CN109879667B - Preparation method of dense oxygen-depleted zinc oxide ceramic body - Google Patents
Preparation method of dense oxygen-depleted zinc oxide ceramic body Download PDFInfo
- Publication number
- CN109879667B CN109879667B CN201910148911.1A CN201910148911A CN109879667B CN 109879667 B CN109879667 B CN 109879667B CN 201910148911 A CN201910148911 A CN 201910148911A CN 109879667 B CN109879667 B CN 109879667B
- Authority
- CN
- China
- Prior art keywords
- zinc oxide
- zinc
- ceramic body
- powder
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 206
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 96
- 239000000919 ceramic Substances 0.000 title claims abstract description 51
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 31
- 239000001301 oxygen Substances 0.000 title claims description 31
- 229910052760 oxygen Inorganic materials 0.000 title claims description 31
- 239000000843 powder Substances 0.000 claims abstract description 73
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 65
- 239000011701 zinc Substances 0.000 claims abstract description 65
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000007788 liquid Substances 0.000 claims abstract description 36
- 239000002002 slurry Substances 0.000 claims abstract description 29
- 238000005469 granulation Methods 0.000 claims abstract description 21
- 230000003179 granulation Effects 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000005245 sintering Methods 0.000 claims abstract description 18
- 239000002270 dispersing agent Substances 0.000 claims abstract description 16
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 29
- 239000012159 carrier gas Substances 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000003570 air Substances 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000009694 cold isostatic pressing Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 3
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 3
- 229910003437 indium oxide Inorganic materials 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 abstract description 6
- 239000007921 spray Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电材料技术领域,特别涉及一种能够在保证高致密的同时能实现对氧化锌陶瓷体失氧率的控制,可以作为磁控溅射的靶材,满足下游光电镀膜行业的使用需求。The invention relates to the technical field of optoelectronic materials, in particular to a method that can control the oxygen loss rate of a zinc oxide ceramic body while ensuring high densification, and can be used as a target for magnetron sputtering to meet the use requirements of the downstream electroplating industry. .
背景技术Background technique
氧化锌作为一种环境友好、储量丰富的多功能宽禁带氧化物材料,在经过一定数量的简并掺杂(如Al、Ga、In等)后,可以变成较高光电性能的透明导电氧化物材料(transparent conductive oxide,TCO),具有紫外光吸收、可见光透明、红外光反射以及电学特性可调等优点,在平板显示、薄膜太阳能电池、建筑节能用Low-E玻璃、智能玻璃等光电信息领域得到越来越多的应用,可以作为薄膜太阳能电池中的透明电极层、中间介质层和背电极高反射层、节能Low-E玻璃中的功能介质层、智能玻璃的透明电极层以及家电玻璃的红外反射层等。目前沉积氧化锌基薄膜的技术多种多样,其中以磁控溅射成膜最为成熟,它具有薄膜致密度高、均匀性与重复性好且易于大面积高速沉积等优点而被工业界接受并广泛采用。在磁控溅射过程中,陶瓷靶材起到至关重要的作用,它的性能与溅射稳定性以及最终膜层的光电特性密切相关。对高性能陶瓷靶材的基本要求是:高致密度、细小均匀的晶粒以及成分的均匀一致。最近,镀膜行业新的发展要求能对靶材的氧空位实现严格的控制,满足新型氧化锌功能薄膜的应用需求:(1)对于CIGS薄膜太阳电池而言,需要沉积一层本征i-ZnO,而传统的本征ZnO陶瓷靶材导电性很差,需要昂贵的射频(RF)电源进行溅射,此外溅射速率也比较慢,很难满足快速批量的生产要求,因此有必要通过调整ZnO晶体中的氧空位,提升靶材的电导率,可以采用直流(DC)或者中频(MF)实现高速沉积;(2)在low-E镀膜等多层膜沉积领域,需要ZnO靶材具有一定的失氧率,使所沉积的薄膜可以在镀膜腔体内吸收一定的氧气分子,进一步保护下层金属层,避免金属层在镀膜过程中被氧化。As an environmentally friendly and abundant multifunctional wide-bandgap oxide material, ZnO can become a transparent conductive material with high photoelectric performance after a certain amount of degenerate doping (such as Al, Ga, In, etc.). Oxide material (transparent conductive oxide, TCO), has the advantages of ultraviolet light absorption, visible light transparency, infrared light reflection and adjustable electrical properties, etc. More and more applications in the field of information can be used as transparent electrode layer, intermediate dielectric layer and back electrode high reflection layer in thin film solar cells, functional dielectric layer in energy-saving Low-E glass, transparent electrode layer in smart glass and home appliances. Infrared reflective layer of glass, etc. At present, there are various techniques for depositing zinc oxide-based thin films, among which magnetron sputtering is the most mature film formation, which has the advantages of high film density, good uniformity and repeatability, and easy large-area high-speed deposition. used widely. In the magnetron sputtering process, the ceramic target plays a crucial role, and its performance is closely related to the sputtering stability and the optoelectronic properties of the final film. The basic requirements for high-performance ceramic targets are: high density, fine and uniform grains, and uniform composition. Recently, the new development in the coating industry requires strict control of oxygen vacancies in the target to meet the application requirements of new zinc oxide functional thin films: (1) For CIGS thin film solar cells, it is necessary to deposit a layer of intrinsic i-ZnO , while the traditional intrinsic ZnO ceramic target has poor conductivity and requires expensive radio frequency (RF) power for sputtering. In addition, the sputtering rate is relatively slow, making it difficult to meet the requirements of rapid batch production. Therefore, it is necessary to adjust the ZnO Oxygen vacancies in the crystal can improve the conductivity of the target, and direct current (DC) or intermediate frequency (MF) can be used to achieve high-speed deposition; (2) In the field of multi-layer film deposition such as low-E coating, ZnO targets are required to have certain The oxygen loss rate enables the deposited film to absorb a certain amount of oxygen molecules in the coating cavity, further protecting the underlying metal layer and preventing the metal layer from being oxidized during the coating process.
为了控制氧化锌陶瓷靶材的失氧率的含量,相关文献给出了如下的制备技术手段。万冬云等在《Chinese Optical Letters》(2011年9卷第10期103102页)公布一种具有氧缺陷的纯ZnO靶材的制备方法,在这个方法中,先将干压成型的ZnO坯体在1350℃烧结4h后取出,放置在一个小坩埚内,该小坩埚放置于倒置的大坩埚内,两层坩埚间放置碳粉,升温过程中碳粉与残余氧气发生反应形成具有还原性的CO气体,该气体与ZnO发生还原反应倒置ZnO晶格中氧失去,形成具有氧空位的氧化锌陶瓷靶材。Ming-Wei Wu等人在《Journal ofAlloys and Compounds》(2015年第650期514-519页)发表一种利用热等静压的方法制备了具有一定失氧率的铝掺杂氧化锌(AZO)陶瓷靶材,在这个方法中,AZO坯体先在空气条件于1300℃烧结3h,然在置于热等静压设备中,依靠氩气加压,在1250℃烧结3h。此外还有采用特制气氛烧结炉对陶瓷材料的还原处理形成具有一定失氧率陶瓷靶材的制备方法。然而,上述三种方法仍难应用于大尺寸AZO靶材的规模化生产,其不足之处如下:(1)受到坩埚以及热等静压设备腔体的限制,只能用于小尺寸的实验室样品处理,不能应用于批量化的大尺寸陶瓷靶材的烧结;(2)操作工艺繁琐,需要先烧结成块体后再置于另外一台设备中进行二次处理,间接增加靶材的制备成本;而且第一次烧结陶瓷的表面相对致密对第二次烧结中还原气氛有一定的阻挡作用,容易出现内部与表面失氧不均匀的现象发生,进而影响靶材的均匀性;(3)热等静压和特制气氛烧结的设备成本较高,也会增加靶材制备的成本。In order to control the content of the oxygen loss rate of the zinc oxide ceramic target, the relevant literature provides the following preparation techniques. Wan Dongyun et al. in "Chinese Optical Letters" (Volume 9, No. 10, Page 103102, 2011) announced a method for preparing a pure ZnO target with oxygen defects. In this method, the dry-pressed ZnO blank was first After sintering at 1350°C for 4 hours, take it out and place it in a small crucible. The small crucible is placed in an upside-down large crucible, and carbon powder is placed between the two layers of crucibles. During the heating process, the carbon powder reacts with residual oxygen to form reducing CO gas, the gas and ZnO undergo a reduction reaction to invert the oxygen in the ZnO lattice to lose, forming a zinc oxide ceramic target with oxygen vacancies. Ming-Wei Wu et al. in "Journal of Alloys and Compounds" (2015, No. 650, pages 514-519) published a method to prepare aluminum-doped zinc oxide (AZO) with a certain oxygen loss rate by means of hot isostatic pressing For ceramic targets, in this method, the AZO body is first sintered at 1300 °C for 3 hours in air, and then placed in a hot isostatic pressing equipment, pressurized by argon gas, and sintered at 1250 °C for 3 hours. In addition, there is also a preparation method of using a special atmosphere sintering furnace to reduce the ceramic material to form a ceramic target with a certain oxygen loss rate. However, the above three methods are still difficult to apply to the large-scale production of large-scale AZO targets, and their shortcomings are as follows: (1) Limited by the crucible and the cavity of the hot isostatic pressing equipment, they can only be used for small-scale experiments (2) The operation process is cumbersome, and it needs to be sintered into a block and then placed in another equipment for secondary treatment, which indirectly increases the target's sintering capacity. Preparation cost; and the relatively dense surface of the first sintered ceramic has a certain blocking effect on the reducing atmosphere in the second sintering, which is prone to the phenomenon of uneven oxygen loss inside and on the surface, which in turn affects the uniformity of the target material; (3 ) The equipment cost of hot isostatic pressing and special atmosphere sintering is high, which will also increase the cost of target preparation.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明从氧化锌原料粉体的处理着手,实现锌层在氧化锌造粒粉体表面的包覆,坯体成型,在随后的烧结过程中利用xZn+(1-x)ZnO→ZnO1-x的扩散反应,实现致密失氧氧化锌陶瓷体的制备。In order to solve the above technical problems, the present invention starts from the treatment of the zinc oxide raw material powder, realizes the coating of the zinc layer on the surface of the zinc oxide granulated powder, the green body is formed, and uses xZn+(1-x) in the subsequent sintering process. The diffusion reaction of ZnO→ZnO 1-x realizes the preparation of dense oxygen-depleted ZnO ceramic body.
本发明的技术方案是提供一种致密失氧氧化锌陶瓷体的制备方法,主要包括锌层包覆氧化锌造粒粉体的制备,锌层包覆氧化锌造粒粉体制备陶瓷坯体然后烧结;其中锌层包覆氧化锌造粒粉体制备过程为,氧化锌预混料加入含有分散剂的液体中,制得浆料,将浆料通过喷射造粒,然后将锌蒸汽输送至造粒区域实现氧化锌造粒粉体表面锌层包覆,其中锌蒸汽的形成温度为1000~1300℃。The technical scheme of the present invention is to provide a method for preparing a dense oxygen-depleted zinc oxide ceramic body, which mainly includes the preparation of zinc oxide granulated powder coated with a zinc layer, and the zinc layer coated zinc oxide granulated powder to prepare a ceramic body and then Sintering; the preparation process of zinc oxide granulated powder coated with zinc layer is as follows: zinc oxide premix is added to liquid containing dispersant to prepare slurry, slurry is granulated by jet, and then zinc vapor is transported to the granulator. The granulation area realizes the coating of zinc layer on the surface of the zinc oxide granulated powder, wherein the formation temperature of zinc vapor is 1000-1300°C.
进一步地,氧化锌预混料由氧化锌粉体与掺杂氧化物粉体混合制成,混合物中掺杂氧化物粉体质量/(氧化锌粉体质量+掺杂氧化物粉体质量)=0~10wt%;当掺杂氧化物粉体质量分数为0时,氧化锌预混料仅由氧化锌粉体组成。Further, the zinc oxide premix is made by mixing zinc oxide powder and doped oxide powder, and the mass of the doped oxide powder in the mixture/(the mass of the zinc oxide powder+the mass of the doped oxide powder)= 0-10wt%; when the mass fraction of the doped oxide powder is 0, the zinc oxide premix is only composed of zinc oxide powder.
进一步地,含有分散剂的液体中分散剂质量分数为0.1~3wt%,溶剂为去离子水;通过球磨制得浆料,球磨时间为8~24h。Further, the mass fraction of the dispersant in the liquid containing the dispersant is 0.1-3wt%, and the solvent is deionized water; the slurry is prepared by ball milling, and the ball milling time is 8-24h.
进一步地,氧化锌预混料中氧化锌粉体的平均粒径为200~500nm,纯度为99.95~99.99%;属于高纯氧化锌粉体;掺杂氧化物为氧化铝、氧化镓、氧化铟中的一种或两种,平均粒径为100~400nm,纯度为99.95~99.99%;Further, the average particle size of the zinc oxide powder in the zinc oxide premix is 200-500 nm, and the purity is 99.95-99.99%; it belongs to high-purity zinc oxide powder; the doped oxide is aluminum oxide, gallium oxide, and indium oxide. One or both of them, the average particle size is 100-400nm, and the purity is 99.95-99.99%;
进一步地,分散剂为聚乙烯吡咯烷酮、聚乙烯醇、羧甲基纤维素中的一种或两种;Further, the dispersant is one or both of polyvinylpyrrolidone, polyvinyl alcohol, and carboxymethyl cellulose;
进一步地,锌层包覆氧化锌造粒粉体的平均粒径10~100μm,锌层厚度0.5~2μm;Further, the average particle size of the zinc oxide granulated powder coated with the zinc layer is 10-100 μm, and the thickness of the zinc layer is 0.5-2 μm;
进一步地,上述锌层包覆氧化锌造粒粉体制备装置包括:底部带有液体喷嘴的浆料容器、分布于液体喷嘴周围的带有气体喷嘴的载气单元,且气体喷嘴至少一个,载气单元至少一个,以及锌蒸汽形成池;其中气体喷嘴喷出的气流与液体喷嘴喷出的液流间角度α为20~90°,以便将液体粒子破碎雾化至期望的粒径;Further, the above-mentioned zinc-coated zinc oxide granulated powder preparation device includes: a slurry container with a liquid nozzle at the bottom, a carrier gas unit with a gas nozzle distributed around the liquid nozzle, and at least one gas nozzle for carrying At least one gas unit, and a zinc vapor forming pool; wherein the angle α between the gas flow ejected from the gas nozzle and the liquid flow ejected from the liquid nozzle is 20° to 90°, so as to crush and atomize the liquid particles to a desired particle size;
更进一步地,液体喷嘴孔洞的孔径为0.5~2mm,浆料从孔洞中流出的流量为0.01~5L/min;Further, the hole diameter of the liquid nozzle hole is 0.5-2mm, and the flow rate of the slurry flowing out of the hole is 0.01-5L/min;
更进一步地,载气单元所载气体为氩气或者氮气中的一种,气体压力为0.8~30MPa,加热载气的温度为80~120℃,浆料液流通过载体气流被进一步破碎雾化,同时载气带有一定的温度能够蒸发部分液体颗粒中的水分,利于后续锌蒸汽在氧化锌造粒粉体颗粒表面的附着。Further, the gas carried in the carrier gas unit is one of argon gas or nitrogen gas, the gas pressure is 0.8~30MPa, the temperature of heating the carrier gas is 80~120℃, and the slurry liquid flow is further broken and atomized by the carrier gas flow. At the same time, the carrier gas with a certain temperature can evaporate the moisture in some liquid particles, which is beneficial to the subsequent adhesion of zinc vapor on the surface of the zinc oxide granulated powder particles.
进一步地,锌层包覆氧化锌造粒粉体制成的陶瓷坯体的相对密度为60~75%,烧结过程为以0.5~10℃/min的升温速率升到第一步设定温度1000~1250℃,保温30~90min;然后以10~100℃/min升温速率升到第二步设定温度1300~1450℃,并保温120~480min,最后以0.5~10℃/min的降温速率降至室温,烧结气氛为空气、氮气、氩气中的一种或者两种混合。Further, the relative density of the ceramic body made of the zinc oxide granulated powder coated with the zinc layer is 60-75%, and the sintering process is to raise the temperature at a heating rate of 0.5-10° C./min to the first set temperature of 1000°C. ~1250℃, keep the temperature for 30~90min; then raise the temperature to 1300~1450℃ in the second step at the heating rate of 10~100℃/min, keep the temperature for 120~480min, and finally decrease the temperature at the cooling rate of 0.5~10℃/min. At room temperature, the sintering atmosphere is one or a mixture of air, nitrogen and argon.
进一步地,坯体成型方法为冷等静压成型,压力为120~300MPa,保压时间为60~600s。Further, the green body forming method is cold isostatic pressing, the pressure is 120-300MPa, and the pressure holding time is 60-600s.
根据实际需求可将制得的致密失氧氧化锌陶瓷体进行切割、打磨等后处理,经过后处理的产品颜色呈现黑色。According to actual needs, the prepared dense oxygen-depleted zinc oxide ceramic body can be cut, polished and other post-processing, and the color of the post-processed product is black.
本发明的优点和有益效果:采用简单的方法实现了致密失氧氧化锌陶瓷体的制备,所用设备简单,成本低廉,致密度较高,产品的相对密度在95%以上,且具有较低的电阻率,经过测试其电阻率<1Ω·cm,可以满足DC以及MF的溅射需求。Advantages and beneficial effects of the invention: the preparation of dense oxygen-depleted zinc oxide ceramic body is realized by a simple method, the equipment used is simple, the cost is low, the density is high, the relative density of the product is over 95%, and the The resistivity, after testing, its resistivity is less than 1Ω·cm, which can meet the sputtering requirements of DC and MF.
附图说明Description of drawings
图1是本发明锌包覆氧化锌造粒粉体的制备装置示意图。Fig. 1 is the schematic diagram of the preparation device of the zinc-coated zinc oxide granulated powder of the present invention.
图中,1-浆料容器,2-浆料,3-载气,4-气体喷嘴,5-加热线圈,61-氧化锌造粒粉体,62-锌层包覆氧化锌造粒粉体,7-锌蒸汽,8-锌蒸汽形成池In the figure, 1-slurry container, 2-slurry, 3-carrier gas, 4-gas nozzle, 5-heating coil, 61-zinc oxide granulated powder, 62-zinc layer coated zinc oxide granulated powder , 7-zinc vapor, 8-zinc vapor forming pool
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.
本发明提供一种致密失氧氧化锌陶瓷体的制备方法,主要包括锌层包覆氧化锌造粒粉体的制备,锌层包覆氧化锌造粒粉体制备陶瓷坯体然后烧结。其中锌层包覆氧化锌造粒粉体制备过程为,氧化锌预混料加入含有分散剂的液体中,制得浆料2,将浆料2通过喷射造粒,然后将锌蒸汽7输送至造粒区域实现氧化锌造粒粉体表面锌层包覆,其中锌蒸汽7的形成温度为1000~1300℃;本发明所采用的锌层包覆氧化锌造粒粉体的制备装置如图1所示,包括:底部带有液体喷嘴的浆料容器1、分布于液体喷嘴周围的至少一个带有气体喷嘴4的载气单元,图1中所示为两个气体喷嘴4,以及锌蒸汽形成池8;其中气体喷嘴4喷出的气流与液体喷嘴喷出的液流间角度α为20~90°,以便将浆料2的液体粒子破碎雾化至期望的粒径;载气3以及锌蒸汽7通过加热线圈5加热形成。The invention provides a preparation method of a dense oxygen-depleted zinc oxide ceramic body, which mainly comprises the preparation of a zinc layer-coated zinc oxide granulated powder, and the zinc layer-coated zinc oxide granulated powder to prepare a ceramic body and then sintered. The preparation process of the zinc oxide granulated powder coated with the zinc layer is as follows: the zinc oxide premix is added to the liquid containing the dispersant to prepare a slurry 2; The granulation area realizes the zinc layer coating on the surface of the zinc oxide granulated powder, wherein the formation temperature of the zinc vapor 7 is 1000-1300 ° C; the preparation device of the zinc layer coated zinc oxide granulated powder adopted in the present invention is shown in Figure 1 shown, comprising: a slurry container 1 with liquid nozzles at the bottom, at least one carrier gas unit with gas nozzles 4 distributed around the liquid nozzles, two gas nozzles 4 are shown in FIG. 1, and zinc vapor formation Pool 8; wherein the angle α between the air flow sprayed by the gas nozzle 4 and the liquid flow sprayed by the liquid nozzle is 20 to 90°, so as to crush and atomize the liquid particles of the slurry 2 to a desired particle size; the carrier gas 3 and the zinc The steam 7 is formed by heating the heating coil 5 .
作为进一步改进,液体喷嘴孔洞的孔径为0.5~2mm,浆料2从孔洞中流出的流量为0.01~5L/min;As a further improvement, the hole diameter of the liquid nozzle is 0.5-2mm, and the flow rate of the slurry 2 out of the hole is 0.01-5L/min;
作为进一步改进,载气单元的载气3为氩气或者氮气中的一种,气体压力为0.8~30MPa,加热载气3的温度为80~120℃,浆料液流通过载气3被进一步破碎雾化,同时载气3带有一定的温度能够蒸发部分液体颗粒中的水分,利于后续锌蒸汽7在氧化锌造粒粉体颗粒表面的附着。As a further improvement, the carrier gas 3 of the carrier gas unit is one of argon or nitrogen, the gas pressure is 0.8-30MPa, the temperature of the heating carrier gas 3 is 80-120°C, and the slurry liquid flows through the carrier gas 3 and is further broken. Atomization, and at the same time the carrier gas 3 has a certain temperature to evaporate the moisture in some liquid particles, which is beneficial to the subsequent adhesion of the zinc vapor 7 on the surface of the zinc oxide granulated powder particles.
实施例1Example 1
本发明提供一种致密失氧氧化锌陶瓷体的制备方法,步骤包括:The invention provides a preparation method of a dense oxygen-depleted zinc oxide ceramic body, the steps comprising:
步骤一:锌层包覆氧化锌造粒粉体的制备Step 1: Preparation of Zinc Coated Zinc Oxide Granulated Powder
1.称量一定量的高纯氧化锌粉体与掺杂氧化物粉体相混合,混合物中掺杂氧化物粉体质量/(氧化锌粉体质量+掺杂氧化物粉体质量)=5wt%;其中高纯氧化锌粉体的平均粒径为200nm,纯度为99.95~99.99%,掺杂氧化物粉体为氧化铝,平均粒径为100nm,纯度为99.95~99.99%;1. Weigh a certain amount of high-purity zinc oxide powder and mix with the doped oxide powder, the mass of the doped oxide powder in the mixture/(the mass of the zinc oxide powder + the mass of the doped oxide powder)=5wt %; wherein the high-purity zinc oxide powder has an average particle size of 200 nm and a purity of 99.95-99.99%, and the doped oxide powder is aluminum oxide with an average particle size of 100 nm and a purity of 99.95-99.99%;
2.粉体混合后倒入含有1wt%分散剂的去离子水中,经过8h的球磨形成浆料2;其中分散剂为聚乙烯吡咯烷酮;2. After mixing the powder, pour it into deionized water containing 1wt% dispersant, and form slurry 2 through ball milling for 8 hours; wherein the dispersant is polyvinylpyrrolidone;
3.将浆料2置于图1所示的造粒装置中,浆料2通过液体喷嘴喷出的同时载气3通过气体喷嘴4喷出,气体对液体粒子进行分散,并由于气体自带一定的温度因此能够将液体粒子的水分蒸发从而完成造粒,即得到氧化锌造粒粉体61,接着将锌蒸汽7从锌蒸汽形成池8(温度保持在1000~1300℃,便于锌蒸汽7的持续不断形成)中输送至粉体造粒区实现在氧化锌造粒粉61表面锌层包覆,形成锌层包覆氧化锌造粒粉体62;得到的锌层包覆氧化锌造粒粉体62的平均粒径10~100μm,锌层厚度0.5~2μm;3. Place the slurry 2 in the granulation device shown in Figure 1, the slurry 2 is sprayed through the liquid nozzle while the carrier gas 3 is sprayed through the gas nozzle 4, the gas disperses the liquid particles, and because the gas has its own At a certain temperature, the moisture of the liquid particles can be evaporated to complete the granulation, that is, the zinc oxide granulated powder 61 is obtained, and then the zinc vapor 7 is formed from the zinc vapor forming pool 8 (the temperature is maintained at 1000-1300 ° C, which is convenient for the zinc vapor 7 ). The zinc oxide granulation powder 61 is coated with a zinc layer on the surface of the zinc oxide granulated powder 61, and the zinc oxide granulated
步骤二、坯体制备及其烧结Step 2, the preparation of the green body and its sintering
1.将步骤一得到的锌层包覆氧化锌造粒粉体62置入模具中经120~300MPa的冷等静压成型,保压时间为60~600s,形成相对密度为60~75%的陶瓷坯体;1. The zinc-coated zinc oxide granulated
2.将陶瓷坯体放置于气氛(本实施例烧结气氛采用空气)烧结炉中,电炉从室温开始以0.5~10℃/min的升温速率升到第一步设定温度1000~1250℃,保温30~90min。然后以10~100℃/min升温温速率升到第二步设定温度1300~1450℃,并保温120~480min,最后,以0.5~10℃/min的降温速率降至室温;2. Place the ceramic body in the sintering furnace in an atmosphere (the sintering atmosphere in this embodiment is air), and the electric furnace is raised from room temperature to the first set temperature of 1000-1250 ℃ at a heating rate of 0.5-10 ℃/min, and the temperature is kept warm. 30 to 90 minutes. Then, the temperature is raised to the second step set temperature of 1300-1450°C at a heating rate of 10-100°C/min, and kept for 120-480min, and finally, the temperature is lowered to room temperature at a cooling rate of 0.5-10°C/min;
3.将样品切割、打磨成规定尺寸,即为致密失氧氧化锌陶瓷体;经过打磨以后,陶瓷体颜色呈现深黑色。3. Cut and grind the sample to the specified size, which is the dense oxygen-depleted zinc oxide ceramic body; after grinding, the color of the ceramic body is dark black.
实施例2Example 2
本发明提供一种致密失氧氧化锌陶瓷体的制备方法,步骤包括:The invention provides a preparation method of a dense oxygen-depleted zinc oxide ceramic body, the steps comprising:
步骤一:锌层包覆氧化锌造粒粉体的制备Step 1: Preparation of Zinc Coated Zinc Oxide Granulated Powder
1.称量一定量的高纯氧化锌粉体与掺杂氧化物粉体相混合,混合物中掺杂氧化物粉体质量/(氧化锌粉体质量+掺杂氧化物粉体质量)=10wt%;其中高纯氧化锌粉体的平均粒径为500nm,纯度为99.95~99.99%,掺杂氧化物粉体为氧化铝和氧化镓,平均粒径为400nm,纯度为99.95~99.99%;1. Weigh a certain amount of high-purity zinc oxide powder and mix with the doped oxide powder, the mass of the doped oxide powder in the mixture/(the mass of the zinc oxide powder + the mass of the doped oxide powder)=10wt %; wherein the average particle size of the high-purity zinc oxide powder is 500nm, and the purity is 99.95-99.99%; the doped oxide powder is aluminum oxide and gallium oxide, the average particle size is 400nm, and the purity is 99.95-99.99%;
2.粉体混合后倒入含有2wt%分散剂的去离子水中,经过16h的球磨形成浆料2;其中分散剂为聚乙烯醇;2. After the powder is mixed, pour it into deionized water containing 2wt% dispersant, and form slurry 2 through ball milling for 16 hours; wherein the dispersant is polyvinyl alcohol;
3.将浆料2置于图1所示的造粒装置中,浆料2通过液体喷嘴喷出的同时载气3通过气体喷嘴4喷出,气体对液体粒子进行分散,并由于气体自带一定的温度因此能够将液体粒子的水分蒸发从而完成造粒,即得到氧化锌造粒粉体61,接着将锌蒸汽7从锌蒸汽形成池8(温度保持在1000~1300℃,便于锌蒸汽7的持续不断形成)中输送至粉体造粒区实现在氧化锌造粒粉61表面锌层包覆,形成锌层包覆氧化锌造粒粉体62;得到的锌层包覆氧化锌造粒粉体62的平均粒径10~100μm,锌层厚度0.5~2μm;3. Place the slurry 2 in the granulation device shown in Figure 1, the slurry 2 is sprayed through the liquid nozzle while the carrier gas 3 is sprayed through the gas nozzle 4, the gas disperses the liquid particles, and because the gas has its own At a certain temperature, the moisture of the liquid particles can be evaporated to complete the granulation, that is, the zinc oxide granulated powder 61 is obtained, and then the zinc vapor 7 is formed from the zinc vapor forming pool 8 (the temperature is maintained at 1000-1300 ° C, which is convenient for the zinc vapor 7 ). The zinc oxide granulation powder 61 is coated with a zinc layer on the surface of the zinc oxide granulated powder 61, and the zinc oxide granulated
步骤二、坯体制备及其烧结Step 2, the preparation of the green body and its sintering
1.将步骤一得到的锌层包覆氧化锌造粒粉体62置入模具中经120~300MPa的冷等静压成型,保压时间为60~600s,形成相对密度为60~75%的陶瓷坯体;1. The zinc-coated zinc oxide granulated
2.将陶瓷坯体放置于气氛(本实施例烧结气氛采用空气)烧结炉中,电炉从室温开始以0.5~10℃/min的升温速率升到第一步设定温度1000~1250℃,保温30~90min。然后以10~100℃/min升温温速率升到第二步设定温度1300~1450℃,并保温120~480min,最后,以0.5~10℃/min的降温速率降至室温;2. Place the ceramic body in the sintering furnace in an atmosphere (the sintering atmosphere in this embodiment is air), and the electric furnace is raised from room temperature to the first set temperature of 1000-1250 ℃ at a heating rate of 0.5-10 ℃/min, and the temperature is kept warm. 30 to 90 minutes. Then, the temperature is raised to the second step set temperature of 1300-1450°C at a heating rate of 10-100°C/min, and kept for 120-480min, and finally, the temperature is lowered to room temperature at a cooling rate of 0.5-10°C/min;
3.将样品切割、打磨成规定尺寸,即为致密失氧氧化锌陶瓷体;经过打磨以后,陶瓷体颜色呈现深黑色。3. Cut and grind the sample to the specified size, which is the dense oxygen-depleted zinc oxide ceramic body; after grinding, the color of the ceramic body is dark black.
实施例3Example 3
本发明提供一种致密失氧氧化锌陶瓷体的制备方法,步骤包括:The invention provides a preparation method of a dense oxygen-depleted zinc oxide ceramic body, the steps comprising:
步骤一:锌层包覆氧化锌造粒粉体的制备Step 1: Preparation of Zinc Coated Zinc Oxide Granulated Powder
1.称量一定量的高纯氧化锌粉体,高纯氧化锌粉体的平均粒径为300nm,纯度为99.95~99.99%,掺杂氧化物粉体为氧化铝和氧化铟,平均粒径为200nm,纯度为99.95~99.99%;1. Weigh a certain amount of high-purity zinc oxide powder, the average particle size of the high-purity zinc oxide powder is 300nm, the purity is 99.95-99.99%, the doped oxide powder is aluminum oxide and indium oxide, and the average particle size is is 200nm, and the purity is 99.95-99.99%;
2.粉体混合后倒入含有0.5wt%分散剂的去离子水中,经过24h的球磨形成浆料2;其中分散剂为羧甲基纤维素;2. After mixing the powder, pour it into deionized water containing 0.5wt% dispersant, and form slurry 2 after 24h ball milling; wherein the dispersant is carboxymethyl cellulose;
3.将浆料2置于图1所示的造粒装置中,浆料2通过液体喷嘴喷出的同时载气3通过气体喷嘴4喷出,气体对液体粒子进行分散,并由于气体自带一定的温度因此能够将液体粒子的水分蒸发从而完成造粒,即得到氧化锌造粒粉体61,接着将锌蒸汽7从锌蒸汽形成池8(温度保持在1000~1300℃,便于锌蒸汽7的持续不断形成)中输送至粉体造粒区实现在氧化锌造粒粉61表面锌层包覆,形成锌层包覆氧化锌造粒粉体62;得到的锌层包覆氧化锌造粒粉体62的平均粒径10~100μm,锌层厚度0.5~2μm;3. Place the slurry 2 in the granulation device shown in Figure 1, the slurry 2 is sprayed through the liquid nozzle while the carrier gas 3 is sprayed through the gas nozzle 4, the gas disperses the liquid particles, and because the gas has its own At a certain temperature, the moisture of the liquid particles can be evaporated to complete the granulation, that is, the zinc oxide granulated powder 61 is obtained, and then the zinc vapor 7 is formed from the zinc vapor forming pool 8 (the temperature is maintained at 1000-1300 ° C, which is convenient for the zinc vapor 7 ). The zinc oxide granulation powder 61 is coated with a zinc layer on the surface of the zinc oxide granulated powder 61, and the zinc oxide granulated
步骤二、坯体制备及其烧结Step 2, the preparation of the green body and its sintering
1.将步骤一得到的锌层包覆氧化锌造粒粉体62置入模具中经120~300MPa的冷等静压成型,保压时间为60~600s,形成相对密度为60~75%的陶瓷坯体;1. The zinc-coated zinc oxide granulated
2.将陶瓷坯体放置于气氛(本实施例烧结气氛采用空气)烧结炉中,电炉从室温开始以0.5~10℃/min的升温速率升到第一步设定温度1000~1250℃,保温30~90min。然后以10~100℃/min升温温速率升到第二步设定温度1300~1450℃,并保温120~480min,最后,以0.5~10℃/min的降温速率降至室温;2. Place the ceramic body in the sintering furnace in an atmosphere (the sintering atmosphere in this embodiment is air), and the electric furnace is raised from room temperature to the first set temperature of 1000-1250 ℃ at a heating rate of 0.5-10 ℃/min, and the temperature is kept warm. 30 to 90 minutes. Then, the temperature is raised to the second step set temperature of 1300-1450°C at a heating rate of 10-100°C/min, and kept for 120-480min, and finally, the temperature is lowered to room temperature at a cooling rate of 0.5-10°C/min;
3.将样品切割、打磨成规定尺寸,即为致密失氧氧化锌陶瓷体;经过打磨以后,陶瓷体颜色呈现深黑色。3. Cut and grind the sample to the specified size, which is the dense oxygen-depleted zinc oxide ceramic body; after grinding, the color of the ceramic body is dark black.
利用阿基米德法测量密度并根据实测密度与理论密度之间的百分比计算靶材的相对密度,靶材的相对密度大于95%,例如针对实施例1的陶瓷靶材,经测定该陶瓷体的密度为5.553g/cm3,其理论密度为5.58g/cm3,因此相对密度为99.5%,其他实施例相对密度结果类似且均大于95%。对于掺杂含量一定的致密的氧化锌陶瓷体,其电阻率变化来源于氧空位的形成,因此可以利用材料的电阻率来表征氧空位的数量,经过测试本发明的陶瓷靶材电阻率<1Ω·cm,进而满足DC以及MF的溅射需求。Use the Archimedes method to measure the density and calculate the relative density of the target according to the percentage between the measured density and the theoretical density. The relative density of the target is greater than 95%. For example, for the ceramic target of Example 1, it is determined that the ceramic body is Its density is 5.553 g/cm 3 , and its theoretical density is 5.58 g/cm 3 , so the relative density is 99.5%. The relative density results of other examples are similar and all are greater than 95%. For a dense zinc oxide ceramic body with a certain doping content, the resistivity change comes from the formation of oxygen vacancies, so the resistivity of the material can be used to characterize the number of oxygen vacancies. After testing, the resistivity of the ceramic target of the present invention is less than 1Ω cm, thus meeting the sputtering requirements of DC and MF.
本发明实施例涉及到的材料、试剂和实验设备,如无特别说明,均为符合光电材料领域的市售产品。The materials, reagents and experimental equipment involved in the embodiments of the present invention, unless otherwise specified, are all commercially available products in the field of optoelectronic materials.
以上所述,仅为本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明的核心技术的前提下,还可以做出改进和润饰,这些改进和润饰也应属于本发明的专利保护范围。与本发明的权利要求书相当的含义和范围内的任何改变,都应认为是包括在权利要求书的范围内。The above are only preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, improvements and modifications can be made without departing from the core technology of the present invention. These improvements and Retouching should also belong to the scope of patent protection of the present invention. Any changes within the meaning and scope equivalent to the claims of the present invention should be construed as being included in the scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910148911.1A CN109879667B (en) | 2019-02-28 | 2019-02-28 | Preparation method of dense oxygen-depleted zinc oxide ceramic body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910148911.1A CN109879667B (en) | 2019-02-28 | 2019-02-28 | Preparation method of dense oxygen-depleted zinc oxide ceramic body |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109879667A CN109879667A (en) | 2019-06-14 |
CN109879667B true CN109879667B (en) | 2022-07-01 |
Family
ID=66929850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910148911.1A Active CN109879667B (en) | 2019-02-28 | 2019-02-28 | Preparation method of dense oxygen-depleted zinc oxide ceramic body |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109879667B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111678128A (en) * | 2020-06-30 | 2020-09-18 | 安徽工业大学 | A liquid combustion system and combustion method for obtaining highly stable flame based on high-precision control |
CN112341168A (en) * | 2020-09-23 | 2021-02-09 | 先导薄膜材料(广东)有限公司 | Rare earth doped zinc-gallium-aluminum oxide powder and preparation method thereof |
CN113666735B (en) * | 2021-09-10 | 2022-07-05 | 山东大学 | Method for continuously regulating light absorption properties of zinc oxide ceramics, zinc oxide ceramics and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2280015C2 (en) * | 2004-02-20 | 2006-07-20 | Открытое акционерное общество "Полема" | Method of synthesis of ceramics |
CN1856549A (en) * | 2003-09-22 | 2006-11-01 | 德古萨股份公司 | Zinc oxide powder aggregates present in circular, ellipsoidal, linear and branched form |
RU2382014C2 (en) * | 2008-07-29 | 2010-02-20 | Институт физики Дагестанского научного центра Российской академии наук | Synthesis method of ceramic on basis of zinc oxide |
CN108947518A (en) * | 2018-08-14 | 2018-12-07 | 宁波森利电子材料有限公司 | ZnO Coating Materials of multi-element doping and its preparation method and application |
-
2019
- 2019-02-28 CN CN201910148911.1A patent/CN109879667B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1856549A (en) * | 2003-09-22 | 2006-11-01 | 德古萨股份公司 | Zinc oxide powder aggregates present in circular, ellipsoidal, linear and branched form |
RU2280015C2 (en) * | 2004-02-20 | 2006-07-20 | Открытое акционерное общество "Полема" | Method of synthesis of ceramics |
RU2382014C2 (en) * | 2008-07-29 | 2010-02-20 | Институт физики Дагестанского научного центра Российской академии наук | Synthesis method of ceramic on basis of zinc oxide |
CN108947518A (en) * | 2018-08-14 | 2018-12-07 | 宁波森利电子材料有限公司 | ZnO Coating Materials of multi-element doping and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
The formation of nanoparticles, ceramics, and thin films of ZnO in the environment of zinc vapor;Abduev A等;《Journal of Physics: Conference Series》;20111231;第291卷;第6页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109879667A (en) | 2019-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109879667B (en) | Preparation method of dense oxygen-depleted zinc oxide ceramic body | |
CN102747334B (en) | Zinc-oxide-based transparent conductive film and preparation method thereof | |
CN101580384B (en) | Yttrium-doped AZO target and preparation method thereof | |
CN101851745B (en) | Indium zinc gallium oxide (IZGO) sputtering target for transparent conductive film and manufacturing method | |
CN104416160B (en) | High-density zinc oxide based target and preparation method thereof | |
CN114524664B (en) | A kind of ceramic target material for solar cell and preparation method thereof | |
CN102811971A (en) | Tin Oxide Ceramic Sputtering Target And Method Of Producing It | |
CN101580379A (en) | Nb-doped nano indium tin oxide powder and method for preparing high density sputtering coating target thereof | |
CN101851740A (en) | Conductive Nb2O5-x target material for magnetron sputtering coating and production method thereof | |
CN109207947B (en) | Preparation method of target material | |
CN115893988B (en) | Evaporation target material for solar cell and preparation method thereof | |
CN105063559A (en) | Zr element-doped AZO target material with enhanced photoelectric property | |
CN101913856A (en) | Method for preparing high-quality AZO target under protection of inert gas | |
WO2011089984A1 (en) | Oxide deposition material, vapor deposited thin film, and solar cell | |
JP4968318B2 (en) | Oxide deposition material | |
CN108546109B (en) | Preparation method of large-size AZO magnetron sputtering target with controllable oxygen vacancy | |
CN102260073A (en) | Zinc-oxide-based low-voltage voltage-sensitive ceramic thin film material and preparation method thereof | |
CN105272210A (en) | Preparation method of TZO semiconductor material for high-transmittance energy-saving glass | |
CN101575207A (en) | Ge-doped AZO target and preparation method thereof | |
CN102320838A (en) | Flexible transparent conducting film is with metal oxide semiconductor material and preparation method thereof | |
CN102586741B (en) | Preparation method of doped zinc oxide film | |
CN108914064B (en) | Multi-element conductive oxide material for RPD and preparation method thereof | |
CN105177511B (en) | A kind of negative thermal expansion material Sc2Mo3O12The preparation method of film | |
CN104087906A (en) | Preparation process of zinc tin oxide ceramic target and method for preparing zinc tin oxide coating film by using target | |
CN117263671B (en) | IWSO target material, preparation method thereof and film prepared from IWSO target material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |