CN109882370B - 一种控制霍尔推力器羽流发散角的装置 - Google Patents

一种控制霍尔推力器羽流发散角的装置 Download PDF

Info

Publication number
CN109882370B
CN109882370B CN201910168351.6A CN201910168351A CN109882370B CN 109882370 B CN109882370 B CN 109882370B CN 201910168351 A CN201910168351 A CN 201910168351A CN 109882370 B CN109882370 B CN 109882370B
Authority
CN
China
Prior art keywords
ceramic
divergence angle
hall thruster
controlling
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910168351.6A
Other languages
English (en)
Other versions
CN109882370A (zh
Inventor
丁永杰
李鸿
魏立秋
于达仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910168351.6A priority Critical patent/CN109882370B/zh
Publication of CN109882370A publication Critical patent/CN109882370A/zh
Application granted granted Critical
Publication of CN109882370B publication Critical patent/CN109882370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

本发明公开了一种控制霍尔推力器羽流发散角的装置,该装置包括永磁铁、陶瓷外壳和电极,陶瓷外壳呈闭合环状,陶瓷外壳的内侧面设置有电极,陶瓷外壳内包有永磁铁。本发明解决了由于现有霍尔推进器羽流发散角过大而导致的推力损失、推力器部件侵蚀、航天器部件受损的问题,提出了一种控制霍尔推力器羽流发散角的装置,能够有效地控制羽流区离子的运动,该装置具有结构简单,适用性较强等优点,拓展了羽流发散角控制方式的自由度,为高可靠性推力器和航天器的空间应用奠定了基础。

Description

一种控制霍尔推力器羽流发散角的装置
技术领域
本发明涉及一种控制霍尔推力器羽流发散角的装置,属于航天电推进技术和等离子体技术领域。
背景技术
当今空间科学技术的快速发展已取得了世人瞩目的成就,然而不断拓展的空间任务对空间飞行器的功能和性能提出了更高的要求,为空间飞行器提供动力的电推进装置也随之面临着迫切的技术升级甚至革新。霍尔推力器作为一种国际上应用最为广泛的空间电推进技术,其相比于传统的化学推力器,具有结构简单、高比冲、长寿命等优势;相比于其他电推力器,具有功率、推力范围大,比冲适中,免于空间电荷限制等优势。霍尔推力器现已成为世界各国降低航天器总质量、提高平台有效载荷、延长在轨寿命的最有效手段之一。
霍尔推进器通过工质原子与被磁场约束的电子进行碰撞电离产生离子,离子在等离子体自洽形成的轴向电场作用下高速喷出产生推力。然而,磁场并非完全沿径向方向,同时磁力线也并非完全是等势线,因此加速电场不可避免的具有径向分量,进而导致羽流的发散。传统的霍尔推力器羽流半角为45°左右,这种大的发散角度不仅会引起推力损失,同时还会侵蚀陶瓷通道、空心阴极等推力器部件,甚至损坏天线、太阳能帆板等航天器部件。因此,有效地控制羽流发散角是延长霍尔推力器寿命,增强航天器可靠性的必要环节。
霍尔推进器的工作原理决定了通过直接优化电场来改善羽流发散的方式是非常困难的,纵然各研究机构针对羽流发散角的控制已开展了大量研究工作,但其均从优化磁场的角度去着手开展的,所取得的效果仍难以满足日益苛刻的空间应用需求。因此,本发明致力于从远端控制离子运动的角度来解决羽流发散角过大的问题,提出了一种控制霍尔推力器羽流发散角的装置,以实现对推力器羽流区离子的有效控制,进而减小羽流发散角。
发明内容
本发明为解决由于现有霍尔推进器羽流发散角过大而导致的推力损失,陶瓷通道、空心阴极等推力器部件侵蚀,天线、太阳能帆板等航天器部件受损的问题,进而提出了一种控制霍尔推力器羽流发散角的装置,能够有效的控制羽流区离子的运动,该装置具有结构简单,适用性较强等优点,拓展了羽流发散角控制方式的自由度,为高可靠性推力器和航天器的空间应用奠定基础。
本发明提出一种控制霍尔推力器羽流发散角的装置包括永磁铁、陶瓷外壳和电极,所述陶瓷外壳呈闭合环状,所述陶瓷外壳的内侧面设置有电极,所述陶瓷外壳内包有永磁铁。
优选地,所述陶瓷外壳包括外陶瓷、上内陶瓷和下内陶瓷,所述外陶瓷位于陶瓷外壳的外侧面,所述上内陶瓷位于电极的上方,所述下内陶瓷位于电极的下方。
优选地,所述电极通过锡焊固定于上内陶瓷和下内陶瓷之间,成为一体结构。
优选地,所述上内陶瓷上设置有接线孔,用于接入0-150V范围内的正偏置电压,建立指向通道中心的电场。
优选地,所述永磁铁的材料为耐高温钐钴永磁铁Sm2Co17
优选地,所述陶瓷外壳的材料为Al2O3
优选地,所述电极的材料为殷钢。
本发明所述的控制霍尔推力器羽流发散角的装置的工作原理为:
聚流装置内部的永磁铁产生强磁场,电极通过接入正偏置电压在电极上形成高电位,两者的共同作用使得装置内部形成电场磁场相互交叉的区域。在强磁镜力的作用下,电子被磁力线所捕获,且在聚流装置内沿磁力线进行高速的往复运动,电子很难达到壁面及电极上。当电子密度沿着磁力线变化不大时,强磁场区的磁力线可以看作近似的等电势线,此时电场梯度与磁感线垂直,离子受到指向通道中心的电场力的作用而聚焦,离子向周围的发散程度因而得以被抑制。
本发明所述的控制霍尔推力器羽流发散角的装置的有益效果为:
1、本发明所述的控制霍尔推力器羽流发散角的装置可产生正交的电磁场,进而高效地约束等离子体,以有效地控制羽流发散角,大幅度降低等离子体对部件的溅射腐蚀。
2、本发明所述的控制霍尔推力器羽流发散角的装置,结构简单,易实现,可应用范围广,在各功率等级的霍尔推力器上均具有应用潜力。
附图说明
图1是本发明所述的控制霍尔推力器羽流发散角的装置的切面结构示意图;
图2是本发明所述的控制霍尔推力器羽流发散角的装置的切面立体结构示意图;
图3是本发明所述的控制霍尔推力器羽流发散角的装置的电极接线孔结构示意图;
图4是本发明所述的控制霍尔推力器羽流发散角的装置与推力器布置方式及磁场位型;
图5是本发明所述的控制霍尔推力器羽流发散角的装置有无聚流装置时通道中心线处的磁场强度分布。
图中:1-永磁铁;2-电极;3-外陶瓷;4-上内陶瓷;5-下内陶瓷;6-接线孔。
具体实施方式
以下结合附图对本发明的具体实施方式作进一步详细的说明:
具体实施方式一:参见图1说明本实施方式。本实施方式所述的一种控制霍尔推力器羽流发散角的装置包括永磁铁1、陶瓷外壳和电极2,所述陶瓷外壳呈闭合环状,所述陶瓷外壳的内侧面设置有电极2,所述陶瓷外壳内包有永磁铁1。
所述陶瓷外壳包括外陶瓷3、上内陶瓷4和下内陶瓷5,所述外陶瓷3位于陶瓷外壳的外侧面,所述上内陶瓷4位于电极2的上方,所述下内陶瓷5位于电极2的下方,其切面结构如图1所示。
氧化铝陶瓷外壳包裹永磁铁1,以防止其被离子溅射而过热,从而影响其磁性。殷钢电极2置于上内陶瓷4和下内陶瓷5之间,通过锡焊与氧化铝陶瓷外壳固定在一起,上内陶瓷4、下内陶瓷5与外陶瓷3通过螺栓进行紧固,其三维结构示意图如图2所示。
所述永磁铁1采用的材料为耐高温钐钴永磁铁Sm2Co17,是衫钴永磁铁的一种,所述陶瓷外壳的材料为Al2O3,所述电极2材料为殷钢。
所述的控制霍尔推力器羽流发散角的装置欲实现预期功能需要产生磁场强度在1T(特斯拉)以上的磁场,因此本装置采用了永磁铁1,永磁铁1较励磁线圈更易产生强磁场,且兼具励磁功耗小的优点,可充分满足设计要求,同时,电极2可通过上内陶瓷4的接线孔6接入0-150V范围内的正偏置电压,建立指向通道中心的电场,如图3所示。
所述的控制霍尔推力器羽流发散角的装置与推力器间的布置方式以及通过FEMM仿真软件所得到的磁场位型如图4所示,针对不同功率等级的霍尔推力器的羽流发散角控制,可通过调整装置与霍尔推力器出口端轴向距离以及电极电压的大小来满足控制需求。通过图4我们还可发现,本发明的加入在推力器羽流区形成了轴向磁场,这将促进指向通道中心的电场的形成,进而使得离子向通道中心聚集。
于此同时,通过有无聚流装置时通道中心线处的磁场强度分布图5我们可以看出,装置的加入对推力器原磁场位型产生的影响是极其有限的,电离区和加速区的磁场位形及强度几乎不变,推力器放电过程不受聚流装置的影响。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明。所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,还可以是上述各个实施方式记载的特征的合理组合,凡在本发明精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种控制霍尔推力器羽流发散角的装置,其特征在于,包括永磁铁(1)、陶瓷外壳和电极(2),所述陶瓷外壳呈闭合环状,所述陶瓷外壳的内侧面设置有电极(2),所述陶瓷外壳内包有永磁铁(1);
所述陶瓷外壳包括外陶瓷(3)、上内陶瓷(4)和下内陶瓷(5),所述外陶瓷(3)位于陶瓷外壳的外侧面,所述上内陶瓷(4)位于电极(2)的上方,所述下内陶瓷(5)位于电极(2)的下方;
所述上内陶瓷(4)上设置有接线孔(6),用于接入0-150V范围内的正偏置电压,建立指向通道中心的电场;
通过调整控制霍尔推力器羽流发散角的装置与霍尔推力器出口端轴向距离以及电极电压的大小对霍尔推力器的羽流发散角进行控制,拓展了羽流发散角控制方式的自由度。
2.根据权利要求1所述的控制霍尔推力器羽流发散角的装置,其特征在于,所述电极(2)通过锡焊固定于上内陶瓷(4)和下内陶瓷(5)之间。
3.根据权利要求1所述的控制霍尔推力器羽流发散角的装置,其特征在于,所述上内陶瓷(4)和下内陶瓷(5)分别通过螺栓与外陶瓷(3)进行紧固。
4.根据权利要求1所述的控制霍尔推力器羽流发散角的装置,其特征在于,所述永磁铁(1)采用的材料为耐高温钐钴永磁铁Sm2Co17
5.根据权利要求1所述的控制霍尔推力器羽流发散角的装置,其特征在于,所述陶瓷外壳的材料为Al2O3
6.根据权利要求1所述的控制霍尔推力器羽流发散角的装置,其特征在于,所述电极(2)采用的材料为殷钢。
CN201910168351.6A 2019-03-06 2019-03-06 一种控制霍尔推力器羽流发散角的装置 Active CN109882370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910168351.6A CN109882370B (zh) 2019-03-06 2019-03-06 一种控制霍尔推力器羽流发散角的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910168351.6A CN109882370B (zh) 2019-03-06 2019-03-06 一种控制霍尔推力器羽流发散角的装置

Publications (2)

Publication Number Publication Date
CN109882370A CN109882370A (zh) 2019-06-14
CN109882370B true CN109882370B (zh) 2021-07-16

Family

ID=66930971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910168351.6A Active CN109882370B (zh) 2019-03-06 2019-03-06 一种控制霍尔推力器羽流发散角的装置

Country Status (1)

Country Link
CN (1) CN109882370B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329201B (zh) * 2020-09-30 2022-11-04 兰州空间技术物理研究所 一种集成化离子电推进仿真模型及方法
CN112628099B (zh) * 2020-12-14 2022-03-04 兰州空间技术物理研究所 一种高功率离子推力器羽流屏蔽外壳及其制作方法
CN116148605B (zh) * 2022-11-30 2023-12-12 兰州空间技术物理研究所 一种电推力器高电压绝缘的验证方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020008455A1 (en) * 2000-04-14 2002-01-24 Fisch Nathaniel J. Segmented electrode hall thruster with reduced plume
US20020014845A1 (en) * 2000-04-14 2002-02-07 Yevgeny Raitses Cylindrical geometry hall thruster
CN103327721A (zh) * 2013-06-24 2013-09-25 哈尔滨工业大学 一种控制会切磁场推力器羽流发散角度的方法
CN103775297A (zh) * 2014-03-04 2014-05-07 哈尔滨工业大学 多级尖端会切磁场等离子体推力器分段陶瓷通道
CN104234957A (zh) * 2014-09-12 2014-12-24 哈尔滨工业大学 一种通道长度可变的多级会切磁场等离子体推力器的永磁体外壳
CN105889005A (zh) * 2016-04-19 2016-08-24 哈尔滨工业大学 具有缓冲腔结构的磁聚焦型霍尔推力器及该推力器的压紧装配方法
CN106286180A (zh) * 2016-10-17 2017-01-04 哈尔滨工业大学 会切磁场推力器的磁场屏蔽罩

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020008455A1 (en) * 2000-04-14 2002-01-24 Fisch Nathaniel J. Segmented electrode hall thruster with reduced plume
US20020014845A1 (en) * 2000-04-14 2002-02-07 Yevgeny Raitses Cylindrical geometry hall thruster
CN103327721A (zh) * 2013-06-24 2013-09-25 哈尔滨工业大学 一种控制会切磁场推力器羽流发散角度的方法
CN103775297A (zh) * 2014-03-04 2014-05-07 哈尔滨工业大学 多级尖端会切磁场等离子体推力器分段陶瓷通道
CN104234957A (zh) * 2014-09-12 2014-12-24 哈尔滨工业大学 一种通道长度可变的多级会切磁场等离子体推力器的永磁体外壳
CN105889005A (zh) * 2016-04-19 2016-08-24 哈尔滨工业大学 具有缓冲腔结构的磁聚焦型霍尔推力器及该推力器的压紧装配方法
CN106286180A (zh) * 2016-10-17 2017-01-04 哈尔滨工业大学 会切磁场推力器的磁场屏蔽罩

Also Published As

Publication number Publication date
CN109882370A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN109882370B (zh) 一种控制霍尔推力器羽流发散角的装置
CN111622912B (zh) 一种调节导磁柱霍尔推力器磁分界面形态的磁路设计方法
RU2092983C1 (ru) Плазменный ускоритель
JP3609407B2 (ja) 閉鎖電子ドリフトを持つ長さの短いプラズマ加速器
US7624566B1 (en) Magnetic circuit for hall effect plasma accelerator
CN110500250B (zh) 一种螺旋波电磁加速等离子体源
CN108307576B (zh) 一种磁聚焦霍尔推力器长寿命设计下的磁路结构设计方法
US6158209A (en) Device for concentrating ion beams for hydromagnetic propulsion means and hydromagnetic propulsion means equipped with same
CN103327721B (zh) 一种控制会切磁场推力器羽流发散角度的方法
CN110594115B (zh) 一种无放电阴极的环型离子推力器
CN109236594B (zh) 一种低功率磁化电推进空心阴极推力器
CN110145446A (zh) 一种脉冲电励磁微牛推进装置
CN106793441A (zh) 一种分辨力为微牛级的半椭球型射频离子微推力器
CN111486070B (zh) 一种基于加速电极的微阴极电弧推力系统
CN108590994B (zh) 一种改变阴极磁场分布的永磁霍尔推力器外磁极结构
CN112563094B (zh) 一种抑制无箔二极管中电子束回流的方法
CN116190040A (zh) 一种外部放电等离子体推力器磁场结构及推力器
CN112253413A (zh) 一种电感耦合双级等离子体推力器
WO2018112184A1 (en) High-efficiency ion discharge method and apparatus
CN115681052B (zh) 霍尔推力器、具有其的设备及其使用方法
CN111173698B (zh) 一种基于微波增强的液体工质等离子体推力器
CN115898802A (zh) 霍尔推力器、包括其的空间设备及其使用方法
WO1999063221A2 (en) Magnetic flux shaping in ion accelerators with closed electron drift
CN114738219A (zh) 一种微牛级推力ecr离子推力器栅极组件
JP7224031B2 (ja) イオンスラスタ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant