CN109915127B - 一种基于d-d可控中子源的密度测量方法 - Google Patents

一种基于d-d可控中子源的密度测量方法 Download PDF

Info

Publication number
CN109915127B
CN109915127B CN201910271364.6A CN201910271364A CN109915127B CN 109915127 B CN109915127 B CN 109915127B CN 201910271364 A CN201910271364 A CN 201910271364A CN 109915127 B CN109915127 B CN 109915127B
Authority
CN
China
Prior art keywords
detector
far
neutron
gamma
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910271364.6A
Other languages
English (en)
Other versions
CN109915127A (zh
Inventor
张丽
于华伟
渠敬凯
刘宛晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201910271364.6A priority Critical patent/CN109915127B/zh
Publication of CN109915127A publication Critical patent/CN109915127A/zh
Application granted granted Critical
Publication of CN109915127B publication Critical patent/CN109915127B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明属于石油及天然气勘探技术领域,涉及一种基于D‑D可控中子源的密度测量方法,采用可控中子源和多探测器系统,利用脉冲和测量时序设计,记录不同位置处的伽马能谱和热中子能谱,研究不同地层条件下的近远俘获伽马计数比、近远热中子计数比与地层密度的关系;再通过现有谱解析和数据处理方法,从理论上确立地层密度的计算模型,将得到的密度计算值和参考值对比,其精度满足测量要求;利用脉冲中子源和多探测器组合实现地层密度测量,建立一套完整的D‑D可控源密度测量方法,对研制新一代脉冲中子—伽马密度测井仪并有效消除仪器中氚元素对人体和环境的危害具有重要意义,为非常规地层的安全勘探提供保障。

Description

一种基于D-D可控中子源的密度测量方法
技术领域:
本发明属于石油及天然气勘探技术领域,涉及一种基于D-D可控中子源的密度测量方法,利用D-D可控中子源计算地层密度进行测井。
背景技术:
近年来,可控中子源替代传统的化学放射源进行密度测井成为核测井发展的必然趋势。目前,可控源密度测井应用较多的是D-T可控中子源,并且针对D-T源密度测井,国内外研究者开展各种研究工作,并取得了一定的成果。
最近国内外出现的可控源密度测量的方法中,大多采用14Mev的D-T中子源,其测量原理是利用非弹伽马计数比计算地层密度,在CN 102518431 A中采用D-T中子源,用俘获伽马计数比校正地层含氢量的影响;由于D-T中子源具有寿命短(国内产品大约几十到300小时)、成本高、使用放射性氚靶存在潜在危险等缺陷。与D-T源相比,D-D中子源寿命长(超过1000小时)、成本低,而且由于不使用放射性氚气,安全性更高等优点。但是现有的D-D测地层密度的方法中,在CN 103513287 A中采用的是直流电方式进行密度测量;文献“D-D次生源计数对密度测量的影响”中只是从次生伽马计数的角度定性分析D-D可控源测量地层密度的可行性,文献“地层因素影响D-D次生γ源空间分布规律模拟研究与分析”中只是分析地层因素对D-D次生γ源的影响,并没有提出一整套的地层密度计算方案。因此,进行D-D可控中子源密度测量方法的模拟研究,建立一套完整的D-D可控源密度测量方法,对研制新一代脉冲中子—伽马密度测井仪并有效消除仪器中氚元素对人体和环境的危害具有重要意义,为页岩气等非常规地层的安全勘探提供保障。
发明内容:
本发明的目的在于解决传统密度测井的缺点,克服D-T可控中子源寿命短、成本高、使用放射性氚靶存在潜在危险等缺陷,设计一种基于D-D可控中子源采用脉冲时序设计测量地层密度的方法。
为了实现上述目的,本发明基于D-D可控中子源进行密度测量的具体过程为:
(1)采用可控中子源和多探测器系统,利用脉冲和测量时序设计,记录不同位置处的伽马能谱和热中子能谱,研究不同地层条件下的近远俘获伽马计数比、近远热中子计数比与地层密度的关系;
(2)通过现有谱解析和数据处理方法,从理论上确立地层密度的计算模型,将得到的密度计算值和参考值对比,其精度满足测量要求。
本发明所述可控中子源为产额为2×107n/s,脉冲宽度为40μs的D-D脉冲中子源。
本发明所述多探测器系统由近热中子探测器、近伽马探测器、远热中子探测器和远伽马探测器组成,其中近热中子探测器到可控中子源的距离为25-35cm,近伽马探测器到可控中子源的距离为35-45cm,远热中子探测器到可控中子源的距离为45-55cm,远伽马探测器到可控中子源的距离为55-65cm;近伽马探测器长度为5cm,远伽马探测器长度为10cm,近热中子探测器长度为5cm,远热中子探测器长度为10cm。
本发明所述可控中子源与近热中子探测器之间设有碳化硼材料制成的屏蔽体。
本发明所述近热中子探测器和远热中子探测器类型均为He-3,近伽马探测器和远伽马探测器类型均为NaI。
本发明所述的脉冲时序设计中一个单时序为0~100μs,包括T1和T2两个时间段,其中T1时间段时长为0~40μs,在此期间D-D中子发生器工作,为脉冲时间,T2时间段时长为40~100μs,D-D中子发生器停止工作,并在此期间记录俘获伽马能谱和热中子能谱,所述伽马和热中子能谱均为256道,重复100个周期。
本发明从记录的伽马能谱中获得近远俘获伽马总计数比值,利用所述热中子能谱中获得近远热中子能谱总计数比值,用于建立密度测量的计算公式:
y=a+bx1+cx1 2+dx1 3+elnx2+flnx2 2+glnx2 3+hlnx2 4
其中,y为地层密度的计算值,x1为近远伽马探测器比值,x2为近远热中子计数比值;a,b,c,d,e,f,g,h为常数,将地层密度计算值与密度参考值对比分析,满足密度测量的精度要求。
本发明与现有技术相比,利用脉冲中子源和多探测器组合实现地层密度测量,建立一套完整的D-D可控源密度测量方法,对研制新一代脉冲中子—伽马密度测井仪并有效消除仪器中氚元素对人体和环境的危害具有重要意义,为非常规地层的安全勘探提供保障。
附图说明:
图1为本发明的工作原理流程示意框图。
图2为本发明所述D-D中子源密度测量仪器结构剖面示意图。
图3为本发明实施例D-D可控源密度测量方法获取的计算值与参考值之间的对比关系。
具体实施方式:
下面通过实施例并结合附图对本发明作进一步说明。
实施例:
本实施例所述基于D-D可控中子源的密度测量过程为:
(1)D-D中子源密度测量仪器结构优化设计:在钻铤的一侧设置可控中子源,可控中子源为产额2×107n/s、脉冲宽度40μs的D-D脉冲中子源,近热中子探测器到D-D中子源的距离为25-35cm,近伽马探测器到D-D中子源的距离为35-45cm,近热中子探测器到D-D中子源的距离为45-55cm,远伽马探测器到D-D中子源的距离为55-65cm;可控中子源与近热中子探测器之间设有碳化硼材料制成的屏蔽体;近伽马探测器长度为5cm,远伽马探测器长度为10cm,近热中子探测器长度为5cm,远热中子探测器长度为10cm,中子探测器类型为He-3,伽马探测器类型为NaI;
(2)利用脉冲和测量时序设计,得到不同地层条件下的中子探测器计数、伽马探测器计数与地层密度的关系:
①孔隙度分别为:0,10%,20%,30%,40%,孔隙流体分别为水和气时。
②岩性分别为砂岩、灰岩和白云岩地层;
建立基于热中子计数比—俘获伽马计数比的地层密度计算方法,拟合得到地层密度的计算公式为:
y=0.2+0.24×x1-0.0036×x1 2+0.000018x1 3+3.80×ln x2-3.64×ln x2 2+0.92×ln x2 3-0.075×ln x2 4其中,x1为近远伽马探测器比值,x2为近远热中子计数比值;
(3)将采用步骤(2)所述公式得到的计算值与本领域通用的密度参考值对比分析,其结果如图3所示,从图3可以看出,采用该理论计算公式得到的密度计算值和参考值非常接近,计算其误差如表1所示,可以看出在三种岩性中白云岩的测量误差可能相对高些,这与地层中Mg元素分布有一定的关系。
表1:地层密度参考值(真密度)和计算密度
Figure BDA0002018516350000041
本实施例所述的脉冲时序设计中一个单时序为0~100μs,包括T1和T2两个时间段,其中T1时间段时长为0~40μs,在此期间D-D中子发生器工作,为脉冲时间,T2时间段时长为40~100μs,D-D中子发生器停止工作,并在此期间记录俘获伽马能谱和热中子能谱,所述伽马和热中子能谱均为256道,重复100个周期。
本实施例从记录的伽马能谱中获得近远俘获伽马总计数比值,利用所述热中子能谱中获得近远热中子能谱总计数比值,用于校正次生源空间分布对密度测量值的影响。
本实施例所述方式中未述及的部分采取或借鉴已有技术即可实现。
需要说明的是,在本说明书的教导下,本领域技术人员所作出的任何等同替代方式,或明显变型方式,均应在本发明的保护范围之内。

Claims (6)

1.一种基于D-D可控中子源的密度测量方法,其特征在于具体过程为:
(1)采用可控中子源和多探测器系统,利用脉冲和测量时序设计,记录不同位置处的伽马能谱和热中子能谱,研究不同地层条件下的近远俘获伽马计数比、近远热中子计数比与地层密度的关系;其中从记录的伽马能谱中获得近远俘获伽马总计数比值,利用所述热中子能谱中获得近远热中子能谱总计数比值,用于建立密度测量的计算公式:
Figure 156094DEST_PATH_IMAGE001
式中,y为地层密度计算值,x1为近远伽马探测器比值,x2为近远热中子计数比值;a, b,c, d, e, f, g, h为常数,将地层密度计算值与密度参考值对比分析,满足密度测量的精度要求;
(2)通过现有谱解析和数据处理方法,从理论上确立地层密度的计算模型,将得到的密度计算值和参考值对比,其精度满足测量要求。
2.根据权利要求1所述基于D-D可控中子源的密度测量方法,其特征在于所述可控中子 源为产额为2×107n/s,脉冲宽度为40
Figure 338813DEST_PATH_IMAGE002
的D-D脉冲中子源。
3.根据权利要求1所述基于D-D可控中子源的密度测量方法,其特征在于所述多探测器系统由近热中子探测器、近伽马探测器、远热中子探测器和远伽马探测器组成,其中近热中子探测器到可控中子源的距离为25cm-35cm,近伽马探测器到可控中子源的距离为35cm-45cm,远热中子探测器到可控中子源的距离为45cm-55cm,远伽马探测器到可控中子源的距离为55cm-65cm;近伽马探测器长度为5cm,远伽马探测器长度为10cm,近热中子探测器长度为5cm,远热中子探测器长度为10cm。
4.根据权利要求3所述基于D-D可控中子源的密度测量方法,其特征在于所述可控中子源与近热中子探测器之间设有碳化硼材料制成的屏蔽体。
5.根据权利要求3所述基于D-D可控中子源的密度测量方法,其特征在于所述近热中子探测器和远热中子探测器类型均为He-3,近伽马探测器和远伽马探测器类型均为NaI。
6.根据权利要求3所述基于D-D可控中子源的密度测量方法,其特征在于其中脉冲时序 设计中一个单时序为0~100
Figure 384130DEST_PATH_IMAGE002
,包括T1和T2两个时间段,其中T1时间段时长为0~40
Figure 44918DEST_PATH_IMAGE002
,在此 期间D-D中子发生器工作,T1时间段为脉冲时间,T2时间段时长为40~100
Figure 124870DEST_PATH_IMAGE002
,D-D中子发生器 停止工作,并在此期间记录俘获伽马能谱和热中子能谱,所述伽马和热中子能谱均为256 道,重复100个周期。
CN201910271364.6A 2019-04-04 2019-04-04 一种基于d-d可控中子源的密度测量方法 Expired - Fee Related CN109915127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910271364.6A CN109915127B (zh) 2019-04-04 2019-04-04 一种基于d-d可控中子源的密度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910271364.6A CN109915127B (zh) 2019-04-04 2019-04-04 一种基于d-d可控中子源的密度测量方法

Publications (2)

Publication Number Publication Date
CN109915127A CN109915127A (zh) 2019-06-21
CN109915127B true CN109915127B (zh) 2022-11-29

Family

ID=66968717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910271364.6A Expired - Fee Related CN109915127B (zh) 2019-04-04 2019-04-04 一种基于d-d可控中子源的密度测量方法

Country Status (1)

Country Link
CN (1) CN109915127B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110469324B (zh) * 2019-07-31 2022-11-01 中国石油天然气集团有限公司 一种基于脉冲中子测井的计算地层密度方法
CN110454147B (zh) * 2019-07-31 2023-01-10 中国石油天然气集团有限公司 一种可控源一体化核测井仪及测井方法
CN110552680B (zh) * 2019-08-21 2022-11-04 中国石油天然气集团有限公司 一种利用中子输运时间测量地层参数空间分布的方法
CN110486002B (zh) * 2019-08-26 2021-05-25 中国石油大学(北京) 中子伽马密度测井中地层体积密度确定方法及设备
CN112016215B (zh) * 2020-09-03 2022-09-09 中国石油大学(华东) 一种基于牛顿迭代法的密度测井六参数反演计算方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241906B1 (en) * 2009-04-17 2015-04-01 Services Pétroliers Schlumberger Method of determining density of underground formations using neutron-gamma ray measurements
GB2495010B (en) * 2010-06-30 2016-02-17 Schlumberger Holdings Identification of neutron capture from a pulsed neutron logging tool
AU2011203206A1 (en) * 2010-07-13 2012-02-02 Schlumberger Technology B.V. Correction for neutron-gamma density measurement
CN102518431B (zh) * 2011-12-26 2015-04-22 中国石油大学(华东) 基于可控中子源的随钻多参数测井方法
CN103513287B (zh) * 2012-06-19 2016-12-21 王新光 一种利用直流可控中子源计算地层密度的测井方法
CN208564530U (zh) * 2018-01-18 2019-03-01 中石化石油工程技术服务有限公司 一种随钻可控源密度测井装置

Also Published As

Publication number Publication date
CN109915127A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN109915127B (zh) 一种基于d-d可控中子源的密度测量方法
CA2377123C (en) Subsurface radiation phenomena detection with combined and azimuthally sensitive detectors
US6703606B2 (en) Neutron burst timing method and system for multiple measurement pulsed neutron formation evaluation
CN101377128A (zh) 具有固态中子监测器的井下测井仪
CN103513287B (zh) 一种利用直流可控中子源计算地层密度的测井方法
BR9700909B1 (pt) processo para a determinação da densidade de formações subterráneas que circundam um furo de sondagem.
CN109521487B (zh) 一种利用元素伽马能谱测井识别气层的方法
CN110454147B (zh) 一种可控源一体化核测井仪及测井方法
CN108825220A (zh) 融合自然γ能谱与中子时间谱的铀矿测井仪及铀定量方程
US10261214B2 (en) Method and apparatus for separating gamma and neutron signals from a radiation detector and for gain-stabilizing the detector
CN104747179A (zh) 基于氘-氚加速器中子源的地层密度随钻测量仪
CN103470252B (zh) 基于超热中子时间谱的瞬发中子测井及铀矿定量方法
WO2008070103A3 (en) Irradiated formation tool (ift) apparatus and method
US9500753B2 (en) Gamma ray detectors with gain stabilization
CN202954810U (zh) 氘氚可控源中子孔隙度测井仪
US10288763B2 (en) Long-lifetime, high-yield, fast neutrons source
CN201137491Y (zh) 脉冲中子双谱流体饱和度测井仪
CN107288629B (zh) 一种基于新型n-γ双粒子探测器的中子伽马密度测井方法
CN111335886B (zh) 一种中子伽马密度测井测量装置及方法
CN103711479B (zh) 基于超热中子与热中子比值的铀裂变瞬发中子测井技术
RU2262124C1 (ru) Способ импульсного нейтронного каротажа и устройство для его проведения
CN102778469A (zh) 一种基于γ射线康普顿背散射扫描技术的深海可燃冰探测仪
CN203515552U (zh) 基于超热中子时间谱的瞬发中子铀矿测井仪
CN107462929A (zh) 一种井中铜镍矿产品位测量装置及方法
CN215369811U (zh) 一种地层元素饱和度测量仪

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221129

CF01 Termination of patent right due to non-payment of annual fee