CN109891225B - 氟类气体检测装置及其的制造方法 - Google Patents

氟类气体检测装置及其的制造方法 Download PDF

Info

Publication number
CN109891225B
CN109891225B CN201780066530.8A CN201780066530A CN109891225B CN 109891225 B CN109891225 B CN 109891225B CN 201780066530 A CN201780066530 A CN 201780066530A CN 109891225 B CN109891225 B CN 109891225B
Authority
CN
China
Prior art keywords
transition metal
metal oxide
fluorine
hydrogen
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780066530.8A
Other languages
English (en)
Other versions
CN109891225A (zh
Inventor
徐亨卓
沈高云
李相渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajou University Industry Academic Cooperation Foundation
Original Assignee
Ajou University Industry Academic Cooperation Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajou University Industry Academic Cooperation Foundation filed Critical Ajou University Industry Academic Cooperation Foundation
Publication of CN109891225A publication Critical patent/CN109891225A/zh
Application granted granted Critical
Publication of CN109891225B publication Critical patent/CN109891225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开氟类气体检测装置。氟类气体检测装置包括:基板;以及检测层,配置于上述基板,包含氢化过渡金属氧化物并在与氟类气体反应的情况下,颜色发生变化。这种氟类气体检测装置可通过检测层的颜色变化来检测氟类气体。

Description

氟类气体检测装置及其的制造方法
技术领域
本发明涉及氟类气体检测装置及其的制造方法,并且可通过视觉性及电性检测氟类气体。
背景技术
氟类气体用于如显示器、半导体等生产工序的多种工业领域中。这种氟类气体对人体非常有害,即使在低浓度吸入的情况下,也会引起恶心,当接触时,引起冻伤或烧伤等。
然而,目前,在有关氟的检测的方面上,大多数传感器以利用电解质溶液的电化学电池形态来检测水中的氟化物(Fluoride)离子。
因此,迫切需要开发能够检测出气体形态的氟的直观性检测方式的传感器。
发明内容
要解决的技术问题
本发明一目的在于,提供通过氢还原的过渡金属氧化物的颜色变化来检测氟类气体的氟类气体检测装置。
本发明的另一目的在于,提供上述氟类气体检测装置的制造方法。
技术方案
本发明实施例的氟类气体检测装置可包括:基板;以及检测层,配置于上述基板,包含氢化过渡金属氧化物并在与氟类气体反应的情况下,颜色发生变化。
在一实施例中,上述氟类气体可包含氟化气体、氟化氙气体、氟化碳气体或氟化硫气体。
在一实施例中,上述基板可由选自由纸、纤维、高分子、陶瓷、玻璃以及金属组成的组中的至少一种物质形成。
在一实施例中,上述过渡金属氧化物可包含选自由氧化钨(WOx)、氧化钼(MoOx)以及氧化铌(NbOx)组成的组中的至少一种。
本发明实施例的氟类气体检测装置的制造方法可包括:在基板上形成过渡金属氧化物薄膜的步骤;以及在上述过渡金属氧化物薄膜掺杂氢的步骤。
在一实施例中,上述过渡金属氧化物薄膜可选自由氧化钨(WOx)、氧化钼(MoOx)以及氧化铌(NbOx)组成的组中的至少一种形成。
在一实施例中,在上述基板上形成过渡金属氧化物薄膜的步骤可包括在上述基板上涂敷过渡金属氧化物纳米粉末的步骤,在上述过渡金属氧化物薄膜掺杂氢的步骤可包括在氢气氛下用紫外线照射上述过渡金属氧化物薄膜的步骤。
在一实施例中,在上述基板上形成过渡金属氧化物薄膜的步骤可包括在上述基板上利用水热合成法来使多个过渡金属氧化物纳米结构体生长的步骤,在上述过渡金属氧化物薄膜掺杂氢的步骤可包括在氢气氛下用紫外线照射上述过渡金属氧化物薄膜的步骤。
在一实施例中,在上述基板上形成过渡金属氧化物薄膜的步骤可包括通过溅射方法在上述基板上形成过渡金属氧化物薄膜的步骤,在上述过渡金属氧化物薄膜掺杂氢的步骤可包括在氢气氛下用紫外线照射上述过渡金属氧化物薄膜的步骤。
技术效果
根据本发明的氟类气体检测装置,通过包含氢化过渡金属氧化物的检测层的颜色变化,可迅速并准确地检测氟类气体。
附图说明
图1为用于说明本发明的实施例的氟类气体检测装置的图;
图2为掺杂氢之前的氧化钨薄膜(UV-treated)、掺杂氢之后的氧化钨薄膜以及暴露于XeF2气体的氧化钨薄膜的多个图;
图3为形成于掺氟氧化锡(Fluorine doped Tin Oxide,FTO)基板上的掺杂氢之前的氧化钨薄膜(UV-treated)以及暴露于XeF2气体的氧化钨薄膜的透光率测量图形;
图4为形成于玻璃(Glass)基板上的掺杂氢之前的氧化钨薄膜、掺杂氢之后的氧化钨薄膜以及暴露于XeF2气体的氧化钨薄膜的透光率测量图形。
附图标记说明
100:氟类气体检测装置
110:基板
120:检测层
具体实施方式
以下,通过参照附图详细说明本发明实施例。本发明可以进行各种变更,可以具有多种形态,因此将在附图中示例特定实施例并在本文中进行详细说明。但本发明并不限于特定公开的形态,而要理解为涵盖包括在本发明的思想以及技术范围的所有变更、均等物或替代物。在说明附图时,类似的附图标记使用于类似的结构要素上。在附图中,为了本发明的明确性,放大示出了结构物的尺寸。
在本发明中使用的术语只是为了说明特定实施例而使用的,并非用于限定本发明。除非上下文另有明确规定,否则单数表达包括复数表达。要理解,在本发明中,“包括”或“具有”等术语为要想指定在说明书中所记载的特征、数字、步骤、动作、结构要素或者它们的组合的存在,事先不排除一个或多个其它特征、数字、步骤、动作、结构要素或它们的组合的存在或附加可能性。
除非另外定义,否则包括技术性或科学性术语的这里所使用的所有术语具有与本发明所属的技术领域中的普通技术人员通常理解的含义相同的含义。应解释,与在常用词典中定义的术语相同的术语具有与相关技术文脉上的含义一致的含义,除非在本发明中明确定义,不应解释为理想化或过于形式化的含义。
图1为用于说明本发明的实施例的氟类气体检测装置的图。
参照图1,本发明实施例的氟类气体检测装置100可包括基板110以及检测层120。上述氟类气体为包含氟元素(F)的气体,可包含如XeF2、XeF4、XeF6等的氟化氙气体、如CF4等的氟化碳气体、如SF6等的氟化硫气体。
作为上述基板110可以使用各种物质及结构的基板,没有特别的限制。例如,作为上述基板110,可以使用由纸、纤维、高分子、陶瓷、玻璃、金属等形成的基板。
上述检测层120以薄膜形态配置于上述基板110的一面上,在暴露于上述氟气的情况下,引起颜色变化。即,上述氟类气体检测装置100可通过上述检测层120的颜色变化来检测氟气。
在一实施例中,上述检测层120可包含氢化过渡金属氧化物。在本发明中,术语“氢化过渡金属氧化物”意味着掺杂氢的过渡金属氧化物,掺杂的氢离子可以与过渡金属氧化物内部的氧离子或过渡金属离子相结合。
在本发明的一实施例中,上述过渡金属氧化物可包含氧化钨(WOx)、氧化钼(MoOx)、氧化铌(NbOx)等。这些过渡金属氧化物可以通过掺入氢离子带有颜色。例如,在带有明亮透明的蓝色的三氧化钨(WO3)中掺杂氢的情况下,颜色变为绀青色,在透明无色的三氧化钼(MoO3)中掺杂氢的情况下,颜色变为蓝色,在带有浅蓝色的五氧化二铌(Nb2O5)中掺杂氢的情况下,颜色变为黄色。这种颜色变化不仅使注入到过渡金属氧化物内部的多个电子因氢的掺杂而还原过渡金属离子,而且还在固体过渡金属氧化物内部形成极化子(polaron)来引起费米能级的变化,其结果,判断出这是因为近红外线或可见光的吸收量增加而发生。
上述检测层120可以在上述基板110上通过多种方法形成。
在一实施例中,上述检测层120可通过以下方法形成:将利用溶液合成制备的过渡金属纳米粉末涂敷于上述基板110上,然后在氢气氛下照射紫外线(UV),并在上述过渡金属氧化物纳米粉末中掺杂氢。
在另一实施例中,上述检测层120可通过以下方法形成:在上述基板110上利用水热合成法使过渡金属氧化物的纳米结构体生长,然后在氢气氛下照射紫外线(UV),并在上述过渡金属氧化物纳米结构体掺杂氢。
在又一实施例中,上述检测层120通过以下方法形成:在上述基板110上,以溅射的方法形成过渡金属氧化物薄膜,然后在氢气氛下照射紫外线(UV),并在上述过渡金属氧化物掺杂氢气。
当在上述检测层120的掺杂有氢的过渡金属氧化物暴露于上述氟类气体的情况下,上述被掺杂的氢可以被氟离子取代,其结果,通过氢的掺杂被还原的过渡金属离子再次被氧化,并引起上述检测层120的颜色变化。例如,在上述氢化过渡金属氧化物暴露于上述氟类气体的情况下,具有高电负性的多个氟离子中的一部分渗透到氢离子的位置,并与氧离子或过渡金属离子结合,而其他一部分氟离子与氢离子反应并生成氟化氢气体。其结果,暴露于氟类气体的氢化过渡金属氧化物可引起颜色变化,本发明实施例的氟类气体检测装置100可通过这种氢化过渡金属氧化物的颜色变化检测氟类气体。
图2为掺杂氢之前的氧化钨薄膜、掺杂氢之后的氧化钨薄膜(“UV-treated”)以及暴露于XeF2气体的氧化钨薄膜的多个图。
参照图2,可以确认掺杂氢之前的氧化钨具有接近明亮透明的灰色,而掺杂氢的氧化钨呈绀青色。而且,可以确认,在掺杂氢的氧化钨暴露于XeF2的情况下,再次变为明亮透明的颜色。
图3为形成于掺氟氧化锡(Fluorine doped Tin Oxide,FTO)基板上的掺杂氢之前的氧化钨薄膜(“UV-treated”)以及暴露于XeF2气体的氧化钨薄膜的透光率测量图形,图4为形成于玻璃(Glass)基板上的掺杂氢之前的氧化钨薄膜、掺杂氢之后的氧化钨薄膜以及暴露于XeF2气体的氧化钨薄膜的透光率测量图形。
参照图3以及图4,可以确认,在将掺杂有氢的氧化钨薄膜暴露于XeF2的情况下,在可见光区域以及红外线区域中,透光率明显降低。据判断,这是因为在氟离子与氧化钨的钨离子相结合的情况下,带隙(Band gap)增加。
在本发明的氟类气体检测装置100中,通过包含氢化过渡金属氧化物的检测层120的颜色变化,可迅速并准确检测氟类气体。
应理解,尽管在以上通过参照本发明的优选实施例进行了说明,本领域技术人员在不脱离以下发明要求范围中所记载的本发明的思想以及范围的情况下,可以对本发明进行多种修改及变更。

Claims (7)

1.一种氟类气体检测装置,其特征在于,包括:
基板;以及
检测层,配置于上述基板,包含氢化过渡金属氧化物并在与氟类气体反应的情况下,颜色发生变化,
上述过渡金属氧化物包含选自由氧化钨WOx、氧化钼MoOx以及氧化铌NbOx组成的组中的至少一种,
所述氢化过渡金属氧化物是在氢气氛围下照射紫外线,并在上述过渡金属氧化物的纳米粉末或纳米结构体中掺杂氢而形成的。
2.根据权利要求1所述的氟类气体检测装置,其特征在于:
上述氟类气体包含氟化氙气体、氟化碳气体或氟化硫气体。
3.根据权利要求1所述的氟类气体检测装置,其特征在于:
上述基板由选自由纸、纤维、高分子、陶瓷、玻璃以及金属组成的组中的至少一种物质形成。
4.一种氟类气体检测装置的制造方法,其特征在于,包括:
在基板上形成过渡金属氧化物薄膜的步骤;以及
在上述过渡金属氧化物薄膜掺杂氢的步骤,
上述过渡金属氧化物薄膜由选自由氧化钨WOx、氧化钼MoOx以及氧化铌NbOx组成的组中的至少一种形成,
在上述过渡金属氧化物薄膜掺杂氢的步骤是在氢气氛围下照射紫外线,并在过渡金属氧化物的纳米粉末或纳米结构体中掺杂氢而形成氢化过渡金属氧化物。
5.根据权利要求4所述的氟类气体检测装置的制造方法,其特征在于:
在上述基板上形成过渡金属氧化物薄膜的步骤包括在上述基板上涂敷过渡金属氧化物纳米粉末的步骤,
在上述过渡金属氧化物薄膜掺杂氢的步骤包括在氢气氛围下用紫外线照射上述过渡金属氧化物薄膜的步骤。
6.根据权利要求4所述的氟类气体检测装置的制造方法,其特征在于:
在上述基板上形成过渡金属氧化物薄膜的步骤包括在上述基板上利用水热合成法来使多个过渡金属氧化物纳米结构体生长的步骤,
在上述过渡金属氧化物薄膜掺杂氢的步骤包括在氢气氛围下用紫外线照射上述过渡金属氧化物薄膜的步骤。
7.根据权利要求4所述的氟类气体检测装置的制造方法,其特征在于:
在上述基板上形成过渡金属氧化物薄膜的步骤包括在上述基板上以溅射方法形成过渡金属氧化物薄膜的步骤,
在上述过渡金属氧化物薄膜掺杂氢的步骤包括在氢气氛围下用紫外线照射上述过渡金属氧化物薄膜的步骤。
CN201780066530.8A 2016-10-28 2017-10-27 氟类气体检测装置及其的制造方法 Active CN109891225B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160141778A KR101854533B1 (ko) 2016-10-28 2016-10-28 불소계 가스 감지 장치 및 이의 제조방법
KR10-2016-0141778 2016-10-28
PCT/KR2017/011972 WO2018080220A1 (ko) 2016-10-28 2017-10-27 불소계 가스 감지 장치 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN109891225A CN109891225A (zh) 2019-06-14
CN109891225B true CN109891225B (zh) 2022-02-11

Family

ID=62023822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780066530.8A Active CN109891225B (zh) 2016-10-28 2017-10-27 氟类气体检测装置及其的制造方法

Country Status (3)

Country Link
KR (1) KR101854533B1 (zh)
CN (1) CN109891225B (zh)
WO (1) WO2018080220A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670988B (zh) * 2021-08-11 2024-09-03 山东智微检测科技有限公司 一种色彩与电导的双模气体传感装置及其制备和使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086258A2 (en) * 2000-05-05 2001-11-15 Midwest Research Institute Pd/ni-wo3 anodic double layer colormetric gas sensor
JP2006342411A (ja) * 2005-06-10 2006-12-21 Japan Atomic Energy Agency 光学式水素検知材料用酸化タングステン薄膜の作製方法
KR20100091695A (ko) * 2009-02-11 2010-08-19 고려대학교 산학협력단 플루오르 이온 선택성을 갖는 칼릭스[4]아렌 유도체, 이의 제조 방법, 이를 이용한 플루오르 이온 검출 방법 및 화학센서
KR20120061718A (ko) * 2010-12-03 2012-06-13 숭실대학교산학협력단 선택적 가스투과성 전이금속 구조체 및 이의 제조방법
KR101519971B1 (ko) * 2015-01-26 2015-05-15 연세대학교 산학협력단 가스 센서 및 이의 제조 방법
CN105628750A (zh) * 2016-01-21 2016-06-01 晋江知保企业管理咨询有限公司 六氟化硫气体纯度检测装置
CN105717109A (zh) * 2016-04-21 2016-06-29 林业城 一种基于气致变色功能的氢气传感器
CN105928936A (zh) * 2016-04-21 2016-09-07 林业城 一种能够可视化检测气体泄露的通风橱
KR101672143B1 (ko) * 2015-09-25 2016-11-03 아주대학교산학협력단 불소계 가스 감지 장치 및 이의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839767A (en) * 1987-02-02 1989-06-13 Mitsubishi Denki Kabushiki Kaisha Element and device for detecting internal faults in an insulating gas charged electrical apparatus
KR101358245B1 (ko) * 2012-03-19 2014-02-07 연세대학교 산학협력단 수소 센서 및 수소 센서 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086258A2 (en) * 2000-05-05 2001-11-15 Midwest Research Institute Pd/ni-wo3 anodic double layer colormetric gas sensor
JP2006342411A (ja) * 2005-06-10 2006-12-21 Japan Atomic Energy Agency 光学式水素検知材料用酸化タングステン薄膜の作製方法
KR20100091695A (ko) * 2009-02-11 2010-08-19 고려대학교 산학협력단 플루오르 이온 선택성을 갖는 칼릭스[4]아렌 유도체, 이의 제조 방법, 이를 이용한 플루오르 이온 검출 방법 및 화학센서
KR20120061718A (ko) * 2010-12-03 2012-06-13 숭실대학교산학협력단 선택적 가스투과성 전이금속 구조체 및 이의 제조방법
KR101519971B1 (ko) * 2015-01-26 2015-05-15 연세대학교 산학협력단 가스 센서 및 이의 제조 방법
KR101672143B1 (ko) * 2015-09-25 2016-11-03 아주대학교산학협력단 불소계 가스 감지 장치 및 이의 제조방법
CN105628750A (zh) * 2016-01-21 2016-06-01 晋江知保企业管理咨询有限公司 六氟化硫气体纯度检测装置
CN105717109A (zh) * 2016-04-21 2016-06-29 林业城 一种基于气致变色功能的氢气传感器
CN105928936A (zh) * 2016-04-21 2016-09-07 林业城 一种能够可视化检测气体泄露的通风橱

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Detection of Fluorine Gas Using Reduced TiO2;GoWoon Shim等;《Materials Research Society of Korea Fall Conference and the 28th Advanced Material Symposium》;20150514;摘要 *
GoWoon Shim等.Detection of Fluorine Gas Using Reduced TiO2.《Materials Research Society of Korea Fall Conference and the 28th Advanced Material Symposium》.2015,第184页. *
Hydrogenated Pd Doped TiO2 Nanohybrid for Detecting Fluorinated Gas;GoWoon Shim等;《Materials Research Society》;20160606;全文 *
Optical response of WO3nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration;Yaacob Mohd Hanif等;《SENSORS AND ACTUATORS B-CHEMICAL》;20121207;第177卷;摘要,实验部分,图6-7 *
三氧化钼薄膜材料的制备及其变色性能的研究;阳雅丽等;《中国陶瓷》;20120705(第07期);全文 *

Also Published As

Publication number Publication date
WO2018080220A1 (ko) 2018-05-03
CN109891225A (zh) 2019-06-14
KR101854533B1 (ko) 2018-05-03

Similar Documents

Publication Publication Date Title
Aragón et al. Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method
Van Duy et al. Effects of gamma irradiation on hydrogen gas-sensing characteristics of Pd–SnO2 thin film sensors
Xue et al. Improving gas-sensing performance based on MOS nanomaterials: a review
Liu et al. A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition
KR101672143B1 (ko) 불소계 가스 감지 장치 및 이의 제조방법
Bao et al. H2S sensor based on two-dimensional MoO3 nanoflakes: Transition between sulfidation and oxidation
Choi et al. Ultraviolet photoactivated room temperature NO2 gas sensor of ZnO hemitubes and nanotubes covered with TiO2 nanoparticles
Meng et al. Solvothermal synthesis of dual-porous CeO2-ZnO composite and its enhanced acetone sensing performance
Zhang et al. Metal oxide semiconductor sensors for triethylamine detection: sensing performance and improvements
Kim et al. Indium-implantation-induced enhancement of gas sensing behaviors of SnO2 nanowires by the formation of homo-core–shell structure
Hsueh et al. A La2O3 nanoparticle SO2 gas sensor that uses a ZnO thin film and Au adsorption
Petronella et al. TiO2 nanocrystal based coatings for the protection of architectural stone: the effect of solvents in the spray-coating application for a self-cleaning surfaces
CN109891225B (zh) 氟类气体检测装置及其的制造方法
Hung et al. A vertically integrated ZnO-based hydrogen sensor with hierarchical bi-layered inverse opals
CN103578609B (zh) 导电性膜
Liu et al. High-performance PANI-based ammonia gas sensor promoted by surface nanostructuralization
Bratovcic Recent developments on metal oxide-based gas sensors for environmental pollution control
Khan et al. Single component: bilayer TiO2 as a durable antireflective coating
Abdelkarem et al. Efficient room temperature carbon dioxide gas sensor based on barium doped CuO thin films
Lin et al. Nanotechnology on toxic gas detection and treatment
Aleksanyan et al. Flexible sensor based on multi-walled carbon nanotube-SnO2 nanocomposite material for hydrogen detection
Hotovy et al. Patterning of titanium oxide nanostructures by electron-beam lithography combined with plasma etching
Čižmar et al. Dual use of copper-modified TiO2 nanotube arrays as material for photocatalytic NH3 degradation and relative humidity sensing
Liu et al. Effect of ultraviolet light exposure on a HfOx RRAM device
Mi et al. Multifunctional devices based on SnO2@ rGO-coated fibers for human motion monitoring, ethanol detection, and photo response

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant