CN109962117B - 一种多重响应波段的半导体探测器 - Google Patents

一种多重响应波段的半导体探测器 Download PDF

Info

Publication number
CN109962117B
CN109962117B CN201910284569.8A CN201910284569A CN109962117B CN 109962117 B CN109962117 B CN 109962117B CN 201910284569 A CN201910284569 A CN 201910284569A CN 109962117 B CN109962117 B CN 109962117B
Authority
CN
China
Prior art keywords
nano
gan
column
sic
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910284569.8A
Other languages
English (en)
Other versions
CN109962117A (zh
Inventor
郑清团
王星河
叶芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi Anfu Electronic Co ltd
Original Assignee
Linyi Anfu Electronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi Anfu Electronic Co ltd filed Critical Linyi Anfu Electronic Co ltd
Priority to CN201910284569.8A priority Critical patent/CN109962117B/zh
Publication of CN109962117A publication Critical patent/CN109962117A/zh
Application granted granted Critical
Publication of CN109962117B publication Critical patent/CN109962117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种多重响应波段的半导体探测器,依次包括衬底、第一导电型氮化物半导体,InxGa1‑xN/GaN量子阱,V‑pits,第一Au纳米颗粒,Ga2O3/ZnO核壳结构纳米柱,第二Au纳米颗粒,SiC纳米柱核层,(Ga2O3)y/(GaN)z纳米柱壳层,第三Au纳米颗粒,第二导电型Si基板,其特征在于所述InxGa1‑xN/GaN量子阱的V‑pits上方依次沉积第一Au纳米颗粒,Ga2O3/ZnO,第二Au纳米颗粒,SiC纳米柱核层,(Ga2O3)y/(GaN)z纳米柱壳层,第三Au纳米颗粒。

Description

一种多重响应波段的半导体探测器
技术领域
本发明涉及半导体光电探测器领域,特别是一种多重响应波段的半导体探测器。
背景技术
第三代化合物半导体具有较宽的带隙、电子迁移率高、击穿场强大、抗辐射性能强等优点,适合于制作发光二极管、激光器、探测器等光电子器件。带隙为3.3eV的碳化硅SiC、3.4eV的氮化镓GaN、6.2eV的氮化铝AlN以及带隙为4.2~4.9eV的氮化镓Ga2O3具有宽的带隙以及良好的化学性质,适合于制作紫外光电二极管和日盲探测器。
发明内容
本发明公开一种多重响应波段的半导体探测器,依次包括衬底、第一导电型氮化物半导体,InxGa1-xN/GaN量子阱,V-pits,第一Au纳米颗粒,Ga2O3/ZnO核壳结构纳米柱,第二Au纳米颗粒,SiC纳米柱核层,(Ga2O3)y/(GaN)z纳米柱壳层,第三Au纳米颗粒,第二导电型Si基板,其特征在于所述InxGa1-xN/GaN量子阱的V-pits上方依次沉积第一Au纳米颗粒,Ga2O3/ZnO核壳结构纳米柱,第二Au纳米颗粒,SiC纳米柱核层,(Ga2O3)y/(GaN)z纳米柱壳层,第三Au纳米颗粒。
进一步地,所述InxGa1-xN/GaN量子阱形成第一探测响应波段,所述第一探测响应波段为420~480nm;所述第一、第二Au纳米颗粒夹着Ga2O3/ZnO核壳结构纳米柱组成Au/Ga2O3/ZnO/Au三明治纳米结构,形成第二探测响应波段,所述第二探测响应波段为520~560nm;所述第二、第三Au纳米颗粒夹着SiC纳米柱核层/(Ga2O3)y/(GaN)z纳米柱壳层的核壳纳米柱组成Au/SiC-(Ga2O3)y/(GaN)z /Au三明治纳米结构,与第二导电型Si基板组成Au/SiC-(Ga2O3)y/(GaN)z/Au/Si,形成第三响应波段,所述第三响应波段为360~400 nm,从而在将多重响应波段集成在单个探测器的外延结构中。
进一步地,所述第一Au纳米颗粒/Ga2O3/ZnO核壳结构纳米柱/第二Au纳米颗粒/SiC纳米柱核层/(Ga2O3)y/(GaN)z纳米柱壳层/第三Au纳米颗粒形成复合纳米结构的击穿场强大于8 Mv/cm,该强大击穿强场的复合纳米结构填充于位错线顶端,提升该多重响应波段的半导体探测器的抗高压能力和ESD能力。
进一步地,所述V-pits的尺寸为50~500 nm,所述第一、第二、第三Au纳米颗粒的尺寸为50~500 nm,所述Ga2O3/ZnO核壳结构纳米柱的尺寸为50~500 nm,所述SiC纳米柱核层的尺寸为50~500 nm,所述GaN纳米柱壳层的尺寸为50~500 nm。
进一步地,所述V-pits的深度为D,所述第一Au纳米颗粒/Ga2O3纳米柱/第二Au纳米颗粒/SiC纳米柱核层/(Ga2O3)y/(GaN)z纳米柱壳层/第三Au纳米颗粒形成复合纳米结构的高度为H,其中H≤D,即复合纳米结构被包覆在V-pits里。
进一步地,所述第一、第二和第三Au纳米颗粒的形状为球状或半球状或椭球状。
进一步地,所述InxGa1-xN/GaN量子阱的In组分为x,其中0≤x≤1。
进一步地,所述Ga2O3/ZnO核壳结构纳米柱的核层为Ga2O3,壳层为ZnO,或者核层为ZnO,壳层为Ga2O3;所述Ga2O3/ZnO核壳结构纳米柱亦可为周期结构,即(Ga2O3/ZnO)m,周期m≥1。
进一步地,所述Ga2O3/ZnO核壳结构纳米柱的Ga2O3结构包括α-Ga2O3,β-Ga2O3,γ-Ga2O3,δ-Ga2O3的任意一种或任意组合。
进一步地,所述Ga2O3/ZnO核壳结构纳米柱的Ga2O3结构包括α-Ga2O3,β-Ga2O3,γ-Ga2O3,δ-Ga2O3的任意组合包括二元混合结构α-Ga2O3/β-Ga2O3,α-Ga2O3/β-Ga2O3,α-Ga2O3/γ-Ga2O3,α-Ga2O3/δ-Ga2O3,β-Ga2O3/γ-Ga2O3,β-Ga2O3/δ-Ga2O3,γ-Ga2O3/δ-Ga2O3,以及三元混合结构α-Ga2O3/β-Ga2O3/γ-Ga2O3,α-Ga2O3/β-Ga2O3/δ-Ga2O3,β-Ga2O3/γ-Ga2O3/δ-Ga2O3,以及四元混合结构α-Ga2O3/β-Ga2O3/γ-Ga2O3/δ-Ga2O3
进一步地,所述(Ga2O3)y/(GaN)z纳米柱壳层为周期性结构,所述周期y≥0,z≥0。
进一步地,所述第二导电型Si基板组成Au/SiC-(Ga2O3)y/(GaN)z/Au/Si的结构包括Au/SiC-(Ga2O3)y/(GaN)z/Au/Si(当y>0,z>0时),Au/SiC-(GaN)z/Au/Si(当y=0时),Au/SiC-(Ga2O3)y/Au/Si(当z=0时),以及Au/SiC/Au/Si(当y=0,z=0时)。
附图说明
图1为本发明一种多重响应波段的半导体探测器的结构示意图。
图2为本发明一种多重响应波段的半导体探测器的效果示意图。
图示说明:100:衬底;101:第一导电型氮化物半导体,102:InxGa1-xN/GaN量子阱,103:V-pits,104a:第一Au纳米颗粒,105:Ga2O3/ZnO核壳结构纳米柱,104b:第二Au纳米颗粒,106:SiC纳米柱核层,107:(Ga2O3)y/(GaN)z纳米柱壳层,104c:第三Au纳米颗粒,108:第二导电型Si基板,109:位错线。
具体实施方式
实施例
本发明公开一种多重响应波段的半导体探测器,如图1所示,依次包括衬底100、第一导电型氮化物半导体101,InxGa1-xN/GaN量子阱102,V-pits 103,第一Au纳米颗粒104a,Ga2O3/ZnO核壳结构纳米柱105,第二Au纳米颗粒104b,SiC纳米柱核层106,(Ga2O3)y/(GaN)z纳米柱壳层107,第三Au纳米颗粒104c,第二导电型Si基板108,其特征在于所述InxGa1-xN/GaN量子阱102的V-pits 103上方依次沉积第一Au纳米颗粒104a,Ga2O3/ZnO核壳结构纳米柱105,第二Au纳米颗粒104b,SiC纳米柱核106层,(Ga2O3)y/(GaN)z纳米柱壳层107,第三Au纳米颗粒104c。
所述InxGa1-xN/GaN量子阱102形成第一探测响应波段,所述第一探测响应波段为420~480nm;所述第一Au纳米颗粒104a、第二Au纳米颗粒104b夹着Ga2O3/ZnO核壳结构纳米柱105组成Au/Ga2O3/ZnO/Au三明治纳米结构,形成第二探测响应波段,所述第二探测响应波段为520~560 nm;所述第二Au纳米颗粒104b、第三Au纳米颗粒104c夹着SiC纳米柱核层106/(Ga2O3)y/(GaN)z纳米柱壳层107的核壳纳米柱组成Au/SiC-(Ga2O3)y/(GaN)z/Au三明治纳米结构,与第二导电型Si基板108组成Au/SiC-(Ga2O3)y/(GaN)z/Au/Si,形成第三响应波段,所述第三响应波段为360~400 nm,从而在将多重响应波段集成在单个探测器的外延结构中,如图2所示。
所述第一Au纳米颗粒104a/Ga2O3/ZnO核壳结构纳米柱105/第二Au纳米颗粒104b/SiC纳米柱核层106/(Ga2O3)y/(GaN)z纳米柱壳层107/第三Au纳米颗粒104c形成复合纳米结构的击穿场强大于8 Mv/cm,该强大击穿强场的复合纳米结构填充于位错线109顶端,提升该多重响应波段的半导体探测器的抗高压能力和ESD能力。
所述V-pits 103的尺寸为50~500 nm,所述第一Au纳米颗粒104a、第二Au纳米颗粒104b、第三Au纳米颗粒104c的尺寸为50~500 nm,所述Ga2O3纳米柱105的尺寸为50~500 nm,所述SiC纳米柱核层106的尺寸为50~500 nm,所述(Ga2O3)y/(GaN)z纳米柱壳层107的尺寸为50~500 nm。
所述V-pits 103的深度为D,所述第一Au纳米颗粒104a/Ga2O3/ZnO核壳结构纳米柱105/第二Au纳米颗粒104b/SiC纳米柱核层106/(Ga2O3)y/(GaN)z纳米柱壳层107/第三Au纳米颗粒104c形成复合纳米结构的高度为H,其中H≤D,即复合纳米结构被包覆在V-pits里。
所述第一Au纳米颗粒104a、第二Au纳米颗粒104b、第三Au纳米颗粒104c的形状为球状或半球状或椭球状。
所述InxGa1-xN/GaN量子阱103的In组分为x,其中0≤x≤1。
所述Ga2O3/ZnO核壳结构纳米柱105的核层为Ga2O3,壳层为ZnO,或者核层为ZnO,壳层为Ga2O3;所述Ga2O3/ZnO核壳结构纳米柱105亦可为周期结构,即(Ga2O3/ZnO)m,周期m≥1。
所述Ga2O3/ZnO核壳结构纳米柱105的Ga2O3结构包括α-Ga2O3,β-Ga2O3,γ-Ga2O3,δ-Ga2O3的任意一种或任意组合。
所述Ga2O3/ZnO核壳结构纳米柱105的Ga2O3结构包括α-Ga2O3,β-Ga2O3,γ-Ga2O3,δ-Ga2O3的任意组合包括二元混合结构α-Ga2O3/β-Ga2O3,α-Ga2O3/β-Ga2O3,α-Ga2O3/γ-Ga2O3,α-Ga2O3/δ-Ga2O3,β-Ga2O3/γ-Ga2O3,β-Ga2O3/δ-Ga2O3,γ-Ga2O3/δ-Ga2O3,以及三元混合结构α-Ga2O3/β-Ga2O3/γ-Ga2O3,α-Ga2O3/β-Ga2O3/δ-Ga2O3,β-Ga2O3/γ-Ga2O3/δ-Ga2O3,以及四元混合结构α-Ga2O3/β-Ga2O3/γ-Ga2O3/δ-Ga2O3
所述(Ga2O3)y/(GaN)z纳米柱壳层107为周期性结构,所述周期y≥0,z≥0。
所述第二导电型Si基板组成Au/SiC-(Ga2O3)y/(GaN)z/Au/Si的结构包括Au/SiC-(Ga2O3)y/(GaN)z/Au/Si(当y>0,z>0时),Au/SiC-(GaN)z/Au/Si(当y=0时),Au/SiC-(Ga2O3)y/Au/Si(当z=0时),以及Au/SiC/Au/Si(当y=0,z=0时)。
以上实施方式仅用于说明本发明,而并非用于限定本发明,本领域的技术人员,在不脱离本发明的精神和范围的情况下,可以对本发明做出各种修饰和变动,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应视权利要求书范围限定。

Claims (9)

1.一种多重响应波段的半导体探测器,依次包括衬底、第一导电型氮化物半导体,InxGa1-xN/GaN量子阱,V-pits,第一Au纳米颗粒,Ga2O3/ZnO核壳结构纳米柱,第二Au纳米颗粒,SiC纳米柱核层,(Ga2O3)y/(GaN)z纳米柱壳层,第三Au纳米颗粒,第二导电型Si基板,其特征在于所述InxGa1-xN/GaN量子阱的V-pits上方依次沉积第一Au纳米颗粒,Ga2O3/ZnO核壳结构纳米柱,第二Au纳米颗粒,SiC纳米柱核层,(Ga2O3)y/(GaN)z纳米柱壳层,第三Au纳米颗粒;所述(Ga2O3)y/(GaN)z纳米柱壳层为周期性结构,周期y≥0,z≥0;所述InxGa1-xN/GaN量子阱的In组分为x,其中0≤x≤1。
2.根据权利要求1所述一种多重响应波段的半导体探测器,其特征在于:所述InxGa1-xN/GaN量子阱形成第一探测响应波段,所述第一探测响应波段为420~480nm;所述第一、第二Au纳米颗粒夹着Ga2O3/ZnO核壳结构纳米柱组成Au/Ga2O3/ZnO/Au三明治纳米结构,形成第二探测响应波段,所述第二探测响应波段为520~560 nm;所述第二、第三Au纳米颗粒夹着SiC纳米柱核层/(Ga2O3)y/(GaN)z纳米柱壳层的核壳纳米柱组成Au/SiC-(Ga2O3)y/(GaN)z/Au三明治纳米结构,与第二导电型Si基板组成Au/SiC-(Ga2O3)y/(GaN)z/Au/Si,形成第三响应波段,所述第三响应波段为360~400 nm,从而在将多重响应波段集成在单个探测器的外延结构中。
3.根据权利要求1所述一种多重响应波段的半导体探测器,其特征在于:所述第一Au纳米颗粒/Ga2O3/ZnO核壳结构纳米柱/第二Au纳米颗粒/SiC纳米柱核层/(Ga2O3)y/(GaN)z纳米柱壳层/第三Au纳米颗粒形成复合纳米结构的击穿场强大于8 Mv/cm,该复合纳米结构填充于位错线顶端,提升该多重响应波段的半导体探测器的抗高压能力和ESD能力;所述V-pits的尺寸为50~500 nm,所述第一、第二、第三Au纳米颗粒的尺寸为50~500 nm,所述Ga2O3/ZnO核壳结构纳米柱的尺寸为50~500 nm,所述SiC纳米柱核层的尺寸为50~500 nm,所述(Ga2O3)y/(GaN)z纳米柱壳层的尺寸为50~500 nm。
4.根据权利要求1所述一种多重响应波段的半导体探测器,其特征在于:所述V-pits的深度为D,所述第一Au纳米颗粒/Ga2O3/ZnO核壳结构纳米柱/第二Au纳米颗粒/SiC纳米柱核层/(Ga2O3)y/(GaN)z纳米柱壳层/第三Au纳米颗粒形成复合纳米结构的高度为H,其中H≤D,即复合纳米结构被包覆在V-pits里。
5.根据权利要求1所述一种多重响应波段的半导体探测器,其特征在于:所述第一、第二和第三Au纳米颗粒的形状为球状或半球状或椭球状。
6.根据权利要求1所述一种多重响应波段的半导体探测器,其特征在于:所述Ga2O3/ZnO核壳结构纳米柱的核层为Ga2O3,壳层为ZnO,或者核层为ZnO,壳层为Ga2O3;所述Ga2O3/ZnO核壳结构纳米柱亦可为周期结构,即(Ga2O3/ZnO)m,周期m≥1。
7.根据权利要求1所述一种多重响应波段的半导体探测器,其特征在于:所述Ga2O3/ZnO核壳结构纳米柱的Ga2O3结构包括α-Ga2O3,β-Ga2O3,γ-Ga2O3,δ-Ga2O3的任意一种或任意组合。
8.根据权利要求1所述一种多重响应波段的半导体探测器,其特征在于:所述Ga2O3/ZnO核壳结构纳米柱的Ga2O3结构包括α-Ga2O3,β-Ga2O3,γ-Ga2O3,δ-Ga2O3的任意组合,包括二元混合结构α-Ga2O3/β-Ga2O3,α-Ga2O3/γ-Ga2O3,α-Ga2O3/δ-Ga2O3,β-Ga2O3/γ-Ga2O3,β-Ga2O3/δ-Ga2O3,γ-Ga2O3/δ-Ga2O3,以及三元混合结构α-Ga2O3/β-Ga2O3/γ-Ga2O3,α-Ga2O3/β-Ga2O3/δ-Ga2O3,β-Ga2O3/γ-Ga2O3/δ-Ga2O3,以及四元混合结构α-Ga2O3/β-Ga2O3/γ-Ga2O3/δ-Ga2O3。
9.根据权利要求1或2所述一种多重响应波段的半导体探测器,其特征在于:所述第二导电型Si基板组成Au/SiC-(Ga2O3)y/(GaN)z/Au/Si的结构包括:当y>0,z>0时,Au/SiC-(Ga2O3)y/(GaN)z/Au/Si;当y=0时,Au/SiC-(GaN)z/Au/Si;当z=0时,Au/SiC-(Ga2O3)y/Au/Si;当y=0,z=0时,Au/SiC/Au/Si。
CN201910284569.8A 2019-04-10 2019-04-10 一种多重响应波段的半导体探测器 Active CN109962117B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910284569.8A CN109962117B (zh) 2019-04-10 2019-04-10 一种多重响应波段的半导体探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910284569.8A CN109962117B (zh) 2019-04-10 2019-04-10 一种多重响应波段的半导体探测器

Publications (2)

Publication Number Publication Date
CN109962117A CN109962117A (zh) 2019-07-02
CN109962117B true CN109962117B (zh) 2023-03-28

Family

ID=67025838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910284569.8A Active CN109962117B (zh) 2019-04-10 2019-04-10 一种多重响应波段的半导体探测器

Country Status (1)

Country Link
CN (1) CN109962117B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122925A1 (de) * 1991-07-11 1993-01-21 Fraunhofer Ges Forschung Optisches spektrometer
EP2495358A1 (en) * 2011-03-02 2012-09-05 Soitec Methods of forming III/V semiconductor materials, and semiconductor structures formed using such methods
KR20150055454A (ko) * 2013-11-13 2015-05-21 한국과학기술원 양자광 소자 및 이의 제조방법
KR20160087160A (ko) * 2015-01-13 2016-07-21 울산과학기술원 GaN 기반 다공성 피라미드 광전극 및 그 제조방법
CN106848013A (zh) * 2017-02-14 2017-06-13 郑锦坚 一种半导体发光二极管及其制作方法
CN108598227A (zh) * 2018-04-25 2018-09-28 黎明职业大学 一种半导体白光发光二极管
CN109599467A (zh) * 2018-12-01 2019-04-09 王星河 一种半导体发光元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122925A1 (de) * 1991-07-11 1993-01-21 Fraunhofer Ges Forschung Optisches spektrometer
EP2495358A1 (en) * 2011-03-02 2012-09-05 Soitec Methods of forming III/V semiconductor materials, and semiconductor structures formed using such methods
KR20150055454A (ko) * 2013-11-13 2015-05-21 한국과학기술원 양자광 소자 및 이의 제조방법
KR20160087160A (ko) * 2015-01-13 2016-07-21 울산과학기술원 GaN 기반 다공성 피라미드 광전극 및 그 제조방법
CN106848013A (zh) * 2017-02-14 2017-06-13 郑锦坚 一种半导体发光二极管及其制作方法
CN108598227A (zh) * 2018-04-25 2018-09-28 黎明职业大学 一种半导体白光发光二极管
CN109599467A (zh) * 2018-12-01 2019-04-09 王星河 一种半导体发光元件

Also Published As

Publication number Publication date
CN109962117A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
Tsakalakos Nanostructures for photovoltaics
US10205054B2 (en) III-nitride nanowire LED with strain modified surface active region and method of making thereof
US7714317B2 (en) Assembly of ordered carbon shells on semiconducting nanomaterials
US8791359B2 (en) High efficiency photovoltaic cells
US9117954B2 (en) High efficiency nanostructured photovoltaic device manufacturing
US20160268483A1 (en) Quantum dots with multiple insulator coatings
US20070272297A1 (en) Disordered silicon nanocomposites for photovoltaics, solar cells and light emitting devices
US9567514B2 (en) Composition of, and method for forming, a semiconductor structure with multiple insulator coatings
KR20090117881A (ko) 광전지 및 광전지를 제조하는 방법
Xu et al. Recent progress on infrared photodetectors based on InAs and InAsSb nanowires
JP6055619B2 (ja) 太陽電池
CN110137279B (zh) 一种具有金属和石墨烯插入层的紫外探测器
US9276159B2 (en) Superlattice structure
CN109962117B (zh) 一种多重响应波段的半导体探测器
CN109713077B (zh) 一种多重响应波段的半导体探测器
Hsiao et al. High sensitivity ZnO nanorod-based flexible photodetectors enhanced by CdSe/ZnS core-shell quantum dots
Micha et al. Nanostructured materials for high efficiency solar cells
Yao et al. Enhanced photoelectric properties of n-ZnO NWs/p-Si heterojunction LEDs by inserting an insulating MgO layer using sol–gel method
Karageorgou et al. Ultraviolet emission from low resistance Cu2SnS3/SnO2 and CuInS2/Sn: In2O3 nanowires
Chen et al. Noise properties of ZnO nanowalls deposited using rapid thermal evaporation technology
Park et al. Synthesis of hybrid nanowires comprising uniaxial and coaxial InGaN/GaN MQWs with a nano-cap
Roqan et al. High-performance DUV-C Solar-Blind n-ZnO Quantum Dot/p-CuO Micro-pyramid Photodetector Arrays
Meng et al. Relationship between photoluminescence properties of ZnO/CuO core/shell nanowires and the thickness of CuO shells
Mamat et al. Ultra-violet sensing characteristic and field emission properties of vertically aligned aluminum doped zinc oxide nanorod arrays
Li et al. Synthesis and photoluminescence properties of CdSe-Ag2Se and CdSe-Ag coaxial hetero-nanotube arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221214

Address after: No. 3, Guanzhuang Road, High Efficiency and Intensive Demonstration Park, Linyi Economic and Technological Development Zone, Linyi City, Shandong Province, 276000

Applicant after: LINYI ANFU ELECTRONIC CO.,LTD.

Address before: 362343 Guoqian second industrial zone, Shijing Town, Nan'an City, Quanzhou City, Fujian Province

Applicant before: FUJIAN NAN'AN QINGXIN STONE CO.,LTD.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant