CN109948223A - 一种基于拉格朗日插值的脉冲幅度获取方法 - Google Patents

一种基于拉格朗日插值的脉冲幅度获取方法 Download PDF

Info

Publication number
CN109948223A
CN109948223A CN201910186102.XA CN201910186102A CN109948223A CN 109948223 A CN109948223 A CN 109948223A CN 201910186102 A CN201910186102 A CN 201910186102A CN 109948223 A CN109948223 A CN 109948223A
Authority
CN
China
Prior art keywords
peak
amplitude
lagrange
interpolation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910186102.XA
Other languages
English (en)
Other versions
CN109948223B (zh
Inventor
黄土琛
付琪镔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201910186102.XA priority Critical patent/CN109948223B/zh
Publication of CN109948223A publication Critical patent/CN109948223A/zh
Application granted granted Critical
Publication of CN109948223B publication Critical patent/CN109948223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

本发明公开了一种基于拉格朗日插值的脉冲幅度获取方法,采样脉冲信号波形峰值附近多个连续数据点的时刻和幅度,从幅度最大的第n个数据点开始,以Yn作为起始峰值Ypeak,向前指定时间间隔Δt1,代入所述拉格朗日插值函数式,得到(Tpeak‑Δt1)时刻数据点的幅度Yt‑;向后指定时间间隔Δt2,代入所述拉格朗日插值函数式,得到(Tpeak+Δt2)时刻数据点的幅度Yt+;比较Yt‑、Ypeak和Yt+之间的大小:若Ypeak最大,则获得脉冲信号波形的峰值;由于采用了拉格朗日插值算法重建脉冲信号幅度,只需采用低速率的模数转换器,使得电路的结构更加简单,既不需要采用峰值保持电路等额外的硬件电路,也不需要搭配可编程逻辑器件或者数字信号处理器来进行数据处理,成本低、功耗小。

Description

一种基于拉格朗日插值的脉冲幅度获取方法
技术领域
本发明涉及核探测技术领域,尤其涉及的是一种基于拉格朗日插值的脉冲幅度获取方法。
背景技术
脉冲幅度获取是核探测技术里最常见的测量需求,用于实现该功能的仪器称为多道脉冲分析器。
目前,脉冲幅度获取手段主要有以下两种方案:
1)模拟化方案:首先采用峰值保持电路对脉冲信号进行峰位的保持和展宽,然后利用低速率的模数转换器(ADC)对峰位电平进行采样,采样完成后再对峰值保持电路进行复位,以便响应下一个脉冲;
2)数字化方案:直接采用高速率的ADC直接采样脉冲信号,然后对采样数据进行数字化的处理获得幅度信息,例如寻找最大值,复杂的方案如梯形滤波等。
模拟化方案的优点是由于采用了峰值保持电路,峰位电平已被锁住,因此不需要高速率的ADC;但缺点是需要采用额外的硬件电路,例如峰值保持电路。
数字化方案的优点是可直接对信号进行采样,不需要模拟方案中的峰值保持电路;但缺点是需要高速的ADC,成本高、功耗大;而且,高速ADC还需搭配可编程逻辑器件(FPGA)或者数字信号处理器(DSP)来进行数据处理,导致电路结构变得复杂。
因此,现有技术尚有待改进和发展。
发明内容
为解决上述技术问题,本发明提供一种基于拉格朗日插值的脉冲幅度获取方法,电路结构更加简单,不需要采用额外的硬件电路,且成本低、功耗小。
本发明的技术方案如下:一种基于拉格朗日插值的脉冲幅度获取方法,包括以下步骤:
A、采样脉冲信号波形峰值附近至少3个连续数据点的时刻和幅度,且这些数据点的幅度根据其时间顺序同时满足从小到大再到小的关系;
B、将所述数据点的时刻和幅度代入拉格朗日插值函数式中,得到新的时刻T对应的幅度Y(T);
C、从幅度最大的第n个数据点开始,以Yn作为起始峰值Ypeak ,向前指定时间间隔Δt1,代入所述拉格朗日插值函数式,得到(Tpeak-Δt1)时刻数据点的幅度Yt- ;同时,向后指定时间间隔Δt2,代入所述拉格朗日插值函数式,得到(Tpeak+Δt2)时刻数据点的幅度Yt+
D、比较Yt- 、Ypeak和Yt+ 之间的大小:若Ypeak最大,则获得脉冲信号波形的峰值并结束;若Ypeak <Yt- ,则进入步骤E之后结束;若Yt- <Ypeak <Yt+ ,则进入步骤F之后结束;
E、以Yt- 作为新的峰值Ypeak ,继续向前指定时间间隔Δt1,代入所述拉格朗日插值函数式,得到(Tpeak-Δt1)时刻数据点的幅度Yt- ,并比较Ypeak和Yt-的大小,直到当Ypeak ≥Yt-时,获得脉冲信号波形的峰值幅度;
F、以Yt+ 作为新的峰值Ypeak ,继续向后指定时间间隔Δt2,代入所述拉格朗日插值函数式,得到(Tpeak+Δt2)时刻数据点的幅度Yt+ ,并比较Ypeak和Yt+的大小,直到当Ypeak ≥Yt+时,获得脉冲信号波形的峰值。
所述的基于拉格朗日插值的脉冲幅度获取方法,其中:在所述步骤A中,采样脉冲信号波形峰值附近5个连续数据点的时间和幅度,且这5个数据点的幅度根据其时间顺序同时满足Yn-2<Yn-1…Yn-1≤Yn…Yn≥Yn+1…Yn+1>Yn+2 的关系式。
所述的基于拉格朗日插值的脉冲幅度获取方法,其中:所述指定时间间隔Δt1和Δt2相等,且均与采样率相关。
所述的基于拉格朗日插值的脉冲幅度获取方法,其中:对于2MHz采样率的ADC,重建采样率20MHz的数据序列,对脉冲信号波形峰值段进行拟合,指定时间间隔Δt1和Δt2均为50ns。
所述的基于拉格朗日插值的脉冲幅度获取方法,其中:所述脉冲信号波形为高斯滤波成形信号。
所述的基于拉格朗日插值的脉冲幅度获取方法,其中:所述高斯滤波成形信号采用CR-RC2成形电路输出,成形时间1.5μs。
本发明所提供的一种基于拉格朗日插值的脉冲幅度获取方法,由于采用了拉格朗日插值算法重建脉冲信号幅度,只需采用低速率的模数转换器,使得电路的结构更加简单,既不需要采用峰值保持电路等额外的硬件电路,也不需要搭配可编程逻辑器件或者数字信号处理器来进行数据处理,成本低、功耗小。
附图说明
图1是本发明基于拉格朗日插值的脉冲幅度获取方法实施例的流程图;
图2是本发明基于拉格朗日插值的脉冲幅度获取方法实施例的重建波形图;
图3是本发明基于拉格朗日插值的脉冲幅度获取方法实施例所用测试波形图;
图4是本发明没有经过任何插值处理的脉冲幅度谱图;
图5是本发明经过拉格朗日插值处理的脉冲幅度谱图。
具体实施方式
以下将结合附图,对本发明的具体实施方式和实施例加以详细说明,所描述的具体实施例仅用以解释本发明,并非用于限定本发明的具体实施方式。
如图1所示,图1是本发明基于拉格朗日插值的脉冲幅度获取方法实施例的流程图,本发明基于拉格朗日插值的脉冲幅度获取方法包括以下步骤:
步骤S110、找出脉冲信号波形峰值附近多个连续的数据点用来进行插值;以5个数据点为例,如果采样数据中有5个连续数据点的幅度根据其时间顺序同时满足Yn-2<Yn-1…Yn-1≤Yn…Yn≥Yn+1…Yn+1>Yn+2 的关系式,即这些数据点的幅度根据其时间顺序同时满足从小到大再到小的关系,就可以采用这5个数据点的时刻和幅度数据进行插值,其中,Yn代表采样数据中第n个数据点的幅度;
理论上讲,用于进行插值的数据点越多,插值重建的精度就越高,但是所需的运算时间也就越长,运算的时间与K2(K是用来插值的数据点个数)成正比关系,而且,随着数据点个数的增加,精度的提高程度也越来越不明显;因此,对于核探测里最常用的高斯滤波成形信号,选用5个数据点已能够满足插值重建的精度要求,而选用3个数据点或者4个数据点进行插值重建的结果则要稍差一点;
另外,在上面的关系式中,由于脉冲信号的波形都是从最大值(即峰位)处向两边递减的,因此不管采样时刻如何,总能在脉冲波形峰值左右找到5个满足上述关系式的数据点。
步骤S120、将这5个数据点的时刻和幅度数据代入拉格朗日插值函数式中,得到新的时刻T对应的幅度Y(T);其中,Interpolate()为拉格朗日插值函数,T为时间变量,k是用来插值的数据点个数,(T j Y j )表 示第j个数据点的时刻和幅度,T m 表示第m个数据点的时刻,0≤mkmj
从幅度最大的第n个数据点开始,以该数据点的幅度Yn作为起始峰值Ypeak ,向前指定时间间隔Δt1例如50ns,代入所述拉格朗日插值函数式,得到(Tpeak-Δt1)时刻数据点的幅度Yt-
同时,向后指定时间间隔Δt2例如50ns,代入所述拉格朗日插值函数式,得到(Tpeak+Δt2)时刻数据点的幅度Yt+
步骤S130、比较Yt- 、Ypeak和Yt+ 之间的大小,这里分成三种情况:
1)若Ypeak最大,即Ypeak ≥Yt+ 并且Ypeak ≥Yt- ,则获得脉冲信号波形的峰值并结束(即步骤S160);
2)若Ypeak <Yt- ,说明脉冲波形峰值在左侧,则进入步骤S140;
3)若Yt- <Ypeak <Yt+ ,说明脉冲波形峰值在右侧,则进入步骤S150。
步骤S140、以Yt- 作为新的峰值Ypeak ,继续向前指定时间间隔Δt1例如50ns,代入所述拉格朗日插值函数式,得到(Tpeak-Δt1)时刻数据点的幅度Yt- ;比较Ypeak和Yt-的大小,直到当Ypeak ≥Yt-时(即步骤S145),获得脉冲信号波形的峰值并结束(即步骤S160)。
步骤S150、以Yt+ 作为新的峰值Ypeak ,继续向后指定时间间隔Δt2例如50ns,代入所述拉格朗日插值函数式,得到(Tpeak+Δt2)时刻数据点的幅度Yt+ ,并比较Ypeak和Yt+的大小,直到当Ypeak ≥Yt+时(即步骤S155),获得脉冲信号波形的峰值并结束(即步骤S160)。
在本发明基于拉格朗日插值的脉冲幅度获取方法的优选实施方式中,以2MHz采样率的ADC为例,目前市面上的许多单片机的内置ADC都可达到该采样水平,采样时间间隔500ns,以核探测里最常用的高斯滤波成形信号作为测试信号,得到由2MHz采样信号点P1(即空心点)组成的原始信号波形s1(即实心线)图如图2所示,图2是本发明基于拉格朗日插值的脉冲幅度获取方法实施例的重建波形图,横坐标为时间Time,单位是μs,纵坐标为电压信号,单位mV,由图2可知,该测试信号波形的达峰时间约2μs,波形底部宽度约10μs,可以满足几十KHz计数率以下的测量需求;本实施例中将拉格朗日插值算法的数据间隔Δt1和Δt2均设定为50ns,即重建一个20MHz采样率的数据序列,并最终得到由拉格朗日插值的数据点(即实心点)组成的峰值位置处的波形S2(即点化线),显然所述指定时间间隔Δt1和Δt2均与采样率相关;不难看出,尽管采用了低速率的ADC,使得原始采样数据难以保证准确采样到峰值电平,但是经过拉格朗日插值算法之后,在不增加峰位保持电路等额外硬件电路的情况下,仍然可以准确地重建脉冲信号幅度,且成本低、功耗小。
最后,以核电子学里常用的CR-RC2成形电路为例,成形时间1.5μs,其输出波形如图3所示,图3是本发明基于拉格朗日插值的脉冲幅度获取方法实施例所用测试波形图,横坐标为时间,单位是μs,纵坐标为幅度,无单位;本实施例测试了10000个脉冲信号,对每个脉冲信号从随机位置开始采样,ADC采样频率2MHz,如果没有后续的拉格朗日插值处理,直接将采样最大值作为幅度,获得的幅度谱图如图4所示,图4是本发明没有经过任何插值处理的脉冲幅度谱图,横坐标为幅度,纵坐标为计数;而经过5点拉格朗日插值处理之后获得的幅度谱图如图5所示,图5是本发明经过拉格朗日插值处理的脉冲幅度谱图,横坐标为幅度,纵坐标为计数;可以看出,没有后续的任何插值处理或者不增加峰位保持电路,确实难以准确重建脉冲信号幅度,而经过后续的拉格朗日插值处理,即使不增加峰位保持电路,仍然可以准确地重建脉冲信号幅度,非常适合用于计数率要求不高的测试场合:采用低速率的ADC对信号直接进行采样,然后利用拉格朗日插值算法获取幅度信息。低速率的ADC采样,并不能保证可以准确采集到脉冲的峰值电平,但是经过拉格朗日插值算法之后,却可以很好地还原信号的幅度。
应当理解的是,以上所述仅为本发明的较佳实施例而已,并不足以限制本发明的技术方案,对本领域普通技术人员来说,在本发明的精神和原则之内,可以根据上述说明加以增减、替换、变换或改进,而所有这些增减、替换、变换或改进后的技术方案,都应属于本发明所附权利要求的保护范围。

Claims (6)

1.一种基于拉格朗日插值的脉冲幅度获取方法,其特征在于,包括以下步骤:
A、采样脉冲信号波形峰值附近至少3个连续数据点的时刻和幅度,且这些数据点的幅度根据其时间顺序同时满足从小到大再到小的关系;
B、将所述数据点的时刻和幅度代入拉格朗日插值函数式中,得到新的时刻T对应的幅度Y(T);
C、从幅度最大的第n个数据点开始,以Yn作为起始峰值Ypeak ,向前指定时间间隔Δt1,代入所述拉格朗日插值函数式,得到(Tpeak-Δt1)时刻数据点的幅度Yt- ;同时,向后指定时间间隔Δt2,代入所述拉格朗日插值函数式,得到(Tpeak+Δt2)时刻数据点的幅度Yt+
D、比较Yt- 、Ypeak和Yt+ 之间的大小:若Ypeak最大,则获得脉冲信号波形的峰值并结束;若Ypeak <Yt- ,则进入步骤E之后结束;若Yt- <Ypeak <Yt+ ,则进入步骤F之后结束;
E、以Yt- 作为新的峰值Ypeak ,继续向前指定时间间隔Δt1,代入所述拉格朗日插值函数式,得到(Tpeak-Δt1)时刻数据点的幅度Yt- ,并比较Ypeak和Yt-的大小,直到当Ypeak ≥Yt-时,获得脉冲信号波形的峰值;
F、以Yt+ 作为新的峰值Ypeak ,继续向后指定时间间隔Δt2,代入所述拉格朗日插值函数式,得到(Tpeak+Δt2)时刻数据点的幅度Yt+ ,并比较Ypeak和Yt+的大小,直到当Ypeak ≥Yt+时,获得脉冲信号波形的峰值。
2.根据权利要求1所述的基于拉格朗日插值的脉冲幅度获取方法,其特征在于:在所述步骤A中,采样脉冲信号波形峰值附近5个连续数据点的时间和幅度,且这5个数据点的幅度根据其时间顺序同时满足Yn-2<Yn-1…Yn-1≤Yn…Yn≥Yn+1…Yn+1>Yn+2 的关系式。
3.根据权利要求1所述的基于拉格朗日插值的脉冲幅度获取方法,其特征在于:所述指定时间间隔Δt1和Δt2相等,且均与采样率相关。
4.根据权利要求3所述的基于拉格朗日插值的脉冲幅度获取方法,其特征在于:对于2MHz采样率的ADC,重建采样率20MHz的数据序列,对脉冲信号波形峰值段进行拟合,指定时间间隔Δt1和Δt2均为50ns。
5.根据权利要求1所述的基于拉格朗日插值的脉冲幅度获取方法,其特征在于:所述脉冲信号波形为高斯滤波成形信号。
6.根据权利要求5所述的基于拉格朗日插值的脉冲幅度获取方法,其特征在于:所述高斯滤波成形信号采用CR-RC2成形电路输出,成形时间1.5μs。
CN201910186102.XA 2019-03-12 2019-03-12 一种基于拉格朗日插值的脉冲幅度获取方法 Active CN109948223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910186102.XA CN109948223B (zh) 2019-03-12 2019-03-12 一种基于拉格朗日插值的脉冲幅度获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910186102.XA CN109948223B (zh) 2019-03-12 2019-03-12 一种基于拉格朗日插值的脉冲幅度获取方法

Publications (2)

Publication Number Publication Date
CN109948223A true CN109948223A (zh) 2019-06-28
CN109948223B CN109948223B (zh) 2021-03-16

Family

ID=67009698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910186102.XA Active CN109948223B (zh) 2019-03-12 2019-03-12 一种基于拉格朗日插值的脉冲幅度获取方法

Country Status (1)

Country Link
CN (1) CN109948223B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051442A (zh) * 2020-08-05 2020-12-08 中电科仪器仪表有限公司 一种微波峰值功率测量中提高时间参数测量速度的方法
CN114124105A (zh) * 2021-12-10 2022-03-01 枫树谷(成都)科技有限责任公司 一种数字信号数据压缩、加密与解码方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546356A (zh) * 2009-05-14 2009-09-30 中国科学技术大学 光纤激光器脉冲整形系统仿真装置和方法
CN106353788A (zh) * 2016-09-29 2017-01-25 成都理工大学 模拟数字混合式脉冲幅度分析器及其分析技术
CN208580212U (zh) * 2018-07-16 2019-03-05 中山大学 一种可同时探测伽马和中子的能谱型个人辐射探测仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546356A (zh) * 2009-05-14 2009-09-30 中国科学技术大学 光纤激光器脉冲整形系统仿真装置和方法
CN106353788A (zh) * 2016-09-29 2017-01-25 成都理工大学 模拟数字混合式脉冲幅度分析器及其分析技术
CN208580212U (zh) * 2018-07-16 2019-03-05 中山大学 一种可同时探测伽马和中子的能谱型个人辐射探测仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周新志: "脉冲幅度信号获取系统", 《核电子学与探测技术》 *
黄土琛等: "SiPM 阵列作为闪烁体读出用于伽马谱仪的研究", 《第十八届全国核电子学与核探测技术学术年会》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051442A (zh) * 2020-08-05 2020-12-08 中电科仪器仪表有限公司 一种微波峰值功率测量中提高时间参数测量速度的方法
CN112051442B (zh) * 2020-08-05 2023-08-25 中电科思仪科技股份有限公司 一种微波峰值功率测量中提高时间参数测量速度的方法
CN114124105A (zh) * 2021-12-10 2022-03-01 枫树谷(成都)科技有限责任公司 一种数字信号数据压缩、加密与解码方法

Also Published As

Publication number Publication date
CN109948223B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US7254168B2 (en) Method for decomposing timing jitter on arbitrary serial data sequences
CN101051059A (zh) 波形压缩和显示
CN106556342B (zh) 一种基于fpga的光栅细分装置及方法
Arnold et al. TNT digital pulse processor
US6563902B2 (en) Energy dispersive X-ray analyzer
EP2690449B1 (en) Cross domain triggering in a test and measurement instrument
EP2291798A1 (en) Signal search in three dimensional bitmaps
US20060195277A1 (en) Method and apparatus for recording a real time signal
CN103901243B (zh) 一种具有高触发精度的示波器
CN109948223A (zh) 一种基于拉格朗日插值的脉冲幅度获取方法
CN109582176A (zh) 一种触摸屏抗噪声方法及装置
CN103713171A (zh) 一种具有延迟触发功能的示波器
CN106771582A (zh) 高频脉冲信号的测试方法及测试仪
CN108810431A (zh) 多通道低频cmos串行图像数据的训练方法
CN110672899A (zh) 一种用于数字示波器的眼图重构方法及存储介质
CN110887984B (zh) 一种支持眼图重构的数字示波器
CN113434006A (zh) 一种基于dds的高分辨率脉冲波形产生装置
EP1412764A1 (en) System and method for waveform processing
CN103869123B (zh) 一种具有脉宽测量功能的示波器
CN109067676B (zh) 一种卫星导航信号高精度时域性能评估方法
CN104794313B (zh) 一种获取待辨识系统频率响应函数的方法及装置
CN113377340B (zh) 一种具有分数阶微积分运算和显示功能的数字示波器
CN103675381A (zh) 一种具有周期触发功能的并行采样的示波器
CN111413725B (zh) 一种利用虚拟仪器技术实现γ-γ数字符合测量的系统及方法
D’Arco et al. A time base option for arbitrary selection of sample rate in digital storage oscilloscopes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant