CN109871615A - 基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法 - Google Patents

基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法 Download PDF

Info

Publication number
CN109871615A
CN109871615A CN201910123127.5A CN201910123127A CN109871615A CN 109871615 A CN109871615 A CN 109871615A CN 201910123127 A CN201910123127 A CN 201910123127A CN 109871615 A CN109871615 A CN 109871615A
Authority
CN
China
Prior art keywords
fatigue
finite element
residual life
moving staircase
staircase girders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910123127.5A
Other languages
English (en)
Other versions
CN109871615B (zh
Inventor
杨震立
张东平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing City's Special Equipment Detects Academy
Original Assignee
Chongqing City's Special Equipment Detects Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing City's Special Equipment Detects Academy filed Critical Chongqing City's Special Equipment Detects Academy
Priority to CN201910123127.5A priority Critical patent/CN109871615B/zh
Publication of CN109871615A publication Critical patent/CN109871615A/zh
Application granted granted Critical
Publication of CN109871615B publication Critical patent/CN109871615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Escalators And Moving Walkways (AREA)

Abstract

本发明涉及一种基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,属于自动扶梯检测领域。该方法包括:S1:采用壳单元建立自动扶梯桁架的有限元模型,测量上端站与中桁架的连接处的变形量和挠度;S2:评估自动扶梯的使用工况;S3:分别设定不同的寿命条件,并采用有限元模型在各工况下进行有限元疲劳分析,得到了达到各年限时的变形量,最后通过拟合的方式,得到影响自动扶梯桁架寿命的关键要素和残余寿命的关系图;S4:将评估结果代入关键要素与残余寿命的关系图,得出不同工况下的残余寿命;S5:选择步骤S4中得到的残余寿命的最小值作为最终的残余寿命预测值。本发明所述方法简单易行,能够为自动扶梯的检验检测提供参考依据。

Description

基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法
技术领域
本发明属于自动扶梯检测领域,涉及一种基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法。
背景技术
自动扶梯桁架是支撑自动扶梯的基础部件,其疲劳寿命直接影响自动扶梯的使用寿命。现有技术中,大连理工大学荆彭飞发表的论文《大型履带起重机桁架臂结构寿命预测方法研究》中,提出采用有限元法对自动扶梯桁架的强度、刚度、结构优化、轻量化等进行了分析研究,对自动扶梯的设计提供了相关参考。文献“Kopnov V.A.(1999):Fatigue lifeprediction of the metalwork of a travelling gantry crane.Engineering FailureAnalysis,vol.6,no.3,pp.131-141”和“Caglayan Ozden,Ozakgul Kadir,Tezer Ovunc,Uzgider Erdogan(2010):Fatigue life prediction of existing crane runwaygirders.Journal of Constructional Steel Research,vol.10,pp.1164-1173”中均提出采用有限元法并结合试验对起重设备相关的金属结构、桁架臂等进行了疲劳分析及寿命预测。但是目前对自动扶梯桁架残余寿命的相关研究较少,对自动扶梯桁架残余寿命预测方法的研究还暂未发现。
本发明针对某自动扶梯的桁架结构,建立其限元模型,计算其结构强度和刚度;根据检验经验提出了4种典型工况,并分析了其疲劳寿命,同时与自动扶梯桁架结构的检验结果进行了对比;通过设定寿命条件,采用有限元模型计算了各工况下的残余寿命,并进行归纳总结,提出了一种自动扶梯桁架残余寿命计算方法。
发明内容
有鉴于此,本发明的目的在于提供一种基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,该方法简单易行,能够为自动扶梯的检验检测提供参考依据。
为达到上述目的,本发明提供如下技术方案:
基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,包括以下具体步骤:
S1:采用壳单元建立自动扶梯桁架的有限元模型,用于测量上端站与中桁架的连接处的变形量和挠度;
S2:评估自动扶梯的使用工况,包括重载、中载、轻载和偏载;
S3:分别设定不同的寿命条件,并采用有限元模型在各工况下进行有限元疲劳分析,得到了达到各年限时的变形量,最后通过拟合的方式,得到影响自动扶梯桁架寿命的关键要素和残余寿命的关系图;
S4:将步骤S2中得到的评估结果代入步骤S3中得到的关键要素与残余寿命的关系图,分别得到重载、中载、轻载和偏载工况下的残余寿命;
S5:选择步骤S4中得到的残余寿命的最小值作为最终的残余寿命预测值。
进一步,步骤S1中,所述采用壳单元建立自动扶梯桁架的有限元模型具体包括以下步骤:
S11:根据设计图纸,建立自动扶梯桁架的3D实体模型;
S12:清理结构中多余线条和倒圆角等特征;
S13:对其中一侧划分大小为30mm的四面体壳单元;
S14:根据中空方钢尺寸将已划分的网格进行平移,并进行单元之间的连接,完成一侧弦材、纵梁和斜材的网格划分;
S15:根据宽度尺寸镜像上述网格,完成另一侧弦材、纵梁和斜材的网格划分;
S16:根据3D实体模型完成底部封板、横梁、加强筋和托架等的网格划分;
S17:赋予它们对应的材料属性和厚度。
进一步,步骤S3中,所述的有限元疲劳分析具体包括:首先提取相关的应力应变结果,再定义载荷事件和材料S-N特性曲线,然后根据所需要的疲劳准则对每一个载荷事件进行寿命计算,最后根据累计损伤理论判断是否破坏。
进一步,自动扶梯桁架结构受力状态是复杂的应力状态,且属于高周期疲劳,为了保守估计其疲劳寿命,采用Goodman图对S-N特性曲线进行修正,其中Goodman直线的公式为:
其中,Sa表示应力幅,Sm表示平均应力,SN表示材料在循环载荷下的疲劳极限,Su表示材料拉伸极限强度。
进一步,修正后的S-N特性曲线的公式为:
其中,σa表示应力幅值,σb表示材料的许用应力值,σm表示平均应力值,σf材料的拉伸断裂应力值,Nf表示材料的疲劳寿命,b表示强度指数。
进一步,所述自动扶梯桁架受到两种载荷:(1)由自重、均布载荷和集中载荷所构成的静载荷;(2)随着乘客数量变化而变化的动载荷;其中动载荷是变幅载荷,采用Miner线性累计损伤准则进行分析,其公式为:
其中,D表示累计损伤值,ni表示第i个应力循环,N表示在ni作用下的疲劳寿命,k表示有k个疲劳循环。
本发明的有益效果在于:本发明所述方法操作简便,能够快速精确的预测自动扶梯桁架残余寿命。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明所述自动扶梯桁架残余寿命计算方法流程图;
图2为自动扶梯桁架的有限元模型;
图3为自动扶梯不同乘客数量时的应力分布图,其中,图3(a)为乘客数量满载时的应力分布图,图3(b)为乘客数量一半时的应力分布图,图3(c)为乘客数量少量时的应力分布图,图3(d)乘客数量偏载时的应力分布图;
图4为自动扶梯在4种工况下的疲劳损伤分布图,其中,图4(a)为重载工况时的疲劳损伤分布图,图4(b)为中载工况时的疲劳损伤分布图,图4(c)为轻载工况时的疲劳损伤分布图,图4(d)为偏载工况时的疲劳损伤分布图;
图5为不同工况时上端站与中桁架的连接处变形量与残余寿命的关系图;
图6为不同工况时挠度与残余寿命的关系图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
如图1所示,本发明所述的基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,包括以下具体步骤:
S1:采用壳单元建立自动扶梯桁架的有限元模型,用于测量上端站与中桁架的连接处的变形量和挠度;
S2:评估自动扶梯的使用工况,包括重载、中载、轻载和偏载;
S3:分别设定不同的寿命条件,并采用有限元模型在各工况下进行有限元疲劳分析,得到了达到各年限时的变形量,最后通过拟合的方式,得到影响自动扶梯桁架寿命的关键要素和残余寿命的关系图;
S4:将步骤S2中得到的评估结果代入步骤S3中得到的关键要素与残余寿命的关系图,分别得到重载、中载、轻载和偏载工况下的残余寿命;
S5:选择步骤S4中得到的残余寿命的最小值作为最终的残余寿命预测值。
步骤S1中,自动扶梯桁架的有限元模型:自动扶梯桁架的主体结构一般由上、下弦材、横梁、纵梁、斜材、托梁、加强筋、底部封板、端部托架等焊接而成,材料主要为热轧角钢和冷弯方钢。本实施例中的自动扶梯提升高度为8m,名义宽度1m,倾斜角为30°,钢材材料为Q235,其桁架主体结构的类型及厚度如表1所示。
表1自动扶梯桁架主体结构材料类型及厚度
为了更准确的研究自动扶梯桁架结构寿命,采用壳单元建立自动扶梯桁架的有限元模型,如图2所示,具体包括以下步骤:
S11:根据设计图纸,建立自动扶梯桁架的3D实体模型;
S12:清理结构中多余线条和倒圆角等特征;
S13:对其中一侧划分大小为30mm的四面体壳单元;
S14:根据中空方钢尺寸将已划分的网格进行平移,并进行单元之间的连接,完成一侧弦材、纵梁和斜材的网格划分;
S15:根据宽度尺寸镜像上述网格,完成另一侧弦材、纵梁和斜材的网格划分;
S16:根据3D实体模型完成底部封板、横梁、加强筋和托架等的网格划分;
S17:赋予它们对应的材料属性和厚度。
步骤S3中,自动扶梯桁架的有限元疲劳分析:有限元疲劳分析是在强度分析的前提下,提取相关的应力应变结果,再定义载荷事件和材料S-N特性曲线,接着根据所需要的疲劳准则对每一个载荷事件进行寿命计算,最后根据累计损伤理论判断是否破坏。
自动扶梯桁架结构受力状态是复杂的应力状态,且属于高周期疲劳,为了保守估计其疲劳寿命,采用Goodman图对S-N曲线进行修正。其中Goodman直线的公式为:
其中,Sa表示应力幅,Sm表示平均应力,SN表示材料在循环载荷下的疲劳极限,Su表示材料拉伸极限强度。
修正后的S-N特性曲线的公式为:
其中,σa表示应力幅值,σb表示材料的许用应力值,σm表示平均应力值,σf材料的拉伸断裂应力值,Nf表示材料的疲劳寿命,b表示强度指数。
自动扶梯桁架受到两种载荷:(1)由自重、均布载荷和集中载荷所构成的静载荷;(2)随着乘客数量变化而变化的动载荷;其中动载荷是变幅载荷,采用Miner线性累计损伤准则进行分析,其公式为:
其中,D表示累计损伤值,ni表示第i个应力循环,N表示在ni作用下的疲劳寿命,k表示有k个疲劳循环。
在有限元疲劳分析中,这两种载荷都是影响寿命的关键因素,因此需要准确进行加载。本实施例中自动扶梯桁架的静载荷来源和大小如表2和表3所示。
表2自动扶梯桁架静载荷中的均布载荷
表3自动扶梯桁架静载荷中的集中载荷
对于动载荷,国标中规定乘客载荷为5000N/m2。但是在实际使用时,乘客数量往往是随机变化的。为了确定疲劳分析中动载荷的大小,根据检验工作的经验以及与使用管理单位的交流总结,综合分析得到4种典型的自动扶梯动载荷工况及其占比情况,如表4所示。其中重载模拟地铁站、车站等场所,中载模拟商场、写字楼等场所,轻载模拟小区等场所,偏载模拟乘客多数集中在自动扶梯某侧时的特殊工况。
表4 4种典型自动扶梯桁架动载荷工况及其占比情况
本实施例中自动扶梯乘客数量在满载时载荷为8000N/m2,乘客数量只有一半时载荷为4000N/m2,仅有少量乘客时载荷为2000N/m2,乘客集中在某侧时载荷为4000N/m2
基于上述载荷和工况,约束端部托架,对有限元模型进行强度分析。图3为自动扶梯乘客数量在满载、一半、少量、集中在右侧时的应力分布图。从图3中知,不同乘客数量的情况下应力最大部位均在上端站与中桁架的连接处,其中乘客满载时应力最大达到177Mpa,同时各情况下最大变形量均在中桁架中部。
本实施例中自动扶梯的设计寿命为40年,将乘客数量不同时的强度分析结果导入疲劳分析软件,同时采用在软件中输入Q235的屈服强度并用Goodman进行修正得到其S-N曲线,再根据动载荷的占比按比例设定各工况下的载荷循环次数,采用Miner线性累计损伤准则对自动扶梯桁架进行疲劳分析,其结果如图4所示。由图4可知,上端站与中桁架的连接处寿命最短,重载、中载、轻载和偏载工况下该处的损伤D分别为0.94、0.82、0.69、0.89。根据设计寿命可知疲劳寿命分别为40/D,即42.6、48.8、58、44.9年。同时最大变形量即挠度为28.9mm,表明挠度也是影响疲劳寿命的关键要素。
步骤S5中,自动扶梯桁架残余寿命预测:通过有限元疲劳分析和现场检验可知,上端站与中桁架的连接处与挠度是影响自动扶梯桁架寿命的关键要素,所以拟通过对关键要素进行分析判断来预测自动扶梯桁架的残余寿命。
在检验过程中,工作人员无法直观判断其应力状态,因此采用测量变形量的方式进行判断。在有限元疲劳分析中,将寿命分别设定为20年、25年、30年、35年、40年,然后在各工况下进行疲劳分析,求得达到各年限时的变形量;接着根据图4中各工况下到达疲劳寿命时的变形量减去相应年限时的变形量,得到对应残余寿命;最后通过拟合的方法并结合疲劳分析得到的疲劳寿命,总结出关键要素与残余寿命的关系,如图5和图6所示。
由图5和图6表示不同工况下关键要素与自动扶梯桁架残余寿命之间的关系,同时可以看到在重载和偏载工况下,自动扶梯桁架的残余寿命整体偏小,同时对关键要素的变化更敏感。
对于本实施例中的自动扶梯,已知其使用年限为7年,现场检验检测得到其上端站与中桁架的连接处变形量为8mm、挠度为11mm。根据与使用管理单位的交流及现场情况评估其属于重载工况,因此根据图5和图6可知计算所得的残余寿命分别为35年和34年,为了保守估计,取34年为其残余寿命。根据该自动扶梯的设计寿命为40年,已经使用7年的情况,可知该方法具有一定准确性,可便捷快速的预测自动扶梯桁架残余寿命,同时为检验检测提供参考依据。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (6)

1.基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,其特征在于,该方法包括以下具体步骤:
S1:采用壳单元建立自动扶梯桁架的有限元模型,用于测量上端站与中桁架的连接处的变形量和挠度;
S2:评估自动扶梯的使用工况,包括重载、中载、轻载和偏载;
S3:分别设定不同的寿命条件,并采用有限元模型在各工况下进行有限元疲劳分析,得到了达到各年限时的变形量,最后通过拟合的方式,得到影响自动扶梯桁架寿命的关键要素和残余寿命的关系图;
S4:将步骤S2中得到的评估结果代入步骤S3中得到的关键要素与残余寿命的关系图,分别得到重载、中载、轻载和偏载工况下的残余寿命;
S5:选择步骤S4中得到的残余寿命的最小值作为最终的残余寿命预测值。
2.根据权利要求1所述的基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,其特征在于,步骤S1中,所述采用壳单元建立自动扶梯桁架的有限元模型具体包括以下步骤:
S11:建立自动扶梯桁架的3D实体模型;
S12:清理结构中多余线条和倒圆角;
S13:对其中一侧划分大小为30mm的四面体壳单元;
S14:根据中空方钢尺寸将已划分的网格进行平移,并进行单元之间的连接,完成一侧弦材、纵梁和斜材的网格划分;
S15:根据宽度尺寸镜像上述网格,完成另一侧弦材、纵梁和斜材的网格划分;
S16:根据3D实体模型完成底部封板、横梁、加强筋和托架的网格划分;
S17:赋予它们对应的材料属性和厚度。
3.根据权利要求1所述的基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,其特征在于,步骤S3中,所述的有限元疲劳分析具体包括:首先提取相关的应力应变结果,再定义载荷事件和材料S-N特性曲线,然后根据所需要的疲劳准则对每一个载荷事件进行寿命计算,最后根据累计损伤理论判断是否破坏。
4.根据权利要求3所述的基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,其特征在于,采用Goodman图对S-N特性曲线进行修正,其中Goodman直线的公式为:
其中,Sa表示应力幅,Sm表示平均应力,SN表示材料在循环载荷下的疲劳极限,Su表示材料拉伸极限强度。
5.根据权利要求4所述的基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,其特征在于,修正后的S-N特性曲线的公式为:
其中,σa表示应力幅值,σb表示材料的许用应力值,σm表示平均应力值,σf材料的拉伸断裂应力值,Nf表示材料的疲劳寿命,b表示强度指数。
6.根据权利要求5所述的基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法,其特征在于,所述自动扶梯桁架受到两种载荷:(1)由自重、均布载荷和集中载荷所构成的静载荷;(2)随着乘客数量变化而变化的动载荷;其中动载荷是变幅载荷,采用Miner线性累计损伤准则进行分析,其公式为:
其中,D表示累计损伤值,ni表示第i个应力循环,N表示在ni作用下的疲劳寿命,k表示有k个疲劳循环。
CN201910123127.5A 2019-02-19 2019-02-19 基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法 Active CN109871615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910123127.5A CN109871615B (zh) 2019-02-19 2019-02-19 基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910123127.5A CN109871615B (zh) 2019-02-19 2019-02-19 基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法

Publications (2)

Publication Number Publication Date
CN109871615A true CN109871615A (zh) 2019-06-11
CN109871615B CN109871615B (zh) 2022-11-25

Family

ID=66918814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910123127.5A Active CN109871615B (zh) 2019-02-19 2019-02-19 基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法

Country Status (1)

Country Link
CN (1) CN109871615B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111199077A (zh) * 2019-12-27 2020-05-26 深圳市华阳国际工程设计股份有限公司 扶梯的图纸生成方法、装置及计算机存储介质
CN111241741A (zh) * 2020-03-25 2020-06-05 南京市特种设备安全监督检验研究院 一种基于残余应力影响区间修正的起重机轮轨磨损监测方法
CN112765752A (zh) * 2021-01-27 2021-05-07 中国人民解放军海军工程大学 一种可旋转桁架及其抗强度评估方法
CN112989454A (zh) * 2021-02-07 2021-06-18 中国人民解放军海军工程大学 一种桁架系统的抗强度评估方法
CN117131748A (zh) * 2023-10-26 2023-11-28 湖南云箭科技有限公司 基于静动疲劳分析的结构抗疲劳分析方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271566A1 (en) * 2011-04-21 2012-10-25 Vinayak Deshmukh Method for the prediction of fatigue life for structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271566A1 (en) * 2011-04-21 2012-10-25 Vinayak Deshmukh Method for the prediction of fatigue life for structures

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
NIROSHA D. ADASOORIYA: "Fatigue reliability assessment of ageing railway truss bridges:Rationality of probabilistic stress-life approach", 《CASE STUDIES IN STRUCTURAL ENGINEERING》 *
宋守许等: "基于裂纹萌生期限的典型零件剩余寿命预测", 《中国机械工程》 *
张晓飞等: "焊接残余应力对船舶减振支架振动疲劳寿命影响分析", 《舰船科学技术》 *
张淑华等: "塔式起重机残余寿命的评估方法介绍", 《建设机械技术与管理》 *
李有根等: "起重机械钢结构剩余寿命估算中常用理论及应用", 《中国新技术新产品》 *
杜永峰等: "在役钢桁架简支梁桥的剩余疲劳寿命估算", 《甘肃科学学报》 *
杨必根等: "起重机吊钩横梁的疲劳剩余寿命预测", 《科学技术与工程》 *
马幸福: "公共交通型自动扶梯传动链条及桁架的安全性能分析", 《湖南工程学院学报(自然科学版)》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111199077A (zh) * 2019-12-27 2020-05-26 深圳市华阳国际工程设计股份有限公司 扶梯的图纸生成方法、装置及计算机存储介质
CN111199077B (zh) * 2019-12-27 2023-12-01 深圳市华阳国际工程设计股份有限公司 扶梯的图纸生成方法、装置及计算机存储介质
CN111241741A (zh) * 2020-03-25 2020-06-05 南京市特种设备安全监督检验研究院 一种基于残余应力影响区间修正的起重机轮轨磨损监测方法
CN111241741B (zh) * 2020-03-25 2023-04-28 南京市特种设备安全监督检验研究院 一种基于残余应力影响区间修正的起重机轮轨磨损监测方法
CN112765752A (zh) * 2021-01-27 2021-05-07 中国人民解放军海军工程大学 一种可旋转桁架及其抗强度评估方法
CN112765752B (zh) * 2021-01-27 2023-03-31 中国人民解放军海军工程大学 一种可旋转桁架的抗强度评估方法
CN112989454A (zh) * 2021-02-07 2021-06-18 中国人民解放军海军工程大学 一种桁架系统的抗强度评估方法
CN117131748A (zh) * 2023-10-26 2023-11-28 湖南云箭科技有限公司 基于静动疲劳分析的结构抗疲劳分析方法及系统
CN117131748B (zh) * 2023-10-26 2024-01-30 湖南云箭科技有限公司 基于静动疲劳分析的结构抗疲劳分析方法及系统

Also Published As

Publication number Publication date
CN109871615B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN109871615A (zh) 基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法
Shao Geometrical effect on the stress distribution along weld toe for tubular T-and K-joints under axial loading
Shao et al. Prediction of hot spot stress distribution for tubular K-joints under basic loadings
CN108846197A (zh) 一种架桥机主梁损伤识别及损伤程度量化分析方法
CN109460589B (zh) 一种基于变形-结构法的隧道初期支护动态设计方法
CN112649046A (zh) 一种全过程模拟仿真系杆拱桥整体顶推监控方法
CN105438985A (zh) 岸边桥式起重机金属结构疲劳检测系统和方法
CN102507348A (zh) 一种隧道二次衬砌混凝土结构承载能力的试验方法
CN102721562A (zh) 一种基于裂缝指标的rc梁桥承载能力检算评定方法
Gil et al. Initial stiffness and strength characterization of minor axis T-stub under out-of-plane bending
Siahaan et al. Section moment capacity design rules for rivet fastened rectangular hollow flange channel beams
Ma et al. Fatigue redesign of failed sub frame using stress measuring, FEA and British Standard 7608
Han et al. An Online safety monitoring system of hydropower station based on expert system
CN110487576A (zh) 损伤状态倾角对称斜率的等截面梁损伤识别方法
CN106777848A (zh) 一种基于模糊综合评价的拱肋提升施工稳定性评价方法
CN205346653U (zh) 岸边桥式起重机金属结构疲劳检测系统
CN103048088A (zh) 一种支撑轴力校核的实验装置及支撑轴力校核方法
Spagnoli Different buckling modes in axially stiffened conical shells
CN108387453A (zh) 一种建筑围护构件抗垂直荷载性能的检测系统及方法
Baker RECENT RESEARCH IN REINFORCED CONCRETE, AND ITS APPLICATION TO DESIGN. STRUCTURAL PAPER NO 26.(INCLUDES PHOTOGRAPHS).
CN115233831B (zh) 挠度自由控制的多点大跨度空间钢结构整体连续提升方法
CN110501127A (zh) 一种基于损伤状态倾角斜率的等截面梁损伤识别方法
Gordziej-Zagórowska et al. Experimental investigation of joint with positive eccentricity in CFS truss
Kettler et al. Local stresses in retrofitted crane runway girders with boxed upper flange due to eccentric wheel loading
Zhang et al. Effect of baseline calibration on assessment of long-term performance of cable-stayed bridges

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant