CN109887337A - 一种基于内河航道拥堵辨识的测试器设置方法 - Google Patents

一种基于内河航道拥堵辨识的测试器设置方法 Download PDF

Info

Publication number
CN109887337A
CN109887337A CN201910184471.5A CN201910184471A CN109887337A CN 109887337 A CN109887337 A CN 109887337A CN 201910184471 A CN201910184471 A CN 201910184471A CN 109887337 A CN109887337 A CN 109887337A
Authority
CN
China
Prior art keywords
tester
congestion
navigation channel
ship
traffic flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910184471.5A
Other languages
English (en)
Inventor
刘清
陈永军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910184471.5A priority Critical patent/CN109887337A/zh
Publication of CN109887337A publication Critical patent/CN109887337A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于内河航道拥堵辨识的测试器设置方法,该方法包括以下步骤:1)筛选并处理得到航道拥堵辨识指标;2)定义船舶交通流排队程度测试器;3)确定船舶交通流排队程度测试器位置;4)定义拥堵测试器;5)依据船舶交通流疏导控制状态界定拥堵测试器位置;6)根据航道的空间分布条件与现有的AIS和雷达系统进行综合布置。本发明依据航道的拥堵特性和船舶交通疏导控制的作用时效,对内河航道的物理条件进行综合考量,合理地布置几组测试器,以期精准获取内河航道的拥堵状态。

Description

一种基于内河航道拥堵辨识的测试器设置方法
技术领域
本发明涉及水上智能交通技术领域,更具体地说,涉及一种基于内河航道拥堵辨识的测试器设置方法。
背景技术
随着内河航道的逐渐发展、船舶保有量的不断增加,内河航道不可避免的出现了船舶拥堵等问题,严重阻碍了整个内河航运的发展。为改善内河航道的拥堵状况,在航道上布置测试器辨识航道的拥堵情况,并采取感应疏导控制,成为有效调控航道拥堵的手段。目前,国内已发明出一种基于AIS和雷达系统的交通流检测方法,该方法通过在航道的某一断面线上设置基站与设备,来采集船舶的动态数据和静态数据,但由于每个汇入航道的长度不一,在船舶交通流疏导控制方面并不能保证各汇入航道的平等性,使得现有检测方法仍然存在一定漏洞,因此,构建一种基于船舶交通流拥堵辨识的测试器布置方法具有较大的创新性和现实意义。
发明内容
为克服现有技术存在的缺陷,本发明提供一种基于内河航道拥堵辨识的测试器设置方法,该技术的基本思想是基于内河航道的拥堵特性和船舶交通流控制的作用时效,合理地设置两组或三组测试器,以期精准地获取航道的拥堵状态,为航道的管理与决策提供有效讯息。
本发明的目的是通过以下技术方案来实现的:
设计一种基于内河航道拥堵辨识的测试器设置方法,该方法包括以下步骤:
Step1、筛选并处理得到船舶拥堵辨识指标。该步骤包括以下过程:
Step1-1、获取时间占有率:通过测试器测量,得到在一段时间内通过测试器的船舶占有时间,并且取船舶占有时间与该时段长度之比为时间占有率。
Step1-2、处理得到滚动时间占有率。
以单个时间占有率来研判船舶拥堵状态,易受到一些外界因素的干扰,如大幅度转向避让,特殊船舶通过等,因此,为提高船舶拥堵辨识的实时性与精准性,本发明将时间占有率处理后得到的滚动时间占有率来表示船舶拥堵辨识指标,滚动时间占有率是指以Δt为滚动间隔,反映一系列连续的时间间隔T内船舶排队测试器附近的船舶交通状态。
公式(1)中:T是指滚动时间占有率的计算时间间隔,单位为s;
ti是指第i个时间间隔T内船舶排队测试器的时间,单位为s;
Δt是指滚动步长,即滚动时间占有率的滚动间隔,单位为s;
ui是指第i个时间间隔T内的时间占有率。
Step2、定义船舶排队程度测试器。该步骤包括以下过程:
为更加明确地描述航道的拥堵状况,本发明将船舶的排队长度作为船舶拥堵状态参数。由于各进口航道长度不同,为了保证船舶汇入航道的公平性,本发明提出船舶排队程度这一概念(即船舶排队长度与该汇入航道的航段长度的比值)。鉴于此组测试器是依据船舶排队程度所进行的界定,因此将其命名为船舶排队程度测试器;
公式(2)中:Qi是指汇入航道i的船舶排队程度;
Ci是指汇入航道i的船舶排队长度;
di是指汇入航道i的航段长度。
Step3、确定船舶排队程度测试器位置。该步骤包括以下过程:
Step3-1、设定船舶排队程度阈值。
根据航道的条件和疏导控制拥堵程度,设置船舶排队程度阈值时,拥堵级别为一般拥堵;当时,拥堵级别为较重拥堵;当时,拥堵级别为严重拥堵;当时,拥堵级别为特别拥堵。
Step3-2、计算船舶排队程度测试器。
根据步骤Step2中船舶排队程度的定义,计算得到第一组测试器的设置位置,
公式(3)中:是指汇入航道i的船舶排队程度测试器布置位置,单位为nm;
di是指汇入航道i的长度,单位为nm(海里);
是指汇入航道i的船舶排队程度阈值。
Step4、定义拥堵测试器。
步骤Step3的船舶排队程度测试器辨识到拥堵状态时,为防止由于瓶颈辨识的延迟所造成的船舶交通流排队上溯,需要依据上游驶入船舶交通流流量预留一定的空间,布置第二组测试器,此测试器为步骤Step4定义的拥堵测试器,位置在y2处。
Step5、依据船舶交通流控制状态确定拥堵测试器位置。该步骤包括以下过程:
Step5-1、获取船舶交通流疏导控制状态基本参数。该步骤包括以下过程:
Step5-1-1、采集内河航道的基本信息。
获取内河航道中上游驶入的各转向航道的航道数XS、Xl、Xr,以及各个相位最大上下行时间间隔tmaxs、tmaxl、tmaxr,其中XS表示直行船舶交通流航道数,tmaxs表示所在相位的最大上下行时间间隔;Xl表示红灯会遇船舶交通流航道数,tmaxl表示所在相位的最大上下行时间间隔;Xr表示绿灯会遇船舶交通流的航道数,tmaxr表示所在相位的最大上下行时间间隔。
Step5-1-2、获取各转向航道的饱和流率。
现场采集饱和船头时距然后计算出饱和流率,计算公式如下:
公式(4)中:Pi是指航道i的饱和船舶交通流流量,单位为艘/h;
是指代表汇入航道i测得的饱和船头时距,单位为s;
Step5-1-3、获取判别间隔时间。
首先将判别间隔时间初步设定为滚动时间占有率的计算时间间隔T。但受大型船舶的外部干扰及上游交叉航道口释放规律的影响,滚动时间占有率往往会大于判断阈值,这将导致测试器处于失控的状态,进而影响时间判别的精准性,由此可见,单个的滚动时间占有率往往不能准确表示测试器附近的船舶交通流状态,因此本发明将连续X(X为整数)个时间占有率的最小值作为判别值,由此得出船舶拥堵检测的判别间隔时间为XT。
Step5-1-4、获取船舶交通流拥堵疏导控制时间。
当内河航道交叉口出现船舶拥堵现象时,需采取船舶交通疏导控制策略,往往会存在一定延迟。在此需对当前周期内延迟的时间进行研判:
①当前信号灯为上下行时间间隔,则需在该上下行时间间隔释放完毕后,再启动瓶颈控制,则瓶颈控制的效果延迟时间最大值为该信号灯的绿灯时长g;
②当前的信号灯时间为红灯时,则即刻启动瓶颈控制,延迟时间为0;为了保守起见,一般取g为拥堵控制时间。
Step5-2、计算上游最大驶入船舶交通流流量。
内河航道中对右转船舶交通流一般不予限制,故在计算红灯会遇和自行相位的最大船舶交通流流量时均加入了右转船舶交通流。该步骤包括以下过程:
Step5-2-1、直行相位放行时,上游最大驶入船舶交通流流量计算方法如下:
公式(5)中:M是指驶入最大船舶交通流流量,单位为艘。
Step5-2-2、红灯会遇放行时,上游最大驶入船舶交通流流量计算方法:
公式(6)中:M是指上游驶入最大船舶交通流流量,单位为艘。
Step5-3、计算船舶拥堵测试器的位置。该步骤包括以下过程:
Step5-3-1、根据内河航道设计标准和现场采集的数据,获取阻塞船舶密度ρj和汇入航道的航道总数X0
Step5-3-2、根据瓶颈控制时间,确定测试器布置位置。
已知瓶颈辨识到作用的时间N=XT+tmaxi
(1)比较红灯会遇和直行相位上下行时间间隔,设两者中较小的值为直行相位的tmaxs,根据瓶颈辨识到的作用时间,确定测试器布置位置:
①当N∈(0,tmaxs]时,N时间过短时:
②当N∈(tmaxs,gtmaxl]时,则按照比例换算成红灯会遇和直行相位的上下行时间间隔下的最大船舶交通流流量M:
③当N∈(tmaxl,tmaxl+tmaxs]时,同②换算得到最大船舶交通流流量:
④当N∈(tmaxl+tmaxs,∞)时,驶入船舶交通流流量至多取两个相位最大上下行时间间隔下驶入船舶交通流流量之和:
(2)比较红灯会遇和直行相位上下行时间间隔,设两者中较小的值为直行相位的tmaxl,根据瓶颈辨识到作用的时间,确定测试器设置位置:
①当N∈(0,tmaxl]时,N时间过短时:
②当N∈(tmaxl,tmaxs]时,则按照比例换算成红灯会遇和直行相位的上下行时间间隔下的最大船舶艘数M:
③当N∈(tmaxs,tmaxl+tmaxs]时,同②换算得到最大船舶交通流流量:
④当N∈(tmaxl+tmaxs,∞)时,驶入船舶交通流流量至多取两个相位最大上下行时间间隔下驶入船舶交通流流量之和:
公式(18)中,ρj是指阻塞船舶密度,单位为艘/nm;
X0是指汇入航道的航道总数;
M是指上游驶入最大船舶交通流流量,单位为艘。
Step6、基于航道的空间分布条件和现有的测试器进行位置的综合布置。该步骤包括以下过程:
Step6-1、获取航道的长度信息和布置两组测试器间距阈值。
获得航道的长度di,考虑到航道空间分布条件和测试器间的设置间距,应给两组测试器间预留一定的距离S,设且设S与航段长度di之比的阈值为
Step6-2、获取航道上现有测试器信息。
在当前内河航道中,国内的一些船舶交通流检测方法,往往运用AIS与雷达相结合的组合方案,将测试器设置在航道的两侧基站位置。
Step6-3、对航道布置的前提条件进行识别。
①当时,认为汇入航道i的航段长度过长,则需另外设置两组测试器,结合已有测试器,布置位置分别为
②当时,认为汇入航道i的航段长度较长,则需另外设置一组测试器,布置位置分别为
③当时,认为汇入航道i的航段长度较短,则需设置一组测试器,布置位置分别为
其中,di是指汇入航道i的航段长度
是指汇入航道i的船舶排队程度测试器所在位置。
是指汇入航道i的拥堵辨识测试器所在位置。
与现有技术相比,本发明具有以下有益效果:
本发明基于航道的船舶拥堵特性和船舶交通疏导控制的作用时效,对航道的物理条件进行综合考量,合理地布置测试器,以期精准地获得航道的拥堵状态,为航道的管理与决策提供有效的信息。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为布设测试器的流程图;
图2为内河航道的示意图;
图3为测试器布置位置的示意图;
图4为滚动时间占有率的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
本发明提供一种基于内河航道拥堵辨识的测试器设置方法,该方法包括以下步骤:
Step1、筛选并处理得到船舶拥堵辨识指标。
(1)测试器采集数据时间间隔为T=20s,确定船舶时间占用率为:
公式(1)中:T是指滚动时间占有率的计算时间间隔,单位为s;
ti是指第i个时间间隔T内船舶排队测试器的时间,单位为s;
Δt是指滚动步长,即滚动时间占有率的滚动间隔,单位为s;
ui是指第i个时间间隔T内的时间占有率。
(2)处理得到滚动时间占有率:
以Δt为滚动间隔,如图4所示,T=5Δt,得到滚动时间占有率,以此来反映一系列连续的时间间隔T内船舶排队测试器附近的船舶交通状态。
Step2、根据船舶排队状态界定船舶排队程度测试器位置。
(1)设置船舶排队程度阈值。
根据航道的条件设置船舶排队程度阈值
(2)计算出船舶排队程度测试器的位置。
船舶排队程度测试器布置位置为:
Step3、根据船舶交通流疏导状态确定船舶拥堵测试器位置。
(1)获取船舶交通疏导控制状态基本参数。
①采集内河航道的基本信息指标。
首先从航道管理机构,获取上游航段驶入的各转向航道数,直行航道数XS=3,Xl=2,Xr=1,以及各相位的最大上下行时间间隔tmaxs=40s,tmaxl=40s,tmaxr=40s。
②获取各转向航道的饱和流率
<1>采集饱和船头时距。
通过实地采集数据的方式,获取直行航道的饱和船头时距为2.25s,红灯会遇航道的饱和船头时距为为2.40s,右转航道的饱和船头时距为2.57s。
<2>计算船舶交通流饱和流率。
船舶交通流饱和流率Pi的计算公式:
上式中:Pi是指航道i的船舶交通流饱和流量;单位为v/h(v为标准船舶);
是指汇入航道i测得的船舶交通流饱和船头时距,单位为s;
计算得到各转向船舶交通流饱和流率分别为直行航道1600v/h,红灯会遇航道1500v/h,右转航道1400v/h。
③判别船舶间隔时间。
根据航道交通疏导控制策略界定判别间隔时间XT,其中X=3,T=20。
④船舶拥堵疏导控制时间
当内河航道交叉口出现船舶交通流拥堵现象时,需采取船舶交通疏导控制策略,往往会存在一定的延迟。因此需要对当前周期内延误的时间进行研判:
<1>当前信号灯为上下行时间间隔,则需在该上下行时间间隔释放完毕后,再启动瓶颈控制,则瓶颈控制的效果延迟时间为信号灯的绿灯时长g=40s;
<2>当前的信号灯时间为红灯时,则即刻启动瓶颈控制,延迟时间为0;为了保守起见,取g=40s为拥堵控制时间。
(2)上游最大驶入船舶交通流流量计算。
①红灯会遇放行时,上游最大驶入船舶交通流流量计算方法:
上式中:M是指最大船舶交通流流量。
②直行相位放行时,上游最大驶入船舶交通流流量计算方法:
上式中:M是指最大船舶交通流流量。
(3)计算船舶拥堵测试器的位置。
①根据内河航道设计标准和现场采集数据,获取阻塞船舶密度ρj和汇入航道的航道总数X0,通过实地调研和船舶交通流数据统计,该段航道的船舶拥堵阻塞密度为0.17艘/nm,汇入航道i的航道数X0=4。
②根据瓶颈辨识到的作用时间,确定测试器的位置。
XT+tmaxs=3*20+40=100>tmaxs+tmaxl=40+40=80则布置的位置为:
y2=(48.88+70.88)/(0.17*4)=176m。
Step4、基于航道的空间分布条件和现有的测试器进行综合布置。
(1)获取航道的长度信息和布置最小两组测试器间距阈值。
航道的长度为10nm(海里),考虑到航道的空间分布和测试器间的布置间距,应给两组检测器间预留一定的距离S,如图2和图3,设且设S与航段长度di之比的阈值为
(2)获得航道上现有测试器的信息。
该航段采取的船舶交通疏导控制系统属于海事电子巡航系统,测试器布置在距船舶交通流断面线500m处。
(3)对航道的布置条件进行辨识。
①当时,认为汇入航道i的航段长度过长,则需另外设置两组测试器,结合已有测试器,布置位置分别为
②当时,认为汇入航道i的航段长度较长,则需另外设置一组测试器,布置位置分别为
③当时,认为汇入航道i的航段长度较短,则需设置一组测试器,布置位置分别为
式中:di是指汇入航道i的航段长度;
是指汇入航道i的船舶排队程度测试器所在位置,单位为m;
是指汇入航道i的船舶拥堵辨识测试器所在位置,单位为m。
在本实施例中,则认为该航段过长,则一共需设三组测试器,布置的位置为
处。
附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:该方法包括以下步骤:
Step1、筛选并处理得到船舶拥堵辨识指标;
Step2、定义船舶排队程度测试器;
Step3、确定船舶排队程度测试器位置;
Step4、定义拥堵测试器;
Step5、依据船舶交通流控制状态确定拥堵测试器位置;
Step6、基于航道的空间分布条件和现有的测试器进行位置的综合布置。
2.根据权利要求1所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step1包括以下过程:
Step1-1、获取时间占有率:通过测试器测量,得到在一段时间内通过测试器的船舶占有时间,并且取船舶占有时间与该时段长度之比为时间占有率;
Step1-2、将时间占有率处理后得到的滚动时间占有率来表示船舶拥堵辨识指标,滚动时间占有率是指以Δt为滚动间隔,反映一系列连续的时间间隔T内船舶排队测试器附近的船舶交通状态,
公式(1)中:T是指滚动时间占有率的计算时间间隔,单位为s;
ti是指第i个时间间隔T内船舶排队测试器的时间,单位为s;
Δt是指滚动步长,即滚动时间占有率的滚动间隔,单位为s;
ui是指第i个时间间隔T内的时间占有率。
3.根据权利要求1所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step2包括以下过程:定义船舶排队程度为船舶排队长度与所汇入航道的航段长度的比值,对应的第一组测试器为船舶排队程度测试器;
公式(2)中:Qi是指汇入航道i的船舶排队程度;
Ci是指汇入航道i的船舶排队长度;
di是指汇入航道i的航段长度。
4.根据权利要求1所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step3包括以下过程:
Step3-1、设定船舶排队程度阈值:
根据航道的条件和疏导控制拥堵程度,设置船舶排队程度阈值时,拥堵级别为一般拥堵;当时,拥堵级别为较重拥堵;当时,拥堵级别为严重拥堵;当时,拥堵级别为特别拥堵;
Step3-2、计算船舶排队程度测试器:
根据步骤Step2中船舶排队程度的定义,计算得到第一组测试器的设置位置,
公式(3)中:是指汇入航道i的船舶排队程度测试器布置位置,单位为nm;
di是指汇入航道i的长度,单位为nm;
是指汇入航道i的船舶排队程度阈值。
5.根据权利要求1所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step3的船舶排队程度测试器辨识到拥堵状态时,依据上游驶入船舶交通流流量预留空间,布置第二组测试器,第二组测试器为步骤Step4定义的拥堵测试器,位置在y2处。
6.根据权利要求1所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step5包括以下过程:
Step5-1、获取船舶交通流疏导控制状态基本参数;
Step5-2、计算上游最大驶入船舶交通流流量;
Step5-3、计算船舶拥堵测试器的位置。
7.根据权利要求6所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step5-1包括以下过程:
Step5-1-1、采集内河航道的基本信息:
获取内河航道中上游驶入的各转向航道的航道数XS、Xl、Xr,以及各个相位最大上下行时间间隔tmax s、tmax l、tmax r,其中XS表示直行船舶交通流航道数,tmax s表示所在相位的最大上下行时间间隔;Xl表示红灯会遇船舶交通流航道数,tmax l表示所在相位的最大上下行时间间隔;Xr表示绿灯会遇船舶交通流的航道数,tmax r表示所在相位的最大上下行时间间隔。
Step5-1-2、获取各转向航道的饱和流率:
现场采集饱和船头时距然后计算出饱和流率,计算公式如下:
公式(4)中:Pi是指航道i的饱和船舶交通流流量,单位为艘/h;
是指代表汇入航道i测得的饱和船头时距,单位为s;
Step5-1-3、获取判别间隔时间:
将连续X(X为整数)个时间占有率的最小值作为判别值,由此得出船舶拥堵检测的判别间隔时间为XT;
Step5-1-4、获取船舶交通流拥堵疏导控制时间:在内河航道交叉口出现船舶拥堵现象时采取船舶交通疏导控制策略的延迟时间通过以下方式计算:
①当前信号灯为上下行时间间隔,则在该上下行时间间隔释放完毕后,再启动瓶颈控制,则瓶颈控制的效果延迟时间最大值为该信号灯的绿灯时长g;
②当前的信号灯时间为红灯时,则即刻启动瓶颈控制,延迟时间为0。
8.根据权利要求6所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:在计算红灯会遇和自行相位的最大船舶交通流流量时均加入右转船舶交通流,所述步骤Step5-2包括以下过程:
Step5-2-1、直行相位放行时,上游最大驶入船舶交通流流量计算方法如下:
公式(5)中:M是指驶入最大船舶交通流流量,单位为艘;
Step5-2-2、红灯会遇放行时,上游最大驶入船舶交通流流量计算方法:
公式(6)中:M是指上游驶入最大船舶交通流流量,单位为艘。
9.根据权利要求6所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step5-3包括以下过程:
Step5-3-1、根据内河航道设计标准和现场采集的数据,获取阻塞船舶密度ρj和汇入航道的航道总数X0
Step5-3-2、根据瓶颈控制时间,确定测试器布置位置:
已知瓶颈辨识到作用的时间N=XT+tmax i
(1)比较红灯会遇和直行相位上下行时间间隔,设两者中较小的值为直行相位的tmax s,根据瓶颈辨识到的作用时间,确定测试器布置位置:
①当N∈(0,tmax s]时,N时间过短时:
②当N∈(tmax s,gtmax l]时,则按照比例换算成红灯会遇和直行相位的上下行时间间隔下的最大船舶交通流流量M:
③当N∈(tmax l,tmax l+tmax s]时,同②换算得到最大船舶交通流流量:
④当N∈(tmax l+tmax s,∞)时,驶入船舶交通流流量至多取两个相位最大上下行时间间隔下驶入船舶交通流流量之和:
(2)比较红灯会遇和直行相位上下行时间间隔,设两者中较小的值为直行相位的tmax l,根据瓶颈辨识到作用的时间,确定测试器设置位置:
①当N∈(0,tmax l]时,N时间过短时:
②当N∈(tmax l,tmax s]时,则按照比例换算成红灯会遇和直行相位的上下行时间间隔下的最大船舶艘数M:
③当N∈(tmax s,tmax l+tmax s]时,同②换算得到最大船舶交通流流量:
④当N∈(tmax l+tmax s,∞)时,驶入船舶交通流流量至多取两个相位最大上下行时间间隔下驶入船舶交通流流量之和:
公式(18)中,ρj是指阻塞船舶密度,单位为艘/nm;
X0是指汇入航道的航道总数;
M是指上游驶入最大船舶交通流流量,单位为艘。
10.根据权利要求1所述的一种基于内河航道拥堵辨识的测试器设置方法,其特征在于:所述步骤Step6包括以下过程:
Step6-1、获取航道的长度信息和布置两组测试器间距阈值:
获得航道的长度di,给两组测试器间预留距离S,设且设S与航段长度di之比的阈值为
Step6-2、获取航道上现有测试器信息;
Step6-3、对航道布置的前提条件进行识别:
①当时,判定汇入航道i的航段长度过长,则再设置两组测试器,结合已有测试器,布置位置分别为
②当时,判定汇入航道i的航段长度较长,则再设置一组测试器,布置位置分别为
③当时,判定汇入航道i的航段长度较短,则设置一组测试器,布置位置分别为
其中,di是指汇入航道i的航段长度,
是指汇入航道i的船舶排队程度测试器所在位置,
是指汇入航道i的拥堵辨识测试器所在位置。
CN201910184471.5A 2019-03-12 2019-03-12 一种基于内河航道拥堵辨识的测试器设置方法 Pending CN109887337A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910184471.5A CN109887337A (zh) 2019-03-12 2019-03-12 一种基于内河航道拥堵辨识的测试器设置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910184471.5A CN109887337A (zh) 2019-03-12 2019-03-12 一种基于内河航道拥堵辨识的测试器设置方法

Publications (1)

Publication Number Publication Date
CN109887337A true CN109887337A (zh) 2019-06-14

Family

ID=66931725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910184471.5A Pending CN109887337A (zh) 2019-03-12 2019-03-12 一种基于内河航道拥堵辨识的测试器设置方法

Country Status (1)

Country Link
CN (1) CN109887337A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116312057A (zh) * 2023-03-13 2023-06-23 东南大学 一种内河航道交通运行状态判别方法
CN117218901A (zh) * 2023-11-09 2023-12-12 亿海蓝(北京)数据技术股份公司 航道拥堵程度判断方法、装置、电子设备和可读储存介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037445A (ja) * 2007-08-02 2009-02-19 Furuno Electric Co Ltd 警報制御装置
WO2009143261A1 (en) * 2008-05-20 2009-11-26 Charles Neill Delivery system for liquefied natural gas
CN101783082A (zh) * 2009-08-04 2010-07-21 上海海事大学 一种基于rfid的内河船舶监管系统的监控方法
CN202584450U (zh) * 2012-06-08 2012-12-05 镇江市地方海事局 一种水上船舶通航安全预警系统
KR101254450B1 (ko) * 2011-12-19 2013-04-12 정근수 대형 협잡물 제거용 스크린 제진기
CN103854518A (zh) * 2014-03-17 2014-06-11 南京航空航天大学 一种航路网络节点时空流量的计算方法
CN105654720A (zh) * 2016-01-21 2016-06-08 浙江大学 基于城市道路拥堵识别的检测器布设方法
US20160170414A1 (en) * 2014-12-11 2016-06-16 Here Global B.V. Learning Signs From Vehicle Probes
CN106710313A (zh) * 2016-12-28 2017-05-24 中国交通通信信息中心 基于激光三维成像技术的桥区船舶主动避碰方法及系统
CN106816037A (zh) * 2017-03-02 2017-06-09 浙江海洋大学 一种航道交通密度和航道气象指数发布系统
CN106934143A (zh) * 2017-03-08 2017-07-07 江苏南大先腾信息产业股份有限公司 一种用于解决内河航道船舶堵塞和滞航的建模方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037445A (ja) * 2007-08-02 2009-02-19 Furuno Electric Co Ltd 警報制御装置
WO2009143261A1 (en) * 2008-05-20 2009-11-26 Charles Neill Delivery system for liquefied natural gas
CN101783082A (zh) * 2009-08-04 2010-07-21 上海海事大学 一种基于rfid的内河船舶监管系统的监控方法
KR101254450B1 (ko) * 2011-12-19 2013-04-12 정근수 대형 협잡물 제거용 스크린 제진기
CN202584450U (zh) * 2012-06-08 2012-12-05 镇江市地方海事局 一种水上船舶通航安全预警系统
CN103854518A (zh) * 2014-03-17 2014-06-11 南京航空航天大学 一种航路网络节点时空流量的计算方法
US20160170414A1 (en) * 2014-12-11 2016-06-16 Here Global B.V. Learning Signs From Vehicle Probes
CN105654720A (zh) * 2016-01-21 2016-06-08 浙江大学 基于城市道路拥堵识别的检测器布设方法
CN106710313A (zh) * 2016-12-28 2017-05-24 中国交通通信信息中心 基于激光三维成像技术的桥区船舶主动避碰方法及系统
CN106816037A (zh) * 2017-03-02 2017-06-09 浙江海洋大学 一种航道交通密度和航道气象指数发布系统
CN106934143A (zh) * 2017-03-08 2017-07-07 江苏南大先腾信息产业股份有限公司 一种用于解决内河航道船舶堵塞和滞航的建模方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHIJIA TAN,WAN LI, XIAONING ZHANG, HAI YANG: "Service charge and capacity selection of an inland river port with location-dependent shipping cost and service congestion", 《TRANSPORTATION RESEARCH PART E》 *
刘清,覃盼,李胜,李昊: "内河复杂水域通航环境风险演变指标体系研究", 《中国安全科学学报》 *
陈沿伊,黄璨: "基于延误敏感性的内河船舶交通拥堵状态识别方法研究", 《物流技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116312057A (zh) * 2023-03-13 2023-06-23 东南大学 一种内河航道交通运行状态判别方法
CN117218901A (zh) * 2023-11-09 2023-12-12 亿海蓝(北京)数据技术股份公司 航道拥堵程度判断方法、装置、电子设备和可读储存介质

Similar Documents

Publication Publication Date Title
CN104778834B (zh) 一种基于车辆gps数据的城市道路交通拥堵判别方法
CN104778845B (zh) 多相位跳变和车辆全动态诱导交通控制方法
CN107730922B (zh) 一种单向干线绿波协调控制自适应调整方法
CN104408948B (zh) 基于车载gps的城市道路交通公交优先信号控制方法
WO2018072240A1 (zh) 一种路网潮汐交通流可变导向车道控制方法
CN105825669B (zh) 一种识别城市快速路交通瓶颈的系统和方法
CN103593976B (zh) 基于检测器确定道路交通状态的方法及系统
CN105654720B (zh) 基于城市道路拥堵识别的检测器布设方法
CN108615376A (zh) 一种基于视频检测的交叉口信号控制方案评价方法
CN107067768B (zh) 一种城市过饱和交通流自组织信号控制方法
CN103021176A (zh) 基于断面检测器的城市道路交通状态判别方法
CN112885088B (zh) 一种基于动态交通流的多匝道协调控制方法
CN106097730A (zh) 一种路段车辆排队长度的估计方法、装置及系统
CN106097718B (zh) 基于gps数据的信号交叉口区域通行时间估计方法
CN104851287B (zh) 基于视频检测器的城市道路路段行程时间检测方法
CN106355884A (zh) 一种基于车型分类的高速公路车辆引导系统及方法
Wang et al. Use of AIS data for performance evaluation of ship traffic with speed control
CN109887337A (zh) 一种基于内河航道拥堵辨识的测试器设置方法
CN107038861A (zh) 一种基于汽车电子标识的交通拥堵检测系统、方法及装置
CN103150894B (zh) 消除交通拥堵的高速公路主线收费站通过流量控制方法
CN109993981A (zh) 基于全息检测的交通信号自协调控制方法
CN106327880A (zh) 一种基于监控视频的车速识别方法及其系统
CN106710311A (zh) 船舶定线制警戒区水上交通冲突数据自动采集方法
CN201262784Y (zh) 基于数据特征的城市信号控制路口交通状态检测和评价系统
CN105513428A (zh) 船舶定线制水域交通饱和度智能分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190614

RJ01 Rejection of invention patent application after publication