CN109883375B - 基于等精度原则的一种两段孔的可安装性精确评定方法 - Google Patents

基于等精度原则的一种两段孔的可安装性精确评定方法 Download PDF

Info

Publication number
CN109883375B
CN109883375B CN201910273774.4A CN201910273774A CN109883375B CN 109883375 B CN109883375 B CN 109883375B CN 201910273774 A CN201910273774 A CN 201910273774A CN 109883375 B CN109883375 B CN 109883375B
Authority
CN
China
Prior art keywords
shaft
coarse
hole
axis
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910273774.4A
Other languages
English (en)
Other versions
CN109883375A (zh
Inventor
唐哲敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liuzhou Luzhai Tangqintai Measurement Technology Co ltd
Original Assignee
Liuzhou Luzhai Tangqintai Measurement Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liuzhou Luzhai Tangqintai Measurement Technology Co ltd filed Critical Liuzhou Luzhai Tangqintai Measurement Technology Co ltd
Priority to CN201910273774.4A priority Critical patent/CN109883375B/zh
Publication of CN109883375A publication Critical patent/CN109883375A/zh
Application granted granted Critical
Publication of CN109883375B publication Critical patent/CN109883375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inert Electrodes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明涉及计算机辅助测量领域,具体而言,涉及基于等精度原则的一种两段孔的可安装性快速评定方法,由以下步骤组成:步骤1,获取孔零件的几何设计参数和测点并预制定标准轴的上偏差;步骤2,求各段孔的拟合直径、拟合方位;步骤3,根据孔轴直径差预排除装配困难的零件;步骤4,利用孔的拟合几何参数和标准轴的几何参数,求解孔轴间的最小综合间隙。

Description

基于等精度原则的一种两段孔的可安装性精确评定方法
技术领域
本发明涉及计算机辅助测量领域,具体而言,涉及基于等精度原则的一种基于数学评定的两段孔的可安装性精确评定方法。
背景技术
阶梯轴及其安装孔在机械领域应用广泛。目前,孔轴配合类零件主要通过控制每段孔、轴的尺寸公差、同一零件上孔轴间的同轴度公差来控制孔轴配合的最小间隙(体现可装配性)和最大间隙(体现装配精度)。
如果设计的尺寸公差和几何公差是合适的,并且零件的尺寸和几何误差都符合设计的公差,那么,零件的可装配性和装配精度是能够保障的。这时,零件是可以实现完全互换的。
如果设计的尺寸公差和几何公差较小,那么零件的尺寸和几何误差超差的可能性会增大。这时,符合设计公差的零件减少,实现零件的完全互换的成本增高。
目前,在不增加零件制造成本、不降低可装配性和装配精度的前提下,提高零件的利用率的方法主要是采用分级公差。然而,目前分级公差的设计主要是依赖工程经验。由于经验丰富的工程师是稀缺的,这种方法提高了设计成本。不同的经验丰富的工程师可能会设计、认可不同的分级公差方案,这就增加了部门、企业间的沟通成本。
如果可以适当地增加时间或制造成本,还可能采取一一试探、匹配的方式。但是,由于实际零件的拆装不易,这种方法的成本增加是显著的。
综上所述,由于没有引入可安装性精确评定方法,现有技术在解决难以完全互换的高精度同轴零件装配问题时成本较高。
发明内容
本发明的目的是:
本发明针对现有的技术存在的所述问题,通过评定与一种两段孔匹配的标准轴零件,实现基于等精度原则的一种基于数学评定的、成本较低的可安装性精确评定方法。
本发明采用的方案是:
基于等精度原则的一种两段孔的可安装性精确评定方法由以下步骤组成:
步骤1,获取孔零件的几何设计参数和测点并预制定标准轴的调整量。
两段孔由细孔和粗孔组成,细孔和粗孔之间连接有一段过渡孔。
细孔的名义直径为d 1,公差等级为IT a,名义长度为L 1;过渡孔的名义直径为D 2、名义长度为L 2;粗孔的名义直径为d 3,公差等级为IT a,名义长度为L 3
过渡孔的名义直径D 2大于细孔的名义直径d 1
将细孔的轴线靠近测量坐标系的z轴,细孔的几何中心靠近测量坐标系的原点,并使得粗孔的几何中心在测量坐标系z轴上的投影是正值。
细孔的测点集为{p i | p i ={ x i , y i , z i }, i=1,2,…,N 1};粗孔的测点集为{p i | p i ={ x i , y i , z i }, i= N 1+1, N 1+2,…, N 1+N 2}。
标准轴系由完全同轴的细轴和粗轴组成,细轴和粗轴之间连接有一段过渡轴。这三段轴都是作为标准的轴,没有几何误差。细轴的几何中心在原点,细轴和粗轴的共同轴线在z轴上。
细轴的直径为d 1+E 1、长度为L 1;过渡轴的直径为d 2、长度为L 2;粗轴的直径为d 3+ E 3、长度为L 3。其中,E 1E 3分别取直径为d 1d 3的轴的调整量,采用相同的基本偏差且公差等级为IT a,取对应公差值的上偏差。
过渡轴的直径d 2小于细轴的直径d 1
结束步骤1后进行步骤2。
步骤2,求各段孔的拟合半径。
通过公式(1)求解细孔的最大内接圆柱半径R 4,m,其中,d x , d y , d rx , d ry 是自由变量,分别表示沿x轴、y轴的平移和绕x轴、y轴的转动。
Figure 100002_DEST_PATH_IMAGE001
(1)
s.t.
Figure 100002_DEST_PATH_IMAGE002
通过公式(2)求解粗孔的最大内接圆柱半径R 6,m,其中,d x , d y , d rx , d ry 是自由变量。
Figure 100002_DEST_PATH_IMAGE003
(2)
s.t.
Figure 100002_DEST_PATH_IMAGE004
结束步骤2后进行步骤3。
步骤3,根据孔轴半径差预排除装配困难的零件。
通过公式(3)求解细轴半径r 1,M
Figure 100002_DEST_PATH_IMAGE005
(3)
通过公式(4)求解粗轴半径r 3,M
Figure 100002_DEST_PATH_IMAGE006
(4)
细轴和细孔间的最小间隙Δ4-1,m按公式(5)评定。
Figure 100002_DEST_PATH_IMAGE007
(5)
如果细轴和细孔间的最小间隙Δ4-1,m<0,那么,认为该零件装配困难。如果这是第一次进行步骤3,或上次评定的细轴和细孔间的最小间隙Δ4-1,m<0,那么,为标准轴选择更大一级的基本偏差并得到更大的E 1E 3,并重新开始步骤3;否则,上一次选择的调整量为所求的调整量,并结束评定。
粗轴和粗孔间的最小间隙Δ6-3,m按公式(6)评定。
Figure 100002_DEST_PATH_IMAGE008
(6)
如果粗轴和粗孔间的最小间隙Δ6-3,m<0,那么,认为该零件装配困难。如果这是第一次进行步骤3,或上次评定的粗轴和粗孔间的最小间隙Δ6-3,m<0,那么,为标准轴选择更大一级的基本偏差并得到更大的E 1E 3,并重新开始步骤3;否则,上一次选择的调整量为所求的调整量,并结束评定。
步骤3结束后进行步骤4。
步骤4,根据孔的测点集和标准轴的几何参数,求解孔轴间的最小综合间隙。
通过公式(7)评定粗孔粗轴的最小综合间隙Δ6-3,4-1,m,其中,d x , d y , d rx , d ry 是自由变量。将细轴装入细孔后,调整轴零件的位置和方向;此过程中,粗轴与粗孔之间至少能保持的调整余量(表面间距)就是细孔方向的最小综合间隙Δ6-3,4-1,m
Figure 100002_DEST_PATH_IMAGE009
(7)
s.t.
Figure 100002_DEST_PATH_IMAGE010
其中,
R 6,4-1,m是上述安装过程中粗孔在xOy平面的投影最小半径,
Figure 100002_DEST_PATH_IMAGE011
如果粗孔粗轴的最小综合间隙Δ6-3,4-1,m大于0,那么孔零件可以安装到标准轴零件内;否则,孔零件不能安装到标准轴零件内。
如果本次进行步骤4是第一次进行步骤4,或本次和上一次评定出的最小综合间隙Δ6-3,4-1,m符号相同,那么:如果Δ6-3,4-1,m大于0,就为标准轴选择更大一级的基本偏差并得到更大的E 1E 3;如果Δ6-3,4-1,m小于0,就为标准轴选择更小一级的基本偏差并得到更小的E 1E 3E 1E 3采用相同的基本偏差;然后,跳到步骤3。
如果本次和上一次评定出的最小综合间隙Δ6-3,4-1,m符号相反,那么,这两次评定中使最小综合间隙Δ6-3,4-1,m大于0的E 1E 3就是所求的调整量;结束评定。
所求出的调整量E 1E 3表明:两段孔零件能够与上偏差大于所求的调整量E 1E 3的轴零件间隙装配。
本发明的有益效果是:
1、对于难以完全互换的高精度的同轴的两段孔零件,可以通过测量数据和标准轴的基本偏差和标准公差来评定两段孔零件的可安装性。2、可以通过标准的可安装性指标来实现两段孔零件的可装配性的预测和分级。3、只需要通用三坐标测量设备和计算机,测量柔性高,测量成本不高。4、硬件和数学要求较低,有利于推广。5、测点数目越多、测点越重要,那么评定结果越可靠。
本发明的工业可能:
本发明提供了一种基于坐标测量和数学评定的两段孔的可安装性精确评定方法,该方法过程简单、成本不高,易于使用和推广。因此,本发明具有工业生产的可能。
附图说明
图1为本发明的流程图。
图2为本发明适用零件的结构及公差标注图。
图3为具体实施方式的零件设计示意图。
图4为具体实施方式的测点分布示意图。
图中:1,细轴;2,过渡轴;3,粗轴;4,细孔;41;细孔的测点集;5,过渡孔;6,粗孔;51,粗孔的测点集。
具体实施方式
以下是本发明的具体实施例,参照附图对本发明的方案作进一步的描述,但本发明并不限于这些实施例。
基于等精度原则的一种两段孔的可安装性精确评定方法由以下步骤组成:
步骤1,获取孔零件的几何设计参数和测点并预制定标准轴的调整量。
两段孔由细孔和粗孔组成,细孔和粗孔之间连接有一段过渡孔。
细孔的名义直径为20,公差等级为IT 7,名义长度为30;过渡孔的名义直径为24、名义长度为10;粗孔的名义直径为30,公差等级为IT 7,名义长度为50。
过渡孔的名义直径24大于细孔的名义直径10。
将细孔的轴线靠近测量坐标系的z轴,细孔的几何中心靠近测量坐标系的原点,并使得粗孔的几何中心在测量坐标系z轴上的投影是正值。
细孔的测点集为{p i | p i ={ x i , y i , z i }, i=1,2,…, 20};粗孔的测点集为{p i | p i ={ x i , y i , z i }, i=21,22,…,40}。
Figure DEST_PATH_IMAGE012
标准轴系由完全同轴的细轴和粗轴组成,细轴和粗轴之间连接有一段过渡轴。这三段轴都是作为标准的轴,没有几何误差。细轴的几何中心在原点,细轴和粗轴的共同轴线在z轴上。
细轴调整量拟对应公差v7,直径为20+ E 1=20+0.076=20.076、长度为30;过渡轴的直径为16、长度为10;粗轴调整量拟对应公差v7,直径为30+ E 3=30+0.106=30.106、长度为50。
结束步骤1后进行步骤2。
步骤2,求各段孔的拟合半径。
通过公式(1)求解细孔的最大内接圆柱半径R 4,m= 10.0537,其中,d x , d y , d rx , d ry 是自由变量。
Figure DEST_PATH_IMAGE013
s.t.
Figure DEST_PATH_IMAGE014
通过公式(2)求解粗孔的最大内接圆柱半径R 6,m= 15.0640,其中,d x , d y , d rx , d ry 是自由变量。
Figure DEST_PATH_IMAGE015
s.t.
Figure DEST_PATH_IMAGE016
结束步骤2后进行步骤3。
步骤3,根据孔轴半径差预排除装配困难的零件。
通过公式(3)求解细轴半径r 1,M
Figure DEST_PATH_IMAGE017
通过公式(4)求解粗轴半径r 3,M
Figure DEST_PATH_IMAGE018
细轴和细孔间的最小间隙Δ4-1,m按公式(5)评定。
Figure DEST_PATH_IMAGE019
细轴和细孔间的最小间隙Δ4-1,m>0,暂不认为该零件装配困难,继续评定。
粗轴和粗孔间的最小间隙Δ6-3,m按公式(6)评定。
Figure DEST_PATH_IMAGE020
粗轴和粗孔间的最小间隙Δ6-3,m>0,暂不认为该零件装配困难,继续评定。
步骤3结束后进行步骤4。
步骤4,根据孔的测点集和标准轴的几何参数,求解孔轴间的最小综合间隙。
通过公式(7)评定粗孔粗轴的最小综合间隙Δ6-3,4-1,m= 0.0106,其中,d x , d y ,d rx , d ry 是自由变量。
Figure DEST_PATH_IMAGE021
s.t.
Figure DEST_PATH_IMAGE022
其中,
R 6,4-1,m是上述安装过程中粗孔在xOy平面的投影最小半径,
Figure DEST_PATH_IMAGE023
粗孔粗轴的最小综合间隙Δ6-3,4-1,m=0.0106大于0,所以孔零件可以安装到标准轴零件内。
本次进行步骤4是第一次进行步骤4,并且Δ6-3,4-1,m=0.0106大于0,所以为标准轴选择更大一级的基本偏差并得到更大的E 1E 3E 1E 3对应公差x7,E 1=0.085,E 3=0122;然后,跳到步骤3。
依次再进行步骤3、步骤4,并评定得到粗孔粗轴的最小综合间隙Δ6-3,4-1,m=0.0007大于0,为标准轴选择更大一级的基本偏差并得到更大的E 1E 3E 1E 3对应公差y7,E 1=0.096,E 3=0.139;然后,跳到步骤3。
步骤3,根据孔轴半径差预排除装配困难的零件。
通过公式(3)求解细轴半径r 1,M
Figure DEST_PATH_IMAGE024
通过公式(4)求解粗轴半径r 3,M
Figure DEST_PATH_IMAGE025
细轴和细孔间的最小间隙Δ4-1,m按公式(5)评定。
Figure DEST_PATH_IMAGE026
细轴和细孔间的最小间隙Δ4-1,m>0,暂不认为该零件装配困难,继续评定。
粗轴和粗孔间的最小间隙Δ6-3,m按公式(6)评定。
Figure DEST_PATH_IMAGE027
粗轴和粗孔间的最小间隙Δ6-3,m<0,认为该零件装配困难,结束评定。上一次选择的公差x7对应的调整量E 1=0.085,E 3=0122就是所求的调整量。
所求出的调整量E 1E 3表明:两段孔零件能够与上偏差小于E 1=0.085,E 3=0122的轴零件间隙装配。
在上述说明中,通过特定实施例说明了本发明,但本领域的技术人员应理解在不脱离权利要求范围内发明的思想及领域内可进行各种改造及变形。

Claims (1)

1.基于等精度原则的一种两段孔的可安装性精确评定方法,其特征在于,由以下步骤组成:
步骤1,获取孔零件的几何设计参数和测点并预制定标准轴的调整量;
两段孔由细孔和粗孔组成,细孔和粗孔之间连接有一段过渡孔;
细孔的名义直径为d 1,公差等级为IT a,名义长度为L 1;过渡孔的名义直径为D 2、名义长度为L 2;粗孔的名义直径为d 3,公差等级为IT a,名义长度为L 3
过渡孔的名义直径D 2大于细孔的名义直径d 1
将细孔的轴线靠近测量坐标系的z轴,细孔的几何中心靠近测量坐标系的原点,并使得粗孔的几何中心在测量坐标系z轴上的投影是正值;
细孔的测点集为{p i | p i ={ x i , y i , z i }, i=1,2,…,N 1};粗孔的测点集为{p i | p i ={ x i , y i , z i }, i= N 1+1, N 1+2,…, N 1+N 2};
标准轴系由完全同轴的细轴和粗轴组成,细轴和粗轴之间连接有一段过渡轴;这三段轴都是作为标准的轴,没有几何误差;细轴的几何中心在原点,细轴和粗轴的共同轴线在z轴上;
细轴的直径为d 1+E 1、长度为L 1;过渡轴的直径为d 2、长度为L 2;粗轴的直径为d 3+ E 3、长度为L 3;其中,E 1E 3分别取直径为d 1d 3的轴的调整量,采用相同的基本偏差且公差等级为IT a,取对应公差值的上偏差;
过渡轴的直径d 2小于细轴的直径d 1
结束步骤1后进行步骤2;
步骤2,求各段孔的拟合半径;
通过公式(1)求解细孔的最大内接圆柱半径R 4,m,其中,d x , d y , d rx , d ry 是自由变量,分别表示沿x轴、y轴的平移和绕x轴、y轴的转动;
Figure DEST_PATH_IMAGE001
(1)
s.t.
Figure DEST_PATH_IMAGE002
通过公式(2)求解粗孔的最大内接圆柱半径R 6,m,其中,d x , d y , d rx , d ry 是自由变量;
Figure DEST_PATH_IMAGE003
(2)
s.t.
Figure DEST_PATH_IMAGE004
结束步骤2后进行步骤3;
步骤3,根据孔轴直径差预排除装配困难的零件;
通过公式(3)求解细轴半径r 1,M
Figure DEST_PATH_IMAGE005
(3)
通过公式(4)求解粗轴半径r 3,M
Figure DEST_PATH_IMAGE006
(4)
细轴和细孔间的最小间隙Δ4-1,m按公式(5)评定;
Figure DEST_PATH_IMAGE007
(5)
如果细轴和细孔间的最小间隙Δ4-1,m<0,那么,认为该零件装配困难;如果这是第一次进行步骤3,或上次评定的细轴和细孔间的最小间隙Δ4-1,m<0,那么,为标准轴选择更大一级的基本偏差并得到更大的E 1E 3,并重新开始步骤3;否则,上一次选择的调整量为所求的调整量,并结束评定;
粗轴和粗孔间的最小间隙Δ6-3,m按公式(6)评定;
Figure DEST_PATH_IMAGE008
(6)
如果粗轴和粗孔间的最小间隙Δ6-3,m<0,那么,认为该零件装配困难;如果这是第一次进行步骤3,或上次评定的粗轴和粗孔间的最小间隙Δ6-3,m<0,那么,为标准轴选择更大一级的基本偏差并得到更大的E 1E 3,并重新开始步骤3;否则,上一次选择的调整量为所求的调整量,并结束评定;
步骤3结束后进行步骤4;
步骤4,根据孔的测点集和标准轴的几何参数,求解孔轴间的最小综合间隙;
通过公式(7)评定粗孔粗轴的最小综合间隙Δ6-3,4-1,m,其中,d x , d y , d rx , d ry 是自由变量;
Figure DEST_PATH_IMAGE009
(7)
s.t.
Figure DEST_PATH_IMAGE010
其中,
R 6,4-1,m是上述安装过程中粗孔在xOy平面的投影最小半径,
Figure DEST_PATH_IMAGE011
如果粗孔粗轴的最小综合间隙Δ6-3,4-1,m大于0,那么孔零件可以安装到标准轴零件内;否则,孔零件不能安装到标准轴零件内;
如果本次进行步骤4是第一次进行步骤4,或本次和上一次评定出的最小综合间隙Δ6-3,4-1,m符号相同,那么:如果Δ6-3,4-1,m大于0,就为标准轴选择更大一级的基本偏差并得到更大的E 1E 3;如果Δ6-3,4-1,m小于0,就为标准轴选择更小一级的基本偏差并得到更小的E 1E 3E 1E 3采用相同的基本偏差;然后,跳到步骤3;
如果本次和上一次评定出的最小综合间隙Δ6-3,4-1,m符号相反,那么,这两次评定中使最小综合间隙Δ6-3,4-1,m大于0的E 1E 3就是所求的调整量;结束评定;
所求出的调整量E 1E 3表明:两段孔零件能够与上偏差大于所求的调整量E 1E 3的轴零件间隙装配。
CN201910273774.4A 2019-04-07 2019-04-07 基于等精度原则的一种两段孔的可安装性精确评定方法 Active CN109883375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910273774.4A CN109883375B (zh) 2019-04-07 2019-04-07 基于等精度原则的一种两段孔的可安装性精确评定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910273774.4A CN109883375B (zh) 2019-04-07 2019-04-07 基于等精度原则的一种两段孔的可安装性精确评定方法

Publications (2)

Publication Number Publication Date
CN109883375A CN109883375A (zh) 2019-06-14
CN109883375B true CN109883375B (zh) 2020-08-25

Family

ID=66936334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910273774.4A Active CN109883375B (zh) 2019-04-07 2019-04-07 基于等精度原则的一种两段孔的可安装性精确评定方法

Country Status (1)

Country Link
CN (1) CN109883375B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085856A (ja) * 2007-10-02 2009-04-23 Mazda Motor Corp スポット溶接装置を用いた金属板隙間計測方法およびその装置
CN101625016A (zh) * 2009-08-18 2010-01-13 国家康复辅具研究中心 无间隙回转副
CN203053372U (zh) * 2012-12-20 2013-07-10 綦江齿轮传动有限公司 变速器锥齿轮装配间隙的检具
CN103673850A (zh) * 2013-12-10 2014-03-26 江门市奥斯龙机械有限公司 一种加工中心的同轴度检测机构
CN105404737A (zh) * 2015-11-17 2016-03-16 天津百利机械装备研究院有限公司 一种基于matlab的摆线轮参数优化方法
CN106202741A (zh) * 2016-07-15 2016-12-07 唐哲敏 一种基于最小实体状态的同轴度评定方法
CN109029326A (zh) * 2018-10-11 2018-12-18 唐哲敏 一种两段轴的安装间隙快速计算方法
CN109063396A (zh) * 2018-10-12 2018-12-21 唐哲敏 基于等精度原则的一种两段孔的可安装性快速计算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085856A (ja) * 2007-10-02 2009-04-23 Mazda Motor Corp スポット溶接装置を用いた金属板隙間計測方法およびその装置
CN101625016A (zh) * 2009-08-18 2010-01-13 国家康复辅具研究中心 无间隙回转副
CN203053372U (zh) * 2012-12-20 2013-07-10 綦江齿轮传动有限公司 变速器锥齿轮装配间隙的检具
CN103673850A (zh) * 2013-12-10 2014-03-26 江门市奥斯龙机械有限公司 一种加工中心的同轴度检测机构
CN105404737A (zh) * 2015-11-17 2016-03-16 天津百利机械装备研究院有限公司 一种基于matlab的摆线轮参数优化方法
CN106202741A (zh) * 2016-07-15 2016-12-07 唐哲敏 一种基于最小实体状态的同轴度评定方法
CN109029326A (zh) * 2018-10-11 2018-12-18 唐哲敏 一种两段轴的安装间隙快速计算方法
CN109063396A (zh) * 2018-10-12 2018-12-21 唐哲敏 基于等精度原则的一种两段孔的可安装性快速计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高温厚壁管孔与轴内件的间隙装配配合;王新权;《流体机械》;19940531;第22卷(第5期);37-39 *

Also Published As

Publication number Publication date
CN109883375A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
Fu et al. Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network
CN110119588A (zh) 基于扩展卡尔曼滤波状态估计值的在线优化设计方法
CN112051506B (zh) 一种相似产品可迁移样本筛选方法、系统及用途
CN108647803B (zh) 面向装配精度的多个对称体装配工艺参数优化方法
CN114789798B (zh) 一种飞机舱门阶差预测方法、装置、设备及介质
CN109883375B (zh) 基于等精度原则的一种两段孔的可安装性精确评定方法
CN112444223A (zh) 基于等精度原则的一种两段孔的可安装性精确评定方法
CN107066726A (zh) 一种数控机床旋转轴垂直度误差建模方法
CN109029326B (zh) 一种两段轴的安装间隙快速计算方法
CN112906159A (zh) 基于等公差值原则的一种两段孔的可安装性精确评定方法
Yeh et al. Unbalanced-tests to the improvement of yield and quality
CN108332739B (zh) 确定星敏感器在轨姿态测量精度主成分因素响应边界的方法
CN109212751A (zh) 一种自由曲面公差的分析方法
Skvortsov et al. Statistical simulation and probability calculation of mechanical parts connection parameters for CAD/CAM systems
CN109977538A (zh) 基于等精度原则的一种两段轴的可安装性精确计算方法
CN113310447A (zh) 一种轴系导轨的综合安装误差快速评定方法
CN113503891A (zh) 一种sinsdvl对准校正方法、系统、介质及设备
CN107766884B (zh) 一种基于代表点优化的Bayes融合评估方法
CN113343387A (zh) 一种孔系滑块的综合安装误差快速评定方法
CN112964210A (zh) 一种法兰盘孔系的自由综合安装误差快速评定方法
CN111026151A (zh) 针对具有大死区特性的微小型无人机自适应舵面标定方法
CN109063397A (zh) 基于等公差值原则的一种两段孔的可安装性快速计算方法
CN112906151A (zh) 一种两个法兰盘孔系的自由综合安装误差快速评定方法
Čeperković et al. A distributed method for self-calibration of magnetoresistive angular position sensor within a servo system
CN109063396A (zh) 基于等精度原则的一种两段孔的可安装性快速计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant