CN109902881A - 基于多元统计分析和lstm融合的pm2.5浓度预测方法 - Google Patents

基于多元统计分析和lstm融合的pm2.5浓度预测方法 Download PDF

Info

Publication number
CN109902881A
CN109902881A CN201910210516.1A CN201910210516A CN109902881A CN 109902881 A CN109902881 A CN 109902881A CN 201910210516 A CN201910210516 A CN 201910210516A CN 109902881 A CN109902881 A CN 109902881A
Authority
CN
China
Prior art keywords
data
lstm
concentration
model
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910210516.1A
Other languages
English (en)
Inventor
方强
何粤城
王学锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Leyi Chuangxiang Technology Co Ltd
Original Assignee
Wuhan Leyi Chuangxiang Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Leyi Chuangxiang Technology Co Ltd filed Critical Wuhan Leyi Chuangxiang Technology Co Ltd
Priority to CN201910210516.1A priority Critical patent/CN109902881A/zh
Publication of CN109902881A publication Critical patent/CN109902881A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及人工智能与大数据领域,涉及基于多元统计分析和LSTM融合的PM2.5浓度预测方法,包括在理论层面上分析两者的优缺点,并在此基础上构建基于两者的融合算法;通过从省控点、国控点获取气象数据与污染物数据;采样近半年的数据,通过使用Pearson相关系数分析各因子与PM2.5浓度的相关性;将所有数据分为训练数据、测试数据、预测数据三个部分,其中使用训练数据去训练模型,并设置相关的模型参数;将测试数据输入模型中,最终获取预测结果,本发明通过分析PM2.5的时间和空间特性,将数据进行降维,通过深度学习技术,挖掘PM2.5的深层数据特征,大大提升了数据运算的速度,结合精度的提升,使预测工作可以实时进行,消除数据滞后性问题。

Description

基于多元统计分析和LSTM融合的PM2.5浓度预测方法
技术领域
本发明涉及人工智能与大数据领域,特别是涉及基于多元统计分析和LSTM融合的PM2.5浓度预测方法。
背景技术
随着人民生活水平的提高,城镇化、工业化、人口城市化比率即三化比率不断提升。但是,资源的过度开发、能源的过度消耗打破了原有的生态平衡系统,环境问题越来越受到各国政府的重视。特别是最近几年雾霾天气频繁出现,PM2.5污染问题异常严重。为了合理的预测PM2.5的浓度,各国的专家提出了多种方法。预测的方法按照大类可划分为两大类,一:以空气动力学为基础的传统方法;二:以数据与统计学为基础的人工智能方法。前者具有丰富的实践经验,坚实的理论基础。但是,入门的门槛较高,研究者需要有扎实的物理化学与空气动力学相关知识。后者相对的实践经验较少,入门门槛较低,只需要相关数据与计算机相关知识就可进行预测活动。目前基于人工智能技术的预测方法有许多,包括集成算法、多元回归方法、支持向量机、BP神经网络、模糊聚类方法等。
发明内容
本发明的目的解决传统方法中收敛时间过长以及过拟合问题,提出一种基于多元统计分析和LSTM融合的PM2.5浓度预测方法。
基于多元统计分析和LSTM融合的PM2.5浓度预测方法,包括如下步骤:
步骤一、获取源数据:从各省控点、国控点获取气象数据与污染物数据;
步骤二、数据预处理:采样至少半年内的数据,计算各因子与PM2.5浓度的相关系数,将获取的数据进行排序,剔除相关系数小于0.5的因子;
步骤三、数据分类训练:将所有数据分为训练数据、测试数据、预测数据三个部分,其中使用训练数据去训练LSTM模型,并设置LSTM模型参数;
步骤四、评价预测模型:设定数据阈值,将测试数据输入模型中,并通过RMSE、MAP、MSE三种方法评价模型的预测结果;如果预测结果符合阈值要求进入步骤五,如果不符合就进入步骤一;
步骤五、将待分析数据输入预测模型获取预测结果。
对前述基于多元统计分析和LSTM融合的PM2.5浓度预测方法的进一步优化还包括,所述步骤三中的LSTM模型包括3个控制门,分别是输入门it、输出门ot、遗忘门ft;
遗忘门ft表达式为:ft=σ(Wf*[ht-1,xt]+Bf),其中Wf为权重矩阵,Bf为偏置值,σ为sigmoid函数;
输入门的Sigmoid层it计算公式是:it=σ(Wi*[ht-1,xt]+Bi),其中Wi为权重矩阵,Bf为偏置值,tanh层的候选向量Cst表达式为:Cst=tanh(Wc*[ht-1,xt]+Bc),其中Wc为权重矩阵,Bc为偏置值;tanh层的更新值表达式为:Ct=ft*Ct-1+it*Cst;
输出门Ot包括sigmoid层与tanh层,所述输出门Ot运行sigmoid层决定细胞状态被输出部分,然后将tanh函数与sigmoid门的输出相乘,其计算公式为:ot=σ(Wo*[ht-1,xt]+Bo),ht=ot*tanh(Ct)。
对前述基于多元统计分析和LSTM融合的PM2.5浓度预测方法的进一步优化还包括,所述步骤二中,所述相关系数具体公式如下:
其中Rp为相关系数,xi为输入值,xav为均值,yi为输出值,yav为输出均值,相关性阈值设定为0.3。
对前述基于多元统计分析和LSTM融合的PM2.5浓度预测方法的进一步优化还包括,所述步骤三具体包括:
3.3.将经过处理的数据分为训练集、测试集、预测值,其中训练集用于训练模型;
3.4.将模型所需的参数赋值,将隐藏层数量设为72个神经元,输出层仅使用1个神经元,输入变量是PM10、CO、NO2、NOx、NO、湿度、SO2的时间步特征,损失函数使用MAE,优化算法使用Adam,模型的迭代次数epochs设为72,每次迭代选取的batch大小为72。
对前述基于多元统计分析和LSTM融合的PM2.5浓度预测方法的进一步优化还包括,所述步骤四中进行测试数据时使用的三种评价回归模型指标分别为:
MSE:MAE:RMSE:其中M为总数量,yi为输出值,yav为输出均值。
对前述基于多元统计分析和LSTM融合的PM2.5浓度预测方法的进一步优化还包括,所述步骤三中还包括:将80%的源数据用于模型训练,20%数据用于测试数据,最后24小时内的数据用于预测;在建立模型前,对数据进行标准化,将二维数据转换为三维数据。
对前述基于多元统计分析和LSTM融合的PM2.5浓度预测方法的进一步优化还包括,所述步骤一中,还包括进行数据填充的步骤,具体是指,当数据中存在少量缺失时,使用前值填充使数据具备更好的分布趋势;当数据中存在连续的数据缺失时,使用均值填充。
与现有技术相比,本发明具有以下有益效果:
1:并未将现有的所有因子都作为LSTM模型的输入端,而是通过分析PM2.5的时间和空间特性,将数据进行降维。
2:通过深度学习技术,挖掘PM2.5的深层数据特征,包含:非线性特性、历史趋势特性等。
3:利用GPU,大大提升了数据运算的速度,结合精度的提升,使预测工作可以实时进行,消除数据滞后性问题。
附图说明
图1所示为本发明主要步骤示意图;
图2所示为本发明的流程图;
图3为某市省控监测点1同一天PM2.5小时浓度的变化数据;
图4为某市省控监测点2同一天PM2.5小时浓度的变化数据;
图5为不同区域的省控点数据绘制不同区域的PM2.5浓度图;
图6本发明中遗忘门ft具体结构;
图7为区域A模型获得的PM2.5浓度数据;
图8为区域B模型获得的PM2.5浓度数据;
图9为区域C模型获得的PM2.5浓度数据;
图10为区域E模型获得的PM2.5浓度数据。
具体实施方式
以下结合具体实施例对本发明创造作详细说明。
为了进一步阐述本发明,结合上述附图对本发明的具体方法、实施过程、算法分析、结果分析等进行详细说明。
如图1、图2所示,本发明的理论基础包括环境科学、计算机科学、大气科学、统计学等。传统的基于空气动力学方法的预测方法相比,本发明涉及的学科范围更广,学科间的融合更紧密。因而具有一定的学科交叉性,对新学科的发展、预测方法的扩展具有一定的理论支持。常用的分析与预测方法包括人工神经网络、遗传算法、支持向量机、多元回归分析、集成算法、深度学习等。
但是,单一算法在做预测时存在许多问题,包括收敛时间过长、鲁棒性较低、过拟合问题、泛化能力较低等。针对目前存在的这些问题,本文提出利用多元统计分析方法分析影响PM2.5的因素,分析污染物的时间特性,将与PM2.5相关性较小的因子剔除。并将提取到的因子作为网络的输入端,PM2.5浓度值作为网络输出端,进行深度学习。基于上述理论基础,在预测的第一步构建本发明的理论模型,包括预处理部分、特征选择部分、LSTM模型部分。
发明的第二步是要进行数据的获取以及数据的预处理过程,本发明的数据来源于某市内5个不同的省控监测点,包括2016年1月1日-2019年2月9号共计4年零两个月的时频测控数据,监测的指标包括气象数据与污染物数据。其中,数据中的80%用于训练模型,20%用于测试模型,最后24小时的数据用于预测。由于各种历史原因,采集上来的数据存在缺失、数据不准确、数据分布不合理等各种问题。因此,需要将数据进行预处理,使数据的质量达到预测的要求。
本发明采用的数据处理方式主要包括均值填充以及前值填充:当数据中存在少量缺失时,使用前值填充可以使数据具备更好的分布趋势;当数据中存在连续的数据缺失时,前值填充无法更好的代表本列数据的特征时,使用均值填充使数据分布的趋势更准确。
本发明的第三步是本发明中最重要的步骤之一。由于站点非常多如果把所有的站点数据都去计算明显会使计算的速度下降,并且也存在明显的数据共线性问题。因此,如何选择因子与站点对于模型的构建以及PM2.5浓度预测起到了关键的作用。本发明使用三个维度去选择合适的模型输入数据:时间分布、空间分布、因子相关性分析。
首先是时间分布:同一个城市相同监测点每小时获取到的污染物浓度也会有一定程度的差异。图3、图4为某市2个省控监测点同一天PM2.5小时浓度的变化数据,各时刻的浓度详见图3。由图3可知,两个监测站点的PM2.5浓度在24小时内呈现的趋势相近,最大浓度都接近120,最小浓度都在50左右。C监测点的最大浓度值出现在晚上7点,最低浓度值出现在下午1点。而监测点D的最大浓度出现在晚上9点,最低浓度出现在早上10点。另外,从图片中我们可以看出PM2.5浓度在早上10点到晚上9点之间的数值偏高,特别是下午3点到晚上9点之间浓度值达到一天的最高值。而早上6点至下午2点之间浓度较为平稳且浓度较低,分析其中原因,早上10点至晚上9点处于人员活动的主要时段,暖气的使用、早晚高峰的交通出行、中餐、晚餐等都会使PM2.5的浓度升高。相反,从晚上12点至早上9点人员活动较少污染物排放的渠道相对减少,PM2.5的浓度也相对较低;
其次是空间分布:PM2.5的浓度除了小时差异外,同一个时段不同区域的PM2.5浓度也存在着差异,结合5个不同区域的省控点数据绘制不同区域的PM2.5浓度图,见图5。由图5可知,在相同时间段内,区域A与区域B的数据趋势相近,区域C与区域D数据趋势相近,区域E与其他监测点数据存在较大差异。从该市地图可以看出,区域A与区域B物理距离相对较近,而区域C与区域D都属于同一个行政区,区域E物理距离与其他区域较远。因此,不同的地理位置PM2.5的浓度存在较大的差异;因子相关性分析:过往研究表明影响PM2.5浓度的因素有许多,大致分为气象因素和其他污染物因素。气象因素包括温度、湿度、大气压、风速、风向等,其他污染物因素包括PM10、SO2、CO、NO2、NOX、O3等。我们可以通过进行相关性分析选取相关性较大的因子,以达到降维的目的,并将选取的因子作为模型的输入端。根据历史经验表明:相关系数|R|≤0.3,表示弱相关;0.3<|R|≤0.7为显著相关;|R|>0.7位高度相关,使用python分析监测点的相关性,结果见表1。
表1监测点的相关性结果
PM10 CO NO<sub>2</sub> NO<sub>x</sub> NO 湿度 SO<sub>2</sub> 风向 风速 温度 气压 O<sub>3</sub>
A 0.956 0.877 0.765 0.685 0.585 0.526 0.354 0.171 -0.08 -0.09 -0.129 -0.327
B 0.94 0.858 0.723 0.639 0.544 0.559 0.337 0.206 -0.374 -0.141 -0.121 -0.442
C 0.918 0.756 0.74 0.689 0.573 0.567 0.348 -0.19 -0.413 0.567 0.03 -0.513
D 0.878 0.88 0.71 0.655 0.588 0.48 0.505 0.01 -0.279 -0.197 0.04 -0.44
E 0.965 0.902 0.72 0.637 0.516 0.563 0.254 0.1 -0.244 -0.127 -0.165 -0.335
由表1可知,5个监测点中与PM2.5浓度相关性最高的是PM10,相关系数全部大于0.85,说明两者具有极强的相关性。其次是CO和NO2,两者与PM2.5的相关系数都大于0.7。而NOx、NO、湿度、SO2四个因子与PM2.5的浓度相关系数基本处于0.3至0.7之间,属于显著相关因子。与之相反,风速、温度、大气压、O3四个因子与PM2.5浓度存在负相关性,特别是O3浓度与PM2.5浓度呈显著负相关。总体来说,PM2.5浓度与气态污染物浓度的相关性较高,或许与他们具有共同污染源的因素相关。
第四步是利用训练数据去训练模型,并将模型的各个参数赋初始值。通过上述步骤分析的结果我们使用区域B、C、D、E四个监测点的2016年之后的数据,用24小时的数据进行预测评估。在LSTM模型中,将隐藏层数量设为72个神经元,输出层仅使用1个神经元,输入变量是PM10、CO、NO2、NOx、NO、湿度、SO2的时间步特征,损失函数使用MAE,优化算法使用Adam,模型的迭代次数epochs设为72,每次迭代选取的batch大小为72。
本文所采用的LSTM记忆单元包括3个控制门,分别是输入门it、输出门ot、遗忘门ft,具体结构如图6所示:
遗忘门ft计算,作为LSTM模型的第一步,遗忘门的作用是确定从记忆单元状态中确定舍弃那些信息即删除掉不太重要的信息。该门会读取t时刻的输入值xt与t-1时刻的隐藏层输出ht-1,用数学表达式即为:
ft=σ(Wf*[ht-1,xt]+Bf)(5),
式(5)中:是Wf的权重矩阵,Bf为偏置值,σ为sigmoid函数。
输入门it与候选状态的计算
LSTM模型的第二步是确定细胞状态中存储那些信息,而要完成该步骤需要分两步走。第一步被称为输入门的Sigmoid层it,该步骤决定我们将要更新哪些值,其计算公式是:
it=σ(Wi*[ht-1,xt]+Bi)(6)
式(6)中:Wi的权重矩阵,Bf为偏置值。接下来是一个tanh层来创建候选向量Cst,并将该向量添加到细胞状态中,其数学表达式为:
Cst=tanh(Wc*[ht-1,xt]+Bc)(7)
式(7)中:Wc的权重矩阵,Bc为偏置值。第二步是通过上一步所获取到的两个向量来创建更新值,其数学表达式是:
Ct=ft*Ct-1+it*Cst(8)
输出门Ot计算
LSTM的最后一步是我们需要确定我们要输出什么,输出门包括两个结构即sigmoid层与tanh层。首先,我们运行sigmoid层,该层的作用是决定细胞状态哪些部分被输出。然后,我们通过将tanh函数与sigmoid门的输出相乘,使输出结果静静包含我们所决定的那一部分。其计算公式是:
ot=σ(Wo*[ht-1,xt]+Bo) (9)
ht=ot*tanh(Ct) (10)
第五步是使用测试数据去验证模型的准确度和性能,本发明使用三种评价回归模型效果的指标:MAE、MSE、RMSE。
MSE:
MAE:
RMSE:
如果模型计算出的预测值与真实值之间的误差少于预先设置的阈值,则说明模型达到了预测的要求,且模型的泛化能力与鲁棒性达到了合理的范围。除此之外,本专利产生的预测值与实际值的曲线也比较拟合,说明预测的精度亦较高。
第六步是将预测集数据应用在已经建好的模型中,算出未来24小时的PM2.5浓度。具体的结果与相关的评估值见表2。
表2 24小时的PM2.5浓度结果与相关的评估值表
RMSE MSE MAE
A 11.082 112.803 8.667
B 27.359 748.505 16.304
C 14.244 202.878 11.534
E 14.890 221.726 9.839
结合表2与图6、图7、图8、图9,模型获得较为精确的PM2.5浓度,整体误差较小。但是,针对不同的监测站点,精确度存在一定的差别。究其原因,可能与每个监测站点获取的数据质量有一定的关系,数据质量较高的监测点预测的精准度较高,反之,精确度相对降低。
本发明利用四个不同的国测点数据对PM2.5浓度进行预测与分析。通过对现有因子进行多元分析,提取相关系数较大的因子。通过将提取的因子作为模型的输入端,对PM2.5浓度做出合理的预测。通过在四个国测点进行实践证明:基于多与分析的LSTM模型进行预测具有精确度较高、预测的时间范围较长等特点。除此之外,改模型具有较高的鲁棒性与泛化能力、较强的非线性能力,可在实际项目中使用。
最后应当说明的是,以上实施例仅用以说明本发明创造的技术方案,而非对本发明创造保护范围的限制,尽管参照较佳实施例对本发明创造作了详细地说明,本领域的普通技术人员应当理解,可以对本发明创造的技术方案进行修改或者等同替换,而不脱离本发明创造技术方案的实质和范围。

Claims (7)

1.基于多元统计分析和LSTM融合的PM2.5浓度预测方法,其特征在于,包括如下步骤:
步骤一、获取源数据:从各省控点、国控点获取气象数据与污染物数据;
步骤二、数据预处理:采样至少半年内的数据,计算各因子与PM2.5浓度的相关系数,将获取的数据进行排序,剔除相关系数小于0.5的因子;
步骤三、数据分类训练:将所有数据分为训练数据、测试数据、预测数据三个部分,其中使用训练数据去训练LSTM模型,并设置LSTM模型参数;
步骤四、评价预测模型:设定数据阈值,将测试数据输入模型中,并通过RMSE、MAP、MSE三种方法评价模型的预测结果;如果预测结果符合阈值要求进入步骤五,如果不符合就进入步骤一;
步骤五、将待分析数据输入预测模型获取预测结果。
2.根据权利要求1所述的基于多元统计分析和LSTM融合的PM2.5浓度预测方法,其特征在于,所述步骤三中的LSTM模型包括3个控制门,分别是输入门it、输出门ot、遗忘门ft;
遗忘门ft表达式为:ft=σ(Wf*[ht-1,xt]+Bf)
其中Wf为权重矩阵,Bf为偏置值,σ为sigmoid函数;
输入门的Sigmoid层it计算公式是:it=σ(Wi*[ht-1,xt]+Bi)
其中Wi为权重矩阵,Bf为偏置值,
tanh层的候选向量Cst表达式为:Cst=tanh(Wc*[ht-1,xt]+Bc)
其中Wc为权重矩阵,Bc为偏置值;
tanh层的更新值表达式为:Ct=ft*Ct-1+it*Cst;
输出门Ot包括sigmoid层与tanh层,所述输出门Ot运行sigmoid层决定细胞状态被输出部分,然后将tanh函数与sigmoid门的输出相乘,其计算公式为:
ot=σ(Wo*[ht-1,xt]+Bo),ht=ot*tanh(Ct)。
3.根据权利要求1所述的基于多元统计分析和LSTM融合的PM2.5浓度预测方法,其特征在于,所述步骤二中,相关系数具体公式如下:
其中Rp为相关系数,xi为输入值,xav为均值,yi为输出值,yav为输出均值,相关性阈值为0.3。
4.根据权利要求1所述的基于多元统计分析和LSTM融合的PM2.5浓度预测方法,其特征在于,所述步骤三具体包括:
3.1.将经过处理的数据分为训练集、测试集、预测值,其中训练集用于训练模型;
3.2.将模型所需的参数赋值,将隐藏层数量设为72个神经元,输出层仅使用1个神经元,输入变量是PM10、CO、NO2、NOx、NO、湿度、SO2的时间步特征,损失函数使用MAE,优化算法使用Adam,模型的迭代次数epochs设为72,每次迭代选取的batch大小为72。
5.根据权利要求1所述的基于多元统计分析和LSTM融合的PM2.5浓度预测方法,其特征在于,所述步骤四中进行测试数据时使用的三种评价回归模型指标分别为:
MSE:MAE:RMSE:其中M为总数量,yi为输出值,yav为输出均值;
所述步骤四还包括:将测试数据预测的结果与实际的浓度值作对比,使用RMSE、MAP、MSE三种方法评价模型,若计算得到的结果符合阈值的要求,则停止模型,否则重新调整模型。
6.根据权利要求1所述的基于多元统计分析和LSTM融合的PM2.5浓度预测方法,其特征在于,所述步骤三中还包括:将80%的源数据用于模型训练,20%的源数据用于测试数据,将最后24小时内的数据用于预测;在建立模型前,对数据进行标准化,将二维数据转换为三维数据。
7.根据权利要求1所述的基于多元统计分析和LSTM融合的PM2.5浓度预测方法,其特征在于,所述步骤一中,还包括进行数据填充的步骤,具体是指,当数据中存在少量缺失时,使用前值填充使数据具备更好的分布趋势;当数据中存在连续的数据缺失时,使用均值填充。
CN201910210516.1A 2019-03-19 2019-03-19 基于多元统计分析和lstm融合的pm2.5浓度预测方法 Pending CN109902881A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910210516.1A CN109902881A (zh) 2019-03-19 2019-03-19 基于多元统计分析和lstm融合的pm2.5浓度预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910210516.1A CN109902881A (zh) 2019-03-19 2019-03-19 基于多元统计分析和lstm融合的pm2.5浓度预测方法

Publications (1)

Publication Number Publication Date
CN109902881A true CN109902881A (zh) 2019-06-18

Family

ID=66953370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910210516.1A Pending CN109902881A (zh) 2019-03-19 2019-03-19 基于多元统计分析和lstm融合的pm2.5浓度预测方法

Country Status (1)

Country Link
CN (1) CN109902881A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427993A (zh) * 2019-07-24 2019-11-08 中南大学 基于气象参数的高速列车导航盲区定位方法
CN110533248A (zh) * 2019-09-02 2019-12-03 中科格物智信(天津)科技有限公司 融合机器学习和lstm的大气污染物浓度预测方法
CN110766219A (zh) * 2019-10-21 2020-02-07 成都理工大学工程技术学院 基于bp神经网络的雾霾预测方法
CN111398110A (zh) * 2020-04-03 2020-07-10 四川师范大学 一种实现雾霾预警和策略制定的雾霾因子数据处理系统及方法
CN111476433A (zh) * 2020-04-26 2020-07-31 北京保生源科技有限公司 基于数据分析的烟气排放预测方法及系统
CN111598156A (zh) * 2020-05-14 2020-08-28 北京工业大学 基于多源异构数据融合的pm2.5预测模型
WO2021103624A1 (zh) * 2019-11-27 2021-06-03 医惠科技有限公司 一种脓毒血症的预警装置、设备及存储介质
CN113379150A (zh) * 2021-06-24 2021-09-10 中科三清科技有限公司 大气现状成因的识别方法及装置、计算机设备及存储介质
CN113849910A (zh) * 2021-09-23 2021-12-28 四川大学 一种基于Dropout的BiLSTM网络机翼阻力系数预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008278A (zh) * 2014-05-14 2014-08-27 昆明理工大学 一种基于特征向量和最小二乘支持向量机的pm25浓度预测方法
CN106599520A (zh) * 2016-12-31 2017-04-26 中国科学技术大学 一种基于lstm‑rnn模型的空气污染物浓度预报方法
CN108009674A (zh) * 2017-11-27 2018-05-08 上海师范大学 基于cnn和lstm融合神经网络的空气pm2.5浓度预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008278A (zh) * 2014-05-14 2014-08-27 昆明理工大学 一种基于特征向量和最小二乘支持向量机的pm25浓度预测方法
CN106599520A (zh) * 2016-12-31 2017-04-26 中国科学技术大学 一种基于lstm‑rnn模型的空气污染物浓度预报方法
CN108009674A (zh) * 2017-11-27 2018-05-08 上海师范大学 基于cnn和lstm融合神经网络的空气pm2.5浓度预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张玉丽等: "基于多元线性回归模型PM2.5预测问题的研究", 《安徽科技学院学报》 *
白盛楠 等: "基于LSTM 循环神经网络的PM2.5预测", 《计算机应用于软件》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427993A (zh) * 2019-07-24 2019-11-08 中南大学 基于气象参数的高速列车导航盲区定位方法
CN110533248A (zh) * 2019-09-02 2019-12-03 中科格物智信(天津)科技有限公司 融合机器学习和lstm的大气污染物浓度预测方法
CN110766219A (zh) * 2019-10-21 2020-02-07 成都理工大学工程技术学院 基于bp神经网络的雾霾预测方法
WO2021103624A1 (zh) * 2019-11-27 2021-06-03 医惠科技有限公司 一种脓毒血症的预警装置、设备及存储介质
CN111398110A (zh) * 2020-04-03 2020-07-10 四川师范大学 一种实现雾霾预警和策略制定的雾霾因子数据处理系统及方法
CN111476433A (zh) * 2020-04-26 2020-07-31 北京保生源科技有限公司 基于数据分析的烟气排放预测方法及系统
CN111598156A (zh) * 2020-05-14 2020-08-28 北京工业大学 基于多源异构数据融合的pm2.5预测模型
CN113379150A (zh) * 2021-06-24 2021-09-10 中科三清科技有限公司 大气现状成因的识别方法及装置、计算机设备及存储介质
CN113849910A (zh) * 2021-09-23 2021-12-28 四川大学 一种基于Dropout的BiLSTM网络机翼阻力系数预测方法

Similar Documents

Publication Publication Date Title
CN109902881A (zh) 基于多元统计分析和lstm融合的pm2.5浓度预测方法
He et al. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques
Zhang et al. Short-term rainfall forecasting using multi-layer perceptron
CN110782093B (zh) 融合ssae深度特征学习和lstm的pm2.5小时浓度预测方法及系统
CN112506990B (zh) 一种基于时空信息的水文数据异常检测方法
Dikbas et al. Classification of precipitation series using fuzzy cluster method
CN108009674A (zh) 基于cnn和lstm融合神经网络的空气pm2.5浓度预测方法
CN112465243B (zh) 一种空气质量预报方法及系统
CN106951611A (zh) 一种基于使用者行为的严寒地区建筑节能设计优化方法
CN106485262A (zh) 一种母线负荷预测方法
CN110648014A (zh) 一种基于时空分位数回归的区域风电预测方法及系统
Huang et al. Research on urban modern architectural art based on artificial intelligence and GIS image recognition system
CN106778838A (zh) 一种预测空气质量的方法
Du et al. City classification for municipal solid waste prediction in mainland China based on K-means clustering
Deng et al. A clustering-based climatic zoning method for office buildings in China
CN112966871A (zh) 基于卷积长短期记忆神经网络的交通拥堵预测方法及系统
CN117977568A (zh) 基于嵌套lstm和分位数计算的电力负荷预测方法
CN114944053A (zh) 一种基于时空超图神经网络的交通流预测方法
CN109615147A (zh) 一种未来72小时大气污染预报预警方法
CN113516304A (zh) 基于时空图网络的区域污染物时空联合预测方法及装置
CN107748940A (zh) 一种节电潜力量化预测方法
CN115099450A (zh) 基于融合模型的家庭碳排放监测核算平台
CN113033081A (zh) 一种基于som-bpnn模型的径流模拟方法及系统
CN115948964A (zh) 一种基于ga-bp神经网络的路面平整度预测方法
CN201716727U (zh) 基于遥感与gis的地理模拟系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190618

RJ01 Rejection of invention patent application after publication