und verfahren zur parametrierung eines modellbasierten prädiktivreglers
CN102269971A (zh) * 2010-06-01 2011-12-07 嘉善东菱电子科技有限公司 基于模型跟踪的自适应伺服控制器
US20130035914A1 (en) * 2010-04-26 2013-02-07 Mitsubishi Electric Corporation Servo controller
CN104281055A (zh) * 2014-03-18 2015-01-14 江南大学 一种连续搅拌聚丙烯反应釜温度的自抗扰控制方法
CN104991444A (zh) * 2015-07-30 2015-10-21 湖南工业大学 基于跟踪微分器的非线性pid自适应控制方法
CN105522578A (zh) * 2015-12-29 2016-04-27 深圳市汇川技术股份有限公司 面向零力控制的模拟转矩控制方法以及系统
CN105540829A (zh) * 2014-10-23 2016-05-04 西门子公司 用于污水处理设施的调节设备和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8868221B1 (en) * 2008-08-22 2014-10-21 Marvell International Ltd. Adaptive neural net feed forward system and method for adaptive control of mechanical systems
US8412357B2 (en) * 2010-05-10 2013-04-02 Johnson Controls Technology Company Process control systems and methods having learning features
JP5726328B2 (ja) * 2011-11-22 2015-05-27 三菱電機株式会社 モータ制御装置
CN104466681B (zh) * 2014-11-25 2018-12-25 武汉光迅科技股份有限公司 一种光纤放大器的串级控制系统
JP6519457B2 (ja) * 2015-11-30 2019-05-29 オムロン株式会社 補正装置、補正装置の制御方法、情報処理プログラム、および記録媒体
EP3232282B1 (de) * 2016-04-12 2018-09-12 Siemens Aktiengesellschaft Diagnoseeinrichtung und verfahren zur überwachung des be-triebs einer technischen anlage

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520233A2 (de) * 1991-06-24 1992-12-30 Siemens Aktiengesellschaft Einrichtung zur Identifikation einer Übertragungsstrecke
CN1233331A (zh) * 1996-10-08 1999-10-27 西门子公司 用于识别或预先计算随时间变化工业过程的过程参数的方法和装置
EP2062111A2 (fr) * 1999-04-21 2009-05-27 Jean-Marie Billiotte PROCEDE ET AUTOMATISME DE REGULATION D'UNE PRODUCTION INDUSTRIELLE ETAGEE AVEC MAITRISE D'UN STRESS ENCHAINE ALEATOIRE, APPLICATION AU CONTROLE DU BRUIT ET DU RISQUE VaR D'UNE CHAMBRE DE COMPENSATION
EP1311913A1 (en) * 2000-04-06 2003-05-21 ABB Automation Inc. System and methodology for adaptive, linear model predictive control based on rigorous, nonlinear process model
WO2001098845A1 (en) * 2000-06-20 2001-12-27 Fisher-Rosemount Systems, Inc. Adaptive feedback/feedforward pid controller
US20030012408A1 (en) * 2001-05-09 2003-01-16 Jean-Yves Bouguet Method and system using a data-driven model for monocular face tracking
CN1392459A (zh) * 2001-06-16 2003-01-22 Abb研究有限公司 起动或停车技术过程生产工艺技术部件的控制、调节方法及调节装置
EP1780392A2 (en) * 2001-07-25 2007-05-02 Honda Giken Kogyo Kabushiki Kaisha Control apparatus, control method and engine control unit
WO2003014847A2 (en) * 2001-08-08 2003-02-20 Fpt Industrie S.P.A. Method for automatically correcting the systematic errors in measurement and manufacturing machines and apparatus for implementing the method
US20050256663A1 (en) * 2002-09-25 2005-11-17 Susumu Fujimori Test system and control method thereof
US20050096793A1 (en) * 2003-10-30 2005-05-05 Kabushiki Kaisha Toshiba Reference model tracking control system and method
US20070271224A1 (en) * 2003-11-27 2007-11-22 Hassane Essafi Method for Indexing and Identifying Multimedia Documents
CN1965332A (zh) * 2004-02-20 2007-05-16 西门子共同研究公司 利用鲁棒信息融合来基于多模组成部分地跟踪对象的方法和系统
KR20090091290A (ko) * 2006-10-09 2009-08-27 지멘스 악티엔게젤샤프트 열간 압연 시이트 또는 열간 압연 스트립의 가공을 위한 판형 압연 트레인을 제어하는 동안 열간 압연 시이트 또는 열간 압연 스트립의 물리적 상태를 모니터링하는 방법
CN101339406A (zh) * 2007-07-04 2009-01-07 中国科学院自动化研究所 一种自适应控制器及方法
CN101604447A (zh) * 2009-07-09 2009-12-16 上海交通大学 无标记人体运动捕捉方法
WO2011120552A1 (de) * 2010-03-29 2011-10-06 Siemens Aktiengesellschaft Engineering-werkzeug und verfahren zur parametrierung eines modellbasierten prädiktivreglers
US20130035914A1 (en) * 2010-04-26 2013-02-07 Mitsubishi Electric Corporation Servo controller
CN102269971A (zh) * 2010-06-01 2011-12-07 嘉善东菱电子科技有限公司 基于模型跟踪的自适应伺服控制器
CN104281055A (zh) * 2014-03-18 2015-01-14 江南大学 一种连续搅拌聚丙烯反应釜温度的自抗扰控制方法
CN105540829A (zh) * 2014-10-23 2016-05-04 西门子公司 用于污水处理设施的调节设备和方法
CN104991444A (zh) * 2015-07-30 2015-10-21 湖南工业大学 基于跟踪微分器的非线性pid自适应控制方法
CN105522578A (zh) * 2015-12-29 2016-04-27 深圳市汇川技术股份有限公司 面向零力控制的模拟转矩控制方法以及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MITSUAK ISHITOBI 等: "Nonlinear adaptive model following control for a 3-DOF tandem-rotor model helicopter", 《CONTROL ENGINEERING PRACTICE》 *
MITSUAKI ISHITOBI 等: "Nonlinear Model Following Control with Parameter Identification for a 3-DOF Model Helicopter", 《2007 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS》 *
刘兴堂 等: "多模自适应控制在空中飞行模拟器中应用", 《系统仿真学报》 *
张晓军 等: "规范模型追踪系统控制器参数的一设计方法", 《第三届中国青年运筹与管理学者大会论文集》 *

Also Published As

Publication number Publication date
EP3542229A1 (de) 2019-09-25
CN109964180B (zh) 2022-06-14
US11086277B2 (en) 2021-08-10
EP3324254A1 (de) 2018-05-23
EP3542229B1 (de) 2020-09-30
WO2018091592A1 (de) 2018-05-24
US20200064787A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US6826521B1 (en) System and methodology and adaptive, linear model predictive control based on rigorous, nonlinear process model
US6901300B2 (en) Adaptation of advanced process control blocks in response to variable process delay
EP2788827B1 (en) Apparatus and methods for non-invasive closed loop step testing using a tunable trade-off factor
JP3949164B2 (ja) 非線形プロセスを制御するためのフィードバック法
CN1940780B (zh) 过程控制系统中的在线自适应模型预测控制
KR20220005620A (ko) 프로세스의 개선된 매칭을 위한 매칭 프로세스 제어기들
JP2017524205A (ja) 無線プロセス信号を使用するモデル予測制御
EP2728425B1 (en) Online integration of model-based optimization and model-less control
CN106537267B (zh) 用于化学处理工业和其它工业的鲁棒控制设计方案
US4770841A (en) Methods and apparatus for dynamic systems control
CN108121215B (zh) 基于全回路重构仿真的工业控制回路性能评价方法及装置
GB2394313A (en) Integrated model predictive control and optimization within a process control system
JP7289924B2 (ja) 最適化緩和を制御可能とした非干渉性の閉ループステップ試験の装置および方法
US3781533A (en) Constraint control system for optimizing performance of process units
EP2588924A1 (en) Tracking simulation method
Nowak et al. Robust tuning of a first order reduced Active Disturbance Rejection Controller
CN104765271A (zh) 用于可变参数和相关程序产品的控制器系统
CN109964180A (zh) 用于确定调节装置的参数的装置和方法
CA2519783A1 (en) Methods and articles for detecting, verifying, and repairing matrix collinearity
CN112821420A (zh) 一种基于XGBoost的ASFR模型中动态阻尼因子、多维频率指标的预测方法及系统
EP2753991B1 (en) Arrangement and method for system identification of an industrial plant or process
Repnikova et al. Improving control accuracy in multi-connected digital systems
Martínez et al. A hybrid approach for the initialization of tracking simulation systems
Marchetti et al. Batch process optimization via run-to-run constraints adaptation
Jäschke Invariants for optimal operation of process systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant