CN109908873A - 一种从碱性核废液中吸附铀的材料及制备方法 - Google Patents

一种从碱性核废液中吸附铀的材料及制备方法 Download PDF

Info

Publication number
CN109908873A
CN109908873A CN201811566706.9A CN201811566706A CN109908873A CN 109908873 A CN109908873 A CN 109908873A CN 201811566706 A CN201811566706 A CN 201811566706A CN 109908873 A CN109908873 A CN 109908873A
Authority
CN
China
Prior art keywords
uranium
ppn
adsorption
paf
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811566706.9A
Other languages
English (en)
Other versions
CN109908873B (zh
Inventor
沈颖林
楚妮妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN201811566706.9A priority Critical patent/CN109908873B/zh
Publication of CN109908873A publication Critical patent/CN109908873A/zh
Application granted granted Critical
Publication of CN109908873B publication Critical patent/CN109908873B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开一种用于从碱性核废液中吸附铀的材料及其制备方法。本发明的可从碱性核废液中吸附铀的材料是以聚合物PPN‑6为基体,在PPN‑6的苯环上接氯化碳原子数为1‑4的短链季磷盐构成。本发明的材料对三碳酸铀酰具有很高的吸附容量,同时具有很高的吸附选择性,较快的吸附动力学,而且其反萃剂为稀盐酸,且反萃方法十分简单方便,可重复利用性好。多次使用后可焚烧处理,不产生二次废物。

Description

一种从碱性核废液中吸附铀的材料及制备方法
技术领域
本发明涉及一种可用于从碱性核废液中吸附铀的材料及其制备方法,确切讲本发明涉及一种可从核工业排放的碱性低放废水中分离铀的有机材料,这种有机材料的制备方法。
背景技术
随着核能的大力推广与应用,含铀放射性废水越来越多。为防止水体中放射性核素迁移扩散及污染环境,含铀放射性废水的有效处理成为一项亟待解决的问题。核工业废水是一种高盐度废水,pH>8时铀主要以[UO2(CO3)3]4-形式存在,共存阴离子主要有NO3 -、SO4 2-、CO3 2-、F-、Cl-、HCO3 2-、TcO4 -。过去几十年的经验积累,铀的分离方法有多种,如:化学沉淀法,参见Macerata,E.;Mossini,E.;Scaravaggi,S.;Mariani,M.;Mele,A.;Panzeri,W.;Boubals,N.;Berthon,L.;Charbonnel,M.-C.;Sansone,F.;Arduini,A.;Casnati,A.Hydrophilic Clicked 2,6-bis-Triazolyl-Pyridines Endowed with High ActinideSelectivity and Radiochemical Stability:towards a Closed Nuclear FuelCycle.J.Am.Chem.Soc.2016,138,7232-7235.;溶剂萃取法,参见Yue,Y.;Mayes,R.T.;Kim,J.;Fulvio,P.F.;Sun,X.-G.;Tsouris,C.;Chen,J.;Brown,S.;Dai,S.Seawater UraniumSorbents:Preparation from a Mesoporous Copolymer Initiator by Atom-TransferRadical Polymerization.Angew.Chem.,Int.Ed.2013,52,13458-13462;离子交换法,参见Kou,S.;Yang,Z.;Sun,F.Protein Hydrogel Microbeads for Selective Uranium Miningfrom Seawater.ACS Appl.Mater.Interfaces.2017,9,2035.;膜过滤法,参见Tripathi,S.;Bose,R.;Roy,A.;Nair,S.;Ravishankar,N.Synthesis of Hollow Nanotubes ofZn2SiO4 or SiO2:Mechanistic Understanding and Uranium Adsorption Behavior.ACSAppl.Mater.Interfaces 2015,7,26430-26436.;以及吸附法,见Gunathilake,C.;GKrka,J.;Dai,S.;Jaroniec,M.AmidoGime-Modified Mesoporous Silica for UraniumAdsorption under Seawater Conditions.J.Mater.Chem.A 2015,3,11650-11659.,等。这些方法应用于矿山尾矿铀的去除,以及核工业的污水、其它核废物中的铀去除和海水提铀。现有的各种铀分离方法中吸附和离子交换法具有成本低,操作方便,效率高的优势,因此最具吸引力。也正是这个原因,各种合成有机聚合物(如Li,Y.;Wang,L.;Li,B.;Zhang,M.;Wen,R.;Guo,X.;Li,X.;Zhang,J.;Li,S.;Ma,L.Pore-Free MatriG with CooperativeChelatingof Hyperbranched Ligands for High-Performance Separation ofUranium.ACS Appl.Mater.Interfaces 2016,8,28853-28861.)、生物聚合物(如Kou,S.;Yang,Z.;Sun,F.Protein Hydrogel Microbeads for Selective Uranium Mining fromSeawater.ACS Appl.Mater.Interfaces 2017,9,2035.)、无机材料或介孔氧化硅材料(如Ling,L.;Zhang,W.Enrichment and Encapsulation of Uranium with IronNanoparticle.J.Am.Chem.Soc.2015,137,2788-2791.)、多孔碳基吸附剂(Gunathilake,C.;GKrka,J.;Dai,S.;Jaroniec,M.AmidoGime-Modified Mesoporous Silica forUranium Adsorption under Seawater Conditions.J.Mater.Chem.A 2015,3,11650-11659.)、离子液体(Barber,P.S.;Kelley,S.P.;Rogers,R.D.Highly SelectiveEGtraction of the Uranyl Ion with Hydrophobic AmidoGime-Functionalized IonicLiquids via η2 Coordination.RSC Adv.2012,2,8526-8530.),以及金属有机骨架(Li,L.;Ma,W.;Shen,S.;Huang,H.;Bai,Y.;Liu,H.A Combined EGperimental andtheoretical Study on the EGtraction of Uranium by Amino-Derived Metal-OrganicFrameworks through Post-Synthetic Strategy.ACS Appl.Mater.Interfaces 2016,8,31032-31041.)材料,等被用于水溶液中铀的吸附的探索。然而,这些吸附剂存在吸附容量低、动力学慢、亲和力弱和水/化学稳定性差等缺点。
发明内容
本发明提供一种具有较高吸附容量和吸附选择性的材料,同时提供这种材料的制备方法。
本发明的可从碱性核废液中吸附铀的材料是以式1示聚合物PPN-6为基体,
在PPN-6的苯环上接氯化短链季磷盐构成,所述的短链季磷盐是指碳原子数为1-4的季磷盐。
优选地,本发明的可从碱性核废液中吸附铀的材料是以式1示聚合物PPN-6
为基体,在PPN-6的苯环上接氯化三丁基季磷盐构成的如式2示的PAF-1,或在PPN-6的苯环上接氯化三乙基季磷盐构成。
PPN-6是一种多孔聚合物网络,见及式1,具有非常坚固的全碳骨架,具有与金属-有机骨架(MOF)相当的高比表面积,参见Yuan,D.;Lu,W.;Zhao,D.;Zhou,H.-C.HighlyStable Porous Polymer Networks with EGceptionally High Gas-UptakeCapacities.Adv.Mater.2011,23,3723-3725。本发明通过化学反应将氯化丁基季磷盐嫁接在PPN-6的苯环上,参见式2,形成负载型离子液体(SILS)PAF-1。SILS的固定化过程可以将其所需的性能转移到衬底上,将ILs的优点与载体材料的优点结合起来,获得优越的性能,同时保持两部分结构各自的性能。一旦离子交换基团被接枝到多孔性坚固骨架的疏水性骨架上,将实现三维纳米空间的易接近的高密度的离子交换位点。这可望提供具有高离子交换容量、快速离子交换动力学、可控溶胀以及高化学稳定性的新型离子交换材料。
本发明所述PAF-1材料的制备方法是:将1,5环辛二烯、1,5环辛二烯镍(0),4-溴苯基甲烷、四氢呋喃混合后,室温搅拌过夜,经洗涤干燥后得到产物PPN-6,再将产物PPN-6与浓HCl、浓H3PO4、冰醋酸和多聚甲醛,在N2保护下90℃加热回流充分反应,所得产物经洗涤干燥后得PPN-6-CH2Cl,再将PPN-6-CH2Cl与三丁基膦,或者三乙基膦溶于四氢呋喃中,N2保护下65℃加热回流反应。产物用水、甲醇各洗3次后干燥,参见式3。本发明所述材料制备中也可用三乙基磷替代三丁基膦,其所得到的产物具有类似的性能。相应实验表明接碳链为2至4的短链季磷盐都有类似效果。
优选地,本发明的材料的制备方法中,在与三丁基膦或三乙基磷在N2保护下65℃加热回流反应,各中间产物和最终产物分别用水和甲醇洗涤。
本发明所述材料可用于从碱性低放废水中分离铀,也可用于从海水中提取铀。
本发明是一种多孔芳香族骨架(PAF)材料,它是在PPN-6上嫁接离子液体形成一种新的负载型离子液体的化合物,具有非常坚固的全碳骨架,并具有相当的高比表面积,参考Yuan,D.;Lu,W.;Zhao,D.;Zhou,H.-C.Highly Stable Porous Polymer Networks withEGceptionally High Gas-Uptake Capacities.Adv.Mater.2011,23,3723-3725.。本发明的材料由于网络结构中的共价键作用,表现出更高的物理化学稳定性。此外,在PPN-6上可以方便地引入官能团,通过化学反应将离子液体嫁接在PPN-6的苯环上,可形成负载型离子液体(SILS)。SILS的固定过程可以将其所需的性能转移到衬底上,将SILs的优点与载体材料的优点结合起来,将获得优越的性能,同时保持两部分结构各自的性能。一旦离子交换基团被接枝到多孔性坚固的疏水性骨架上,将实现三维纳米空间的易接近的、高密度的离子交换位点(式1)。这可望提供具有高离子交换容量、快速离子交换动力学、可控溶胀以及高化学稳定性的新型离子交换材料。
相关试验表明,本发明的材料对三碳酸铀酰具有很高的吸附容量,同时具有很高的吸附选择性,较快的吸附动力学,在大量过量的共存离子存在下还能有很好的吸附效果,是目前报道过的碱性溶液中吸铀效果最好的材料,而且其反萃剂为稀盐酸,且反萃方法十分简单方便,可重复利用性好。多次使用后可焚烧处理,不产生二次废物。
附图说明
图1:pH=10室温25℃条件下测定平衡时间;
图2:pH=10室温25℃条件下吸附等温线。
图3:能谱图,其中a为本发明材料中所含元素的分布,b为本发明材料中磷元素的分布。
图4:PPN-6和本发明的PAF-1的红外谱图。
具体实施方式
本发明以下结合具体材料PAF-1实施例进行解说。
一、本发明的PAF-1制备
a)首先合成基体材料PPN-6聚合物。
b)制备出PPN-6-CH2Cl。
c)合成制备PAF-1。
具体的制备过程如下:
合成基体材料PPN-6
将2,2’联吡啶(0.452g 2.90mmol),1,5环辛二烯(0.36mL 2.92mmol),1,5环辛二烯镍(0)(0.8g 2.90mmol),4-溴苯基甲烷(0.407g 0.64mmol),四氢呋喃(60mL)。室温搅拌过夜,产物用水、甲醇各洗3次后干燥。
合成PPN-6-CH2Cl
将浓HCl(20mL)、浓H3PO4(3.0mL)、冰醋酸(6.0mL)、多聚甲醛(1.0g)和PPN-6(0.2g)在N2保护下90℃加热回流3天,产物用水、甲醇各洗3次后干燥。
合成PAF-1:PPN-6-CH2Cl(0.2g),三丁基膦(0.5mL微过量),四氢呋喃(20mL)。N2保护下65℃加热回流3天,产物用水、甲醇各洗3次后干燥。
本发明的PAF-1表征见附图3和附图4。通过傅里叶变换红外光谱(FT-IR)和能量色散X射线光谱(EDS)研究证实了季鏻盐在PPN-6上的成功接枝PAF-1(PPN-6-CH2P+(C4H9)3Cl-)的FT-IR谱图显示脂肪族C-H伸展带在2960cm-1和2870cm-1处,C-P特征带在906cm-1和1310cm-1处,与没有这些峰的原始PPN-6相比。PAF-1的FT-IR光谱也显示出与PPN-6相同的苯环C-C伸展峰出现在1740cm-1、1630cm-1和1490cm-1。
二、利用本发明的PAF-1材料对铀的分离
本发明的从纯碱性溶液中分离铀的方法是:在25℃室温下,pH=10,以1:7mg/mL的固液比,取1mg PAF-1,7mL三碳酸铀酰溶液加入10mL的离心管中震荡4小时。4小时后取出离心管,在离心机中离心15min,取1mL上清液,用紫外分光光度计测铀的浓度。
本发明的从模拟的混合溶液中分离铀的方法:
1)室温25℃条件,pH>8时,将5mg PAF-1加入到7.05ppm[UO2(CO3)3]4-,0.438×10- 3M NaCl,2.31×10-3M Na2CO3,2.96×10-3M NaNO3,2.96×10-3M NaF,2.96×10-3M K2SO4共200mL溶液中,震荡4h,测定平衡时浓度。
2)室温25℃条件,pH>8时,将5mg PAF-1加入到1.02ppm[UO2(CO3)3]4-,0.438×10- 3M NaCl,2.31×10-3M Na2CO3,2.96×10-3M NaNO3,2.96×10-3M NaF,2.96×10-3M K2SO4共200ml溶液中,震荡4h,测定平衡时浓度。
本发明吸附后解析的方法是:在25mL 80mg/L三碳酸铀酰中加入PAF-1 15mg,吸附铀后,离心弃去上清液,加入0.5M HCl 100mL,震荡4小时并过滤,收集PAF-1,循环使用。
实验过程:
1、PAF-1吸附三碳酸铀酰的平衡时间的测定
取PAF-1固体材料1mg,取2.1G10-4M(50mg/L)的三碳酸铀酰溶液7ml,分别振荡5、45、60、90、180、210、240、270、300min,离心后取水相测量,所得结果见图1。
实验结果表明,当振荡时间为4个小时,达到最大吸附容量,因此4个小时为萃取的最佳时间。
2、吸附等温线的测定
PAF-1固体材料1mg,各取20mg/L,50mg/L,80mg/L,120mg/L,130mg/L,140mg,150mg/L,160mg/L,165mg/L,170mg/L,175mg/L的三碳酸铀酰溶液7ml,振荡4小时,离心后取水相测量,所得结果如图2。
实验结果表明,固液比为1mg:7ml时,当振荡时间为4个小时后,PAF-1最大吸附容量是673mg.g-1
3、三碳酸铀酰离子的选择性吸附测定
三碳酸铀酰离子的吸附选择性是在不同种类不同浓度盐分别与三碳酸铀酰离子共存时,或多种盐与三碳酸铀酰离子共存时测定的,共存盐的浓度和三碳酸铀酰离子浓度如表1和表2所示。
表1:在pH>8,固液比为1:7mg/mL,震荡12h,25℃室温条件下,20ppm[UO2(CO3)3]4-,铀的吸附容量、吸附率和分配比。
实验结果表明PAF-1在单个盐共存条件下,[UO2(CO3)3]4-的浓度是20ppm时,NaCl,k2SO4,NaNO3对吸附容量影响不大,吸附率在94%以上,Kd能达到105以上。NaHCO3,NaCO3,NaF浓度增加吸附率下降,但是吸附率仍然不低,Kd能达到103以上。
参见表2,多种盐与三碳酸铀酰离子共存,pH>8,固液比为1:40mg/mL,震荡12h,25℃室温条件下铀的吸附容量和分配比。
实验结果表明在多种盐与铀共存时,5mg PAF-1能将7.05ppm铀,吸附到800ppb,吸附容量能达到250mg.g-1,Kd值是3.13*105,吸附率达88.65%。当多种盐与铀混合时,5mgPAF-1能将1.02ppm铀吸附到4.36ppb.吸附容量达到41mg.g-1,Kd值是9.32*106,吸附率达99.57%。
4、PAF-1重复利用实验
1)室温25℃条件下,15mg PAF-1吸附25mL 80ppm[UO2(CO3)3]4-,离心去上清液后,加入0.5M HCl 100mL,震荡4小时,取上清液,测其浓度。反萃率达99.9%以上。
2)将反萃后的材料干燥,在pH=10,固液比为1:7mg/mL,25℃室温条件下,80ppm[UO2(CO3)3]4-,用于铀第二次吸附,吸附容量与新鲜材料仅差3mg.g-1
综上所述,本实验的最佳萃取时间是4小时,最佳固液比为1mg:7ml;当[UO2(CO3)3]4-浓度为170mg.L-1时吸附容量最大,萃取率超过56.55%。当[UO2(CO3)3]4-与其它离子共存时,过量NaCl,K2SO4,NaNO3对吸附容量影响不大,吸附率在94%以上,Kd能达到105以上。NaHCO3,NaCO3,NaF的存在对吸附容量有一定的影响,但吸附率仍然不低,Kd能达到103以上。当多种盐与三碳酸铀酰共存时,能将铀浓度从7.05ppm降低到800ppb,且吸附容量为250mg.g-1,Kd是3.13G105,吸附率达88.65%。当多种盐混合后浓度是铀浓度的1.05G105时,铀浓度为1.02ppm时,吸附后溶液中铀浓度为4.36ppb吸附容量为41mg.g-1,Kd是9.32G106,吸附率达99.57%。反萃时用0.5M HCl 100mL可99.9%反萃,PAF-1可重复利用。
由以上实验表明,本发明方法简单,吸附效率高,材料稳定,反萃方法简单,PAF-1材料重复利用率较好。
需特别说明的是本发明所涉及的其它非PAF-1材料的制备方法及对铀的吸附效果与PAF-1材料类似。

Claims (7)

1.一种可从碱性核废液中吸附铀的材料,其特征在于这种材料是在聚合物PPN-6的苯环上接氯化碳原子数为1-4的短链季磷盐构成。
2.根据权利要求1所述的可从碱性核废液中吸附铀的材料,其特征在于这
种材料是在聚合物PPN-6的苯环上接氯化三丁基季磷盐构成的如式Ⅰ示的PAF-1。
3.根据权利要求1所述的可从碱性核废液中吸附铀的材料,其特征在于这种材料是在聚合物PPN-6的苯环上接氯化三乙基季磷盐构成。
4.权利要求2或3所述材料的制备方法,其特征在于,1,5环辛二烯、1,5环辛二烯镍(0),4-溴苯基甲烷、四氢呋喃混合后,室温搅拌过夜,经洗涤干燥后得到产物PPN-6,再将产物PPN-6与浓HCl、浓H3PO4、冰醋酸和多聚甲醛,在N2保护下90℃加热回流充分反应,所得产物经洗涤干燥后得PPN-6-CH2Cl,再将PPN-6-CH2Cl与三丁基膦或三乙基膦溶于四氢呋喃中,N2保护下65℃加热回流反应得到。
5.根据权利要求4所述的制备方法,其特征在于与三丁基膦或三乙基膦在N2保护下65℃加热回流反应,各中间产物和最终产物分别用水和甲醇洗涤。
6.权利要求1或2或3所述材料用于从碱性低放废水中分离铀。
7.权利要求1或2或3所述材料PAF-1用于从海水中提取铀。
CN201811566706.9A 2018-12-19 2018-12-19 一种从碱性核废液中吸附铀的材料及制备方法 Expired - Fee Related CN109908873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811566706.9A CN109908873B (zh) 2018-12-19 2018-12-19 一种从碱性核废液中吸附铀的材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811566706.9A CN109908873B (zh) 2018-12-19 2018-12-19 一种从碱性核废液中吸附铀的材料及制备方法

Publications (2)

Publication Number Publication Date
CN109908873A true CN109908873A (zh) 2019-06-21
CN109908873B CN109908873B (zh) 2021-12-28

Family

ID=66959976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811566706.9A Expired - Fee Related CN109908873B (zh) 2018-12-19 2018-12-19 一种从碱性核废液中吸附铀的材料及制备方法

Country Status (1)

Country Link
CN (1) CN109908873B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403439A (zh) * 2020-10-11 2021-02-26 兰州大学 一种分离铀的材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954273A (zh) * 2009-07-20 2011-01-26 深圳市普迈达科技有限公司 有机多孔聚合物材料及其合成方法
CN107459657A (zh) * 2017-07-27 2017-12-12 苏州大学 含配体的共轭微孔聚合物及其应用
CN108816187A (zh) * 2018-04-17 2018-11-16 东华理工大学 一种l-精氨酸改性氧化石墨烯海绵制备和铀吸附方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954273A (zh) * 2009-07-20 2011-01-26 深圳市普迈达科技有限公司 有机多孔聚合物材料及其合成方法
CN107459657A (zh) * 2017-07-27 2017-12-12 苏州大学 含配体的共轭微孔聚合物及其应用
CN108816187A (zh) * 2018-04-17 2018-11-16 东华理工大学 一种l-精氨酸改性氧化石墨烯海绵制备和铀吸附方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403439A (zh) * 2020-10-11 2021-02-26 兰州大学 一种分离铀的材料及其制备方法

Also Published As

Publication number Publication date
CN109908873B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
Zhang et al. Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater
Li et al. Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment
Ahmad et al. Preparation of amidoxime modified porous organic polymer flowers for selective uranium recovery from seawater
Merí-Bofí et al. Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg (II)
Gao et al. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms
Li et al. Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction
CN111867989B (zh) 作为用于高效铀提取的铀纳米阱的官能化的多孔有机聚合物
Zhang et al. Extending the use of highly porous and functionalized MOFs to Th (IV) capture
Zhu et al. Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction
Shahriyari Far et al. Efficient removal of Pb (II) and Co (II) ions from aqueous solution with a chromium-based metal–organic framework/activated carbon composites
Yuan et al. A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15
Shen et al. One-pot synthesis of a highly porous anionic hypercrosslinked polymer for ultrafast adsorption of organic pollutants
Zhang et al. Agar aerogel containing small-sized zeolitic imidazolate framework loaded carbon nitride: a solar-triggered regenerable decontaminant for convenient and enhanced water purification
Liu et al. Introduction of amidoxime groups into metal-organic frameworks to synthesize MIL-53 (Al)-AO for enhanced U (VI) sorption
JP2022051567A (ja) メソポーラス材料内における金属-有機構造体の固相結晶化方法及びそのハイブリッド材料
Gan et al. Phosphorylation improved the competitive U/V adsorption on chitosan-based adsorbent containing amidoxime for rapid uranium extraction from seawater
Cheng et al. Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution
Florek et al. Selective recovery of rare earth elements using chelating ligands grafted on mesoporous surfaces
Yoo et al. Adsorption of carbon dioxide on unsaturated metal sites in M2 (dobpdc) frameworks with exceptional structural stability and relation between lewis acidity and adsorption enthalpy
Li et al. SiO2 templates-derived hierarchical porous COFs sample pretreatment tool for non-targeted analysis of chemicals in foods
Chi et al. Polyvinyl alcohol fibers with functional phosphonic acid group: synthesis and adsorption of uranyl (VI) ions in aqueous solutions
CN106699952A (zh) 一种苯硼酸基型的磁性印迹聚合物的制备方法
Gao et al. Water confined in MIL-101 (Cr): Unique sorption–desorption behaviors revealed by diffuse reflectance infrared spectroscopy and molecular dynamics simulation
Wu et al. New short-channel SBA-15 mesoporous silicas functionalized with polyazamacrocyclic ligands for selective capturing of palladium ions in HNO 3 media
Ao et al. Polyethyleneimine incorporated chitosan/α-MnO2 nanorod honeycomb-like composite foams with remarkable elasticity and ultralight property for the effective removal of U (VI) from aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211228