CN109899441A - 一种半主动波浪补偿系统中主被动液压缸容量的分配方法 - Google Patents

一种半主动波浪补偿系统中主被动液压缸容量的分配方法 Download PDF

Info

Publication number
CN109899441A
CN109899441A CN201910230520.4A CN201910230520A CN109899441A CN 109899441 A CN109899441 A CN 109899441A CN 201910230520 A CN201910230520 A CN 201910230520A CN 109899441 A CN109899441 A CN 109899441A
Authority
CN
China
Prior art keywords
hydraulic cylinder
compensation
active
passive
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910230520.4A
Other languages
English (en)
Inventor
牛王强
顾伟
严云福
程向阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201910230520.4A priority Critical patent/CN109899441A/zh
Publication of CN109899441A publication Critical patent/CN109899441A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

本发明公开了一种半主动波浪补偿系统中主被动液压缸容量的分配方法,包括如下步骤:首先根据负载的重力和负载在波浪作用下的最大速度,计算出负载的峰值功率;然后根据液压系统的工作效率,计算出液压系统的峰值功率;最后令被动补偿液压缸的功率=液压系统的峰值功率*100%,主动补偿液压缸的功率=液压系统的峰值功率*20%,使得半主动波浪补偿系统的补偿效率大于90%。与现有技术先不,本发明所述的半主动波浪补偿系统的位移补偿效率能到达90%以上,具有显著的进步。

Description

一种半主动波浪补偿系统中主被动液压缸容量的分配方法
技术领域
本发明涉及海上重工领域领域,具体地说,特别涉及到一种半主动波浪补偿系统中主被动液压缸容量的分配方法。
背景技术
船体在海洋环境中会受波浪的影响而产生升沉运动,升沉运动通常会让水下吊装设备产生较大的偏移量,情况严重时,会因绳索的张力过大而导致绳索断裂,设备仪器丢失的工程事故。这对海上安全作业造成很大威胁。因此船用起重机多采用波浪补偿装置来减轻波浪升沉运动对海上作业的影响。
波浪补偿装置的目的是实现船舶升沉运动和负载运动的解耦,尽量减少船舶升沉运动对负载运动的影响。
升沉补偿系统主要分为三类,被动型波浪补偿系统(Passive HeaveCompensation,PHC)、主动型波浪补偿系统(Active Heave Compensation,AHC)、半主动型波浪补偿系统(Semi-active Heave Compensation system)。
被动型波浪补偿系统本质是一个振动隔离器,将船舶的升沉运动与负载运动进行隔离。被动型波浪补偿系统无需能量输入就可以工作。被动型补偿系统通常由液压缸和气体储能器构成。被动型波浪补偿系统的补偿动力来源于被补给船舶的升沉,当被补给船舶升沉时,依靠海浪的举升力和船舶自身的重力来压缩和释放蓄能器中的压缩空气,从而实现升沉补偿。该类型的波浪补偿系统是开环系统,几乎不消耗能源,因此应用比较广泛。被动型波浪补偿系统的缺点是受液压缸摩擦、气液转换效率等因素影响,补偿效率一般不超过80%。
主动型波浪补偿系统是闭环系统,需要能量输入。主动型波浪补偿系统首先要测量出船舶的升沉大小,然后根据该升沉大小主动控制驱动器的输出,产生一个反方向的输出,抵消掉船舶的升沉运动,保证负载的位移或者张力基本不变。主动型波浪补偿系统的补偿效率通常较高,其缺点是设计、制造成本高,故障定位、维修需专门人才、能耗大、电源需求大。
半主动补偿技术将AHC和PHC融合起来,AHC无需负责所有的补偿容量,大部分补偿容量由PHC承担。半主动系统的另一个优点是,AHC故障,PHC仍可以工作。半主动系统的缺点是包含AHC,系统较复杂,故障模式更多。
半主动波浪补偿系统被动液压缸和主动液压缸容量的分配是一个重要问题。有学者给出了一种钻井平台用半主动型波浪补偿系统被动液压缸和主动液压缸容量的分配方法,例如:某钻井平台波浪补偿能力为1M磅,主动补偿缸容量为0.1M磅,被动补偿缸容量为1M磅,系统的设计补偿效率为90-95%。
由于目前被动型补偿系统的补偿效率最高为80%,假设主动补偿系统的补偿效率为100%,则该钻井平台波浪补偿系统的补偿效率最高为90%。主动补偿系统的实际补偿效率一般达不到100%,则钻井平台补偿系统的实际补偿效率将小于90%,达不到设计要求。
发明内容
本发明的目的在于针对现有技术中的不足,提供一种半主动波浪补偿系统中主被动液压缸容量的分配方法,以解决现有技术中存在的问题。
本发明所解决的技术问题可以采用以下技术方案来实现:
一种半主动波浪补偿系统中主被动液压缸容量的分配方法,包括如下步骤:
1)根据负载的重力和负载在波浪作用下的最大速度,计算出负载的峰值功率;
2)根据液压系统的工作效率,计算出液压系统的峰值功率;
3)令被动补偿液压缸的功率=液压系统的峰值功率*100%,主动补偿液压缸的功率=液压系统的峰值功率*20%,使得半主动波浪补偿系统的补偿效率大于90%。
进一步的,设负载的重力为FL,负载在波浪作用下的最大速度为VLmax,负载的峰值功率为PLmax,则有PLmax=FL*vLmax
进一步的,所述液压系统的峰值功率为P,液压系统的效率为k,则有P=PLmax/k。
进一步的,所述半主动波浪补偿系统包括一被动补偿液压缸(1)和一主动补偿液压缸(2);所述被动补偿液压缸(1)和主动补偿液压缸(2)内的活塞分别与活塞杆(3)的两端连接。
进一步的,所述半主动波浪补偿系统包括一主动补偿液压缸、以及分别设置其两侧的两个被动补偿液压缸;被动补偿液压缸和主动补偿液压缸的活塞杆的一端连接活塞,活塞杆的另一端均与一同步杆连接。
进一步的,所述半主动波浪补偿系统包括一被动补偿液压缸、以及分别设置在两侧的两个主动补偿液压缸;被动补偿液压缸和主动补偿液压缸的活塞杆的一端连接活塞,活塞杆的另一端均与一同步杆连接。
进一步的,所述半主动波浪补偿系统包括一集成液压缸,在所述集成液压缸的内部开设有主动补偿腔,沿所述主动补偿腔设有环形主动补偿腔和环形被动补偿腔。
附图说明
图1为本发明所述的实施例1的示意图。
图2为本发明所述的实施例2的示意图。
图3为本发明所述的实施例3的示意图。
图4为本发明所述的实施例4的示意图。
图5为本发明的实验数据图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明所述的一种半主动波浪补偿系统中主被动液压缸容量的分配方法,包括如下步骤:
1)根据负载的重力和负载在波浪作用下的最大速度,计算出负载的峰值功率;
2)根据液压系统的工作效率,计算出液压系统的峰值功率;
3)令被动补偿液压缸的功率=液压系统的峰值功率*100%,主动补偿液压缸的功率=液压系统的峰值功率*20%,使得半主动波浪补偿系统的补偿效率大于90%。
某波浪补偿系统,要实现载荷为200T,波高为±2.5m,波浪周期为8s情况下的波浪补偿能力,补偿效率大于90%。
首先负载重力FL为FL=200*1000*9.8N。
在波浪诱导下的负载的最大速度VLmax=2π*2.5m/8s=1.96m/s。
则负载功率PL=FL*vL,vL是波浪诱导的负载速度。
负载的峰值功率PLmax=FL*vLmax=3.84MW。
设液压系统的效率为77%,则液压系统的峰值功率为PLmax/77%=5.01MW。
令被动补偿液压缸的功率=液压系统的峰值功率*100%,主动补偿液压缸的功率=液压系统的峰值功率*20%,则主动补偿液压缸的功率为1MW,被动补偿液压缸的功率为5MW。
将以上数据应用至采用如图4所示集成液压缸的200T半主动波浪补偿系统,液压系统的峰值功率为5MW,主动补偿液压缸的功率为1.2MW(考虑到主动补偿液压缸的实际补偿效率一般达不到100%,因此选用的主动补偿液压缸的峰值功率应稍大于其设计功率),被动补偿液压缸的峰值功率为5MW。
图5是波浪周期为8s,波浪幅值为1.5m时补偿系统位移响应试验结果,图中Command线是给定的波浪升沉信号,Actual线是测量到的负载位移,Error线是给定位移信号和测量到的负载位移的误差。即Command线是补偿前的船舶升沉信号,Error线是补偿后负载的残差运动,Error线上下方的两条平行线是10%的位移误差上限。
表1给出了半主动升沉补偿系统在不同波浪周期和波浪幅度下的位移补偿误差。从表1可以看出,当波浪幅值、波浪周期变化时,主被动组合升沉补偿系统能够很好的完成补偿控制,补偿误差在4%到9%之间波动,平均补偿误差为7.1%,平均补偿精度为92.9%。
表1:半主动升沉补偿系统位移补偿误差表
压力数据分析表明,主动液压缸的位移补偿效率是20.5%,被动液压缸的位移补偿效率为72.4%。被动液压缸的位移补偿效率与当前68-80%的被动型波浪补偿系统典型补偿效率相当。
本发明所述的容量分配方法适合于任何一种重载半主动液压缸波浪系统,例如具有以下结构的半主动液压缸波浪系统。
实施例1
参见图1,所述半主动波浪补偿系统包括一被动补偿液压缸(1)和一主动补偿液压缸(2);所述被动补偿液压缸(1)和主动补偿液压缸(2)内的活塞分别与活塞杆(3)的两端连接。
实施例2
参见图2,所述半主动波浪补偿系统包括一主动补偿液压缸(2)、以及分别设置其两侧的两个被动补偿液压缸(1);所述被动补偿液压缸(1)和主动补偿液压缸(2)的活塞杆(3)的一端连接活塞,活塞杆(3)的另一端均与一同步杆(4)连接。
实施例3
参见图3,所述半主动波浪补偿系统包括一被动补偿液压缸(1)、以及分别设置在两侧的两个主动补偿液压缸(2);所述被动补偿液压缸(1)和主动补偿液压缸(2)的活塞杆(3)的一端连接活塞,活塞杆(3)的另一端均与一同步杆(4)连接。
实施例4
参见图4,所述半主动波浪补偿系统包括一集成液压缸(5),在所述集成液压缸(5)的内部开设有主动补偿腔(51),沿所述主动补偿腔(51)设有环形主动补偿腔(52)和环形被动补偿腔(53)。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种半主动波浪补偿系统中主被动液压缸容量的分配方法,其特征在于,包括如下步骤:
1)根据负载的重力和负载在波浪作用下的最大速度,计算出负载的峰值功率;
2)根据液压系统的工作效率,计算出液压系统的峰值功率;
3)令被动补偿液压缸的功率=液压系统的峰值功率*100%,主动补偿液压缸的功率=液压系统的峰值功率*20%,使得半主动波浪补偿系统的补偿效率大于90%。
2.根据权利要求1所述的半主动波浪补偿系统中主被动液压缸容量的分配方法,其特征在于,设负载的重力为FL,负载在波浪作用下的最大速度为VLmax,负载的峰值功率为PLmax,则有PLmax=FL*vLmax
3.根据权利要求2所述的半主动波浪补偿系统中主被动液压缸容量的分配方法,其特征在于,所述液压系统的峰值功率为P,液压系统的效率为k,则有P=PLmax/k。
4.根据权利要求1所述的半主动波浪补偿系统中主被动液压缸容量的分配方法,其特征在于,所述半主动波浪补偿系统包括一被动补偿液压缸(1)和一主动补偿液压缸(2);
所述被动补偿液压缸(1)和主动补偿液压缸(2)内的活塞分别与活塞杆(3)的两端连接。
5.根据权利要求1所述的半主动波浪补偿系统中主被动液压缸容量的分配方法,其特征在于,所述半主动波浪补偿系统包括一主动补偿液压缸(2)、以及分别设置其两侧的两个被动补偿液压缸(1);
所述被动补偿液压缸(1)和主动补偿液压缸(2)的活塞杆(3)的一端连接活塞,活塞杆(3)的另一端均与一同步杆(4)连接。
6.根据权利要求1所述的半主动波浪补偿系统中主被动液压缸容量的分配方法,其特征在于,所述半主动波浪补偿系统包括一被动补偿液压缸(1)、以及分别设置在两侧的两个主动补偿液压缸(2);
所述被动补偿液压缸(1)和主动补偿液压缸(2)的活塞杆(3)的一端连接活塞,活塞杆(3)的另一端均与一同步杆(4)连接。
7.根据权利要求1所述的半主动波浪补偿系统中主被动液压缸容量的分配方法,其特征在于,所述半主动波浪补偿系统包括一集成液压缸(5),在所述集成液压缸(5)的内部开设有主动补偿腔(51),沿所述主动补偿腔(51)设有环形主动补偿腔(52)和环形被动补偿腔(53)。
CN201910230520.4A 2019-03-26 2019-03-26 一种半主动波浪补偿系统中主被动液压缸容量的分配方法 Pending CN109899441A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910230520.4A CN109899441A (zh) 2019-03-26 2019-03-26 一种半主动波浪补偿系统中主被动液压缸容量的分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910230520.4A CN109899441A (zh) 2019-03-26 2019-03-26 一种半主动波浪补偿系统中主被动液压缸容量的分配方法

Publications (1)

Publication Number Publication Date
CN109899441A true CN109899441A (zh) 2019-06-18

Family

ID=66952997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910230520.4A Pending CN109899441A (zh) 2019-03-26 2019-03-26 一种半主动波浪补偿系统中主被动液压缸容量的分配方法

Country Status (1)

Country Link
CN (1) CN109899441A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943636A (zh) * 2012-11-22 2013-02-27 中国石油大学(北京) 海洋浮式钻井平台绞车升沉补偿装置
CN203476248U (zh) * 2013-09-30 2014-03-12 四川宏华石油设备有限公司 半主动型天车升沉补偿装置
CN105203301A (zh) * 2015-11-12 2015-12-30 西南石油大学 一种天车主被动联合升沉补偿试验装置
CN106407615A (zh) * 2016-11-14 2017-02-15 哈尔滨工程大学 一种深海起重机被动式升沉补偿系统的仿真方法
CN106640780A (zh) * 2017-02-24 2017-05-10 上海振华重工(集团)股份有限公司 一种容积式升沉补偿液压系统和升沉补偿吊装系统
CN107060662A (zh) * 2017-02-27 2017-08-18 中建钢构有限公司 半主动升沉补偿装置控制系统
CN107473118A (zh) * 2017-10-11 2017-12-15 中国海洋大学 一种起重机的液压缸式半主动升沉补偿装置
CN208470082U (zh) * 2018-06-29 2019-02-05 山东大学 一种基于复合式二级液压缸的半主动升沉补偿系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943636A (zh) * 2012-11-22 2013-02-27 中国石油大学(北京) 海洋浮式钻井平台绞车升沉补偿装置
CN203476248U (zh) * 2013-09-30 2014-03-12 四川宏华石油设备有限公司 半主动型天车升沉补偿装置
CN105203301A (zh) * 2015-11-12 2015-12-30 西南石油大学 一种天车主被动联合升沉补偿试验装置
CN106407615A (zh) * 2016-11-14 2017-02-15 哈尔滨工程大学 一种深海起重机被动式升沉补偿系统的仿真方法
CN106640780A (zh) * 2017-02-24 2017-05-10 上海振华重工(集团)股份有限公司 一种容积式升沉补偿液压系统和升沉补偿吊装系统
CN107060662A (zh) * 2017-02-27 2017-08-18 中建钢构有限公司 半主动升沉补偿装置控制系统
CN107473118A (zh) * 2017-10-11 2017-12-15 中国海洋大学 一种起重机的液压缸式半主动升沉补偿装置
CN208470082U (zh) * 2018-06-29 2019-02-05 山东大学 一种基于复合式二级液压缸的半主动升沉补偿系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐宇杰: "主被动联合天车升沉补偿装置研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
渠迎锋: "天车升沉补偿装置数值模拟仿真", 《矿冶》 *

Similar Documents

Publication Publication Date Title
US10843904B2 (en) Offshore crane heave compensation control system and method using visual ranging
CN102943636B (zh) 海洋浮式钻井平台绞车升沉补偿装置
US20190292023A1 (en) Transportable inline heave compensator
CN109625177B (zh) 一种三自由度波浪补偿平台
CN104627857A (zh) 主动式波浪补偿实验装置
CN106629486A (zh) 一种基于plc的液压自动平衡控制系统
CN106640780B (zh) 一种容积式升沉补偿液压系统和升沉补偿吊装系统
CN104828721A (zh) 自平衡补偿系统、船用起重机及其控制方法
CN109733530A (zh) 一种串并联六自由度主动波浪补偿平台及其补偿方法
CN107060662B (zh) 半主动升沉补偿装置控制系统
CN101780923A (zh) 超大型浮吊的重载打捞波浪补偿系统
CN106286428A (zh) 一种半主动式升沉补偿装置液压控制系统
AU2017222997B2 (en) Mobile Active Heave Compensator
CN102259797A (zh) 液压驱动的高精度水平调节吊具
CN106407615B (zh) 一种深海起重机被动式升沉补偿系统的仿真方法
CN111720485A (zh) 一种内嵌陀螺式六自由度稳定平台
CN103950846A (zh) 一种波浪补偿器的控制装置
CN107860662A (zh) 一种大型深水主被动联合波浪补偿装置全系统陆上试验方法
CN109899441A (zh) 一种半主动波浪补偿系统中主被动液压缸容量的分配方法
CN114013582A (zh) 一种具有波浪补偿功能的无人化运输船舶
CN205170238U (zh) 一种船载升沉补偿系统
CN104627828B (zh) 带载下放装置的脱钩控制方法、设备、系统及工程机械
CN103231999A (zh) 起重机及其超起变幅油缸的控制方法和装置
CN109703696A (zh) 用于rov收放的被动式波浪补偿装置
US11542758B1 (en) Linkage test apparatus for deepwater drilling riser and hang-off system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190618

RJ01 Rejection of invention patent application after publication