CN109870720B - 一种页岩气微裂缝测井识别方法 - Google Patents

一种页岩气微裂缝测井识别方法 Download PDF

Info

Publication number
CN109870720B
CN109870720B CN201910075672.1A CN201910075672A CN109870720B CN 109870720 B CN109870720 B CN 109870720B CN 201910075672 A CN201910075672 A CN 201910075672A CN 109870720 B CN109870720 B CN 109870720B
Authority
CN
China
Prior art keywords
rock
shale gas
calculating
time difference
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910075672.1A
Other languages
English (en)
Other versions
CN109870720A (zh
Inventor
罗利
王勇军
谢刚
黄宏
黄毅
邹柳柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
China Petroleum Logging Co Ltd
Original Assignee
China National Petroleum Corp
China Petroleum Logging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp, China Petroleum Logging Co Ltd filed Critical China National Petroleum Corp
Priority to CN201910075672.1A priority Critical patent/CN109870720B/zh
Publication of CN109870720A publication Critical patent/CN109870720A/zh
Application granted granted Critical
Publication of CN109870720B publication Critical patent/CN109870720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种页岩气微裂缝测井识别方法,包括以下步骤:1)计算地层岩石体积压缩系数Clog;2)计算含气饱和度sg;3)计算岩石骨架的密度ρm;4)计算岩石骨架纵波时差Δtcm及横波时差Δtsm;5)计算岩石骨架体积压缩系数Cm;6)计算岩石理论压缩系数Cth;7)考虑实测地层岩石体积压缩系数Clog与基于页岩矿物成分计算的理论体积压缩系数Cth之间的差异信息,同时考虑原状地层电阻率Rt与地层冲洗带电阻率Rxo之间的差异信息,得页岩气裂缝发育指数FI,当页岩气裂缝发育指数FI大于零,则该页岩气裂缝发育指数FI对应的井段为页岩气微裂缝发育段,该方法能够实现对裂缝发育段的识别。

Description

一种页岩气微裂缝测井识别方法
技术领域
本发明属于测井技术领域,涉及一种页岩气微裂缝测井识别方法。
背景技术
就常规油气藏而言,储层裂缝发育与否主要依靠微电阻率扫描成像测井技术来进行分析和判别。但是,页岩气藏特殊性在于其勘探开发手段均采用大斜度井水平井钻井,而微电阻率扫描测井仪器因为带推靠臂无法在大斜度井水平井中进行测量,所以页岩气藏裂缝评价成为了摆在地质家面前的一个难题。
针对页岩气藏裂缝识别这个难题,前人的研究大致可分为两大类,其一是从地球物理勘探的角度提出了基于地震资料来预测裂缝的方法,其二从测井的角度提出了根据岩石矿物中某几种特殊矿物含量间接预测裂缝发育的方法。
基于地震资料来预测裂缝建立的种种模型最主要的缺陷在于:地震资料本身决定它仅适用于识别大尺度的裂缝;根据岩石矿物中某几种特殊矿物含量来间接预测裂缝最主要的缺陷在于理论依据不充分,经验性较强。鉴于此,就需要发展一种技术从现有的测井信息中提取裂缝发育指数来指示裂缝发育段,来用于页岩气藏裂缝评价。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种页岩气微裂缝测井识别方法,该方法能够实现对裂缝发育段的识别。
为达到上述目的,本发明所述的页岩气微裂缝测井识别方法包括以下步骤:
1)测量地层的横波时差Δts、纵波时差Δtc及密度ρ,再根据地层的横波时差Δts、纵波时差Δtc及密度ρ计算地层岩石体积压缩系数Clog
2)计算含气饱和度sg
3)通过地层元素测井仪器测量岩石骨架中各矿物的百分比含量Vmai,再根据岩石骨架中各矿物的百分比含量Vmai计算岩石骨架的密度ρm
4)计算岩石骨架纵波时差Δtcm及横波时差Δtsm
5)根据步骤3)得到的ρm及步骤4)得到的Δtcm及Δtsm计算岩石骨架体积压缩系数Cm;
6)根据岩石体积模型,岩石由岩石骨架和孔隙流体构成,再根据含气饱和度sg计算岩石理论压缩系数Cth
7)考虑实测地层岩石体积压缩系数Clog与基于页岩矿物成分计算的理论体积压缩系数Cth之间的差异信息,同时考虑原状地层电阻率Rt与地层冲洗带电阻率Rxo之间的差异信息,得页岩气裂缝发育指数FI,当页岩气裂缝发育指数FI大于零,则该页岩气裂缝发育指数FI对应的井段为页岩气微裂缝发育段。
步骤1)中地层岩石体积压缩系数Clog为:
Figure BDA0001958656670000021
步骤2)中的含气饱和度sg为:
Figure BDA0001958656670000022
其中,a及b为与岩性相关的参数,对于非常规页岩气,a=1,b=1,m及n分别为岩石胶结指数和饱和指数,对于非常规页岩气,m=2,n=2,Rw为地层水电阻率,Rw=0.015Ωm,Rt为原状地层电阻率,φ为孔隙度。
步骤3)中的岩石骨架的密度ρm为:
Figure BDA0001958656670000031
其中,i表示第i种岩性矿物,ρmai为第i种矿物的密度。
步骤4)中岩石骨架纵波时差Δtcm及横波时差Δtsm的表达式分别为:
Figure BDA0001958656670000032
Figure BDA0001958656670000033
其中,Δtc,i为第i种岩石矿物的纵波时差值,Δts,i为第i种岩石矿物的横波时差值。
步骤5)中岩石骨架体积压缩系数Cm的表达式为:
Figure BDA0001958656670000034
步骤6)中的岩石理论压缩系数Cth为:
Cth=φ[SgCg+(1-Sg)·Cw]+(1-φ)Cm (7)
其中,Cg为天然气体积压缩系数,Cw为水的压缩系数,Cg=0.56Gpa-1,Cw=0.043Gpa-1
步骤7)中的页岩气裂缝发育指数FI为:
Figure BDA0001958656670000041
Rmf为冲洗带泥浆滤液的电阻率,Rxo为地层冲洗带电阻率,KR为水平缝标识参数,KR=1.3。
本发明具有以下有益效果:
本发明所述的页岩气微裂缝测井识别方法在具体操作时,考虑实测地层岩石体积压缩系数Clog与基于页岩矿物成分计算的理论体积压缩系数Cth之间的差异信息,同时考虑原状地层电阻率Rt与地层冲洗带电阻率Rxo之间的差异信息,得页岩气裂缝发育指数FI,然后根据页岩气裂缝发育指数FI判断井段是否为页岩气微裂缝发育段,操作方便、简单,可以对非常规页岩气裂缝发育情况进行识别,解决页岩气微裂缝测井识别难题。
附图说明
图1为实施例一中输入的测井信息示意图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的页岩气微裂缝测井识别方法包括以下步骤:
1)计算地层岩石体积压缩系数Clog
Figure BDA0001958656670000042
其中,Δts及Δtc分别为横波时差及纵波时差,ρ为地层密度;
2)计算含气饱和度sg
Figure BDA0001958656670000051
其中,a及b为与岩性相关的参数,对于非常规页岩气,a=1,b=1,m及n分别为岩石胶结指数和饱和指数,对于非常规页岩气,m=2,n=2,Rw为地层水电阻率,Rw=0.015Ωm,Rt为原状地层电阻率,φ为孔隙度;
3)计算岩石骨架的密度ρm
对于非常规页岩气,其岩石骨架有9种岩性矿物,它们分别是:干酪根、黄铁矿、石英、长石、方解石、白云石、蒙脱石、伊利石、绿泥石。对于这9种矿物成分的密度骨架值如表1所示:
表1
Figure BDA0001958656670000052
页岩岩石骨架密度ρm计算方法为:
Figure BDA0001958656670000053
其中,i表示第i种岩性矿物,Vmai为第i种矿物百分比含量,ρmai为第i种矿物的密度;
4)计算岩石骨架纵波时差Δtcm及横波时差Δtsm
对于非常规页岩气岩石骨架有9种岩性矿物:干酪根、黄铁矿、石英、长石、方解石、白云石、蒙脱石、伊利石、绿泥石纵波时差骨架值如表2所示:
表2
Figure BDA0001958656670000061
其中,页岩岩石骨架纵波时差Δtcm为:
Figure BDA0001958656670000062
页岩岩石骨架横波时差Δtsm为:
Figure BDA0001958656670000063
其中,Δtc,i为第i种岩石矿物的纵波时差值,Δts,i为第i种岩石矿物的横波时差值;
5)根据步骤3)得到的ρm及步骤4)得到的Δtcm及Δtsm计算岩石骨架体积压缩系数Cm,其中,
Figure BDA0001958656670000064
6)根据岩石体积模型,岩石由岩石骨架和孔隙流体构成,则岩石理论压缩系数Cth为:
Cth=φ[SgCg+(1-Sg)·Cw]+(1-φ)Cm (7)
其中,Cg为天然气体积压缩系数,Cw为水的压缩系数,Cg=0.56Gpa-1,Cw=0.043Gpa-1
7)考虑实测地层岩石体积压缩系数Clog与基于页岩矿物成分计算的理论体积压缩系数Cth之间的差异信息,同时考虑原状地层电阻率Rt与地层冲洗带电阻率Rxo之间的差异信息,得页岩气裂缝发育指数FI为:
Figure BDA0001958656670000071
Rmf为冲洗带泥浆滤液的电阻率,Rxo为地层冲洗带电阻率,KR为水平缝标识参数,KR=1.3,页岩气裂缝发育指数FI大于零,则该页岩气裂缝发育指数FI对应的井段为页岩气微裂缝发育段。
实施例一
如附图1所示,输入的测井信息有:第1道:纵波时差、横波时差;第2道密度;第3道,原状地层电阻率、地层冲洗带电阻率;第4-12分别为地层岩石干酪根、黄铁矿、石英、长石、方解石、白云石、蒙脱石、伊利石、绿泥石9种岩性矿物体积百分比含量;输出的信息为:第13道岩石理论压缩系数、地层岩石体积压缩系数;第14道裂缝发育指数FI。
计算某个深度点的裂缝发育指数,具体过程为:
根据测井信息,取出某井深度点2566.9m的测井数据如表3所示:
表3
Figure BDA0001958656670000072
Figure BDA0001958656670000081
计算得到的地层岩石体积压缩系数Clog为0.09,计算得到的含气饱和度sg为0.65,计算得到的岩石骨架的密度ρm为2.53,计算得到的岩石骨架纵波时差Δtcm及横波时差Δtsm分别为78.23及139.56,计算得到的岩石骨架体积压缩系数Cm为0.047,计算得到的岩石理论压缩系数Cth为0.05,计算得到的页岩气裂缝发育指数FI为0.0017,则该井段为页岩气微裂缝发育。

Claims (7)

1.一种页岩气微裂缝测井识别方法,其特征在于,包括以下步骤:
1)测量地层的横波时差Δts、纵波时差Δtc及密度ρ,再根据地层的横波时差Δts、纵波时差Δtc及密度ρ计算地层岩石体积压缩系数Clog
2)计算含气饱和度sg
3)通过地层元素测井仪器测量岩石骨架中各矿物的百分比含量Vmai,i表示第i种岩性矿物,再根据岩石骨架中各矿物的百分比含量Vmai计算岩石骨架的密度ρm
4)计算岩石骨架纵波时差Δtcm及横波时差Δtsm
5)根据步骤3)得到的ρm及步骤4)得到的Δtcm及Δtsm计算岩石骨架体积压缩系数Cm;
6)根据岩石体积模型,岩石由岩石骨架和孔隙流体构成,再根据含气饱和度sg计算岩石理论压缩系数Cth
7)考虑实测地层岩石体积压缩系数Clog与基于页岩矿物成分计算的理论体积压缩系数之间的差异信息,同时考虑原状地层电阻率Rt与地层冲洗带电阻率Rxo之间的差异信息,得页岩气裂缝发育指数FI,当页岩气裂缝发育指数FI大于零,则该页岩气裂缝发育指数FI对应的井段为页岩气微裂缝发育段;
步骤7)中的页岩气裂缝发育指数FI为:
Figure FDA0002626326910000011
Rmf为冲洗带泥浆滤液的电阻率,Rxo为地层冲洗带电阻率,KR为水平缝标识参数,KR=1.3,m为岩石胶结指数,Rw为地层水电阻率,Rw=0.015Ωm,Rt为原状地层电阻率。
2.根据权利要求1所述的页岩气微裂缝测井识别方法,其特征在于,步骤1)中地层岩石体积压缩系数Clog为:
Figure FDA0002626326910000021
3.根据权利要求1所述的页岩气微裂缝测井识别方法,其特征在于,步骤2)中的含气饱和度sg为:
Figure FDA0002626326910000022
其中,a及b为与岩性相关的参数,对于非常规页岩气,a=1,b=1,m及n分别为岩石胶结指数和饱和指数,对于非常规页岩气,m=2,n=2,φ为孔隙度。
4.根据权利要求3所述的页岩气微裂缝测井识别方法,其特征在于,步骤3)中的岩石骨架的密度ρm为:
Figure FDA0002626326910000023
其中,i表示第i种岩石矿物,ρmai为第i种岩石矿物的密度。
5.根据权利要求4所述的页岩气微裂缝测井识别方法,其特征在于,步骤4)中岩石骨架纵波时差Δtcm及横波时差Δtsm的表达式分别为:
Figure FDA0002626326910000024
Figure FDA0002626326910000025
其中,Δtc,i为第i种岩石矿物的纵波时差值,Δts,i为第i种岩石矿物的横波时差值。
6.根据权利要求5所述的页岩气微裂缝测井识别方法,其特征在于,步骤5)中岩石骨架体积压缩系数Cm的表达式为:
Figure FDA0002626326910000031
7.根据权利要求3所述的页岩气微裂缝测井识别方法,其特征在于,步骤6)中的岩石理论压缩系数Cth为:
Cth=φ[SgCg+(1-Sg)·Cw]+(1-φ)Cm (7)
其中,Cg为天然气体积压缩系数,Cw为水的压缩系数,Cg=0.56Gpa-1,Cw=0.043Gpa-1
CN201910075672.1A 2019-01-25 2019-01-25 一种页岩气微裂缝测井识别方法 Active CN109870720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910075672.1A CN109870720B (zh) 2019-01-25 2019-01-25 一种页岩气微裂缝测井识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910075672.1A CN109870720B (zh) 2019-01-25 2019-01-25 一种页岩气微裂缝测井识别方法

Publications (2)

Publication Number Publication Date
CN109870720A CN109870720A (zh) 2019-06-11
CN109870720B true CN109870720B (zh) 2021-01-01

Family

ID=66918098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910075672.1A Active CN109870720B (zh) 2019-01-25 2019-01-25 一种页岩气微裂缝测井识别方法

Country Status (1)

Country Link
CN (1) CN109870720B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625360B (zh) * 2020-05-08 2024-02-23 中国石油化工股份有限公司 微裂缝地层产量预测方法、系统、电子设备及介质
CN113805247B (zh) * 2020-06-15 2024-03-19 中石化石油工程技术服务有限公司 一种w-s饱和度评价方法
CN114135264B (zh) * 2020-08-14 2024-04-02 中国石油化工股份有限公司 确定致密砂岩微裂缝发育程度的方法、装置和存储介质
CN112133376A (zh) * 2020-08-27 2020-12-25 中国石油天然气集团有限公司 一种饱含水地层体积模量的流体识别方法
CN112505766B (zh) * 2020-11-19 2022-05-17 中国石油大学(华东) 一种评价井外不同方位下裂缝发育程度的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130262069A1 (en) * 2012-03-29 2013-10-03 Platte River Associates, Inc. Targeted site selection within shale gas basins
CN103122762B (zh) * 2013-01-30 2015-07-08 中国石油天然气股份有限公司 一种非常规泥页岩油气藏有效压裂层段的检测方法及装置
CN104747163B (zh) * 2013-12-31 2017-10-17 中国石油天然气股份有限公司 一种在致密砂岩中识别储层裂缝的方法及装置
CN105549088B (zh) * 2014-10-29 2018-01-05 中国石油天然气股份有限公司 裂缝性致密砂岩中气层的识别方法和装置
US10145227B2 (en) * 2015-07-31 2018-12-04 The Johns Hopkins University Method for estimating permeability of fractured rock formations from induced slow fluid pressure waves
CN106526693B (zh) * 2016-09-30 2018-10-16 中国石油天然气股份有限公司 裂缝识别方法和装置
WO2018204920A1 (en) * 2017-05-05 2018-11-08 Conocophillips Company Stimulated rock volume analysis

Also Published As

Publication number Publication date
CN109870720A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
CN109870720B (zh) 一种页岩气微裂缝测井识别方法
CN108713089B (zh) 基于钻孔流体和钻探录井估计地层性质
Alexander et al. Shale gas revolution
Shipton et al. Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults
CN103867197B (zh) 复杂岩性天然气层声波时差判别法
WO2017024700A1 (zh) 一种计算烃源岩中有机碳含量的装置
US8359184B2 (en) Method, program and computer system for scaling hydrocarbon reservoir model data
Close et al. Integrated workflows for shale gas and case study results for the Horn River Basin, British Columbia, Canada
US20110144913A1 (en) Source rock volumetric analysis
CN104453873A (zh) 页岩油气经济有效层段的评价方法
CN107829731B (zh) 一种黏土蚀变的火山岩孔隙度校正方法
CN107795320B (zh) 一种水平井碳酸盐岩储层参数的计算方法
CN107907910B (zh) 一种不同岩性油藏横波测井确定方法
CN105317435A (zh) 一种水平井裂缝识别方法
CN111797546B (zh) 一种页岩油气储层矿物组分模型最优化反演方法
CN107831540A (zh) 储层物性参数直接提取新方法
CN111381292A (zh) 一种预测砂岩含烃储层的测井解释方法与装置
CN110529106B (zh) 一种利用测井资料确定煤层显微组分含量的方法
Bibor et al. Unconventional shale characterization using improved well logging methods
RU2761935C1 (ru) Способ локализации перспективных зон в нефтематеринских толщах
CN115099014A (zh) 一种基于随钻录井的天然气井地质探明储量计算方法
Malki et al. The impact of thermal maturity on the organic-rich shales properties: A case study in Bakken
CN111650644B (zh) 盐胶结砂岩定量预测方法
Hurst et al. Sandstone reservoir description: an overview of the role of geology and mineralogy
Khalid et al. Effect of kerogen and TOC on seismic characterization of lower cretaceous shale gas plays in lower Indus Basin, Pakistan

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant