CN109837335A - A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene - Google Patents
A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene Download PDFInfo
- Publication number
- CN109837335A CN109837335A CN201910211118.1A CN201910211118A CN109837335A CN 109837335 A CN109837335 A CN 109837335A CN 201910211118 A CN201910211118 A CN 201910211118A CN 109837335 A CN109837335 A CN 109837335A
- Authority
- CN
- China
- Prior art keywords
- seq
- gene
- mycelia
- atac
- rna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 140
- 241000233866 Fungi Species 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000003559 RNA-seq method Methods 0.000 title claims abstract description 55
- 230000006698 induction Effects 0.000 claims abstract description 63
- 238000004458 analytical method Methods 0.000 claims abstract description 34
- 238000012216 screening Methods 0.000 claims abstract description 30
- 108020004999 messenger RNA Proteins 0.000 claims abstract description 20
- 230000004069 differentiation Effects 0.000 claims abstract description 12
- 230000007613 environmental effect Effects 0.000 claims abstract description 9
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 108010077544 Chromatin Proteins 0.000 claims abstract description 6
- 210000003483 chromatin Anatomy 0.000 claims abstract description 6
- 241000272503 Sparassis radicata Species 0.000 claims description 67
- 238000012163 sequencing technique Methods 0.000 claims description 40
- 230000014509 gene expression Effects 0.000 claims description 15
- 230000003827 upregulation Effects 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 238000002474 experimental method Methods 0.000 claims description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 13
- 241000894006 Bacteria Species 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 10
- 239000002299 complementary DNA Substances 0.000 claims description 9
- 238000013467 fragmentation Methods 0.000 claims description 9
- 238000006062 fragmentation reaction Methods 0.000 claims description 9
- 210000004940 nucleus Anatomy 0.000 claims description 9
- 239000000872 buffer Substances 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- 101000804764 Homo sapiens Lymphotactin Proteins 0.000 claims description 6
- 102100035304 Lymphotactin Human genes 0.000 claims description 6
- 238000012408 PCR amplification Methods 0.000 claims description 6
- 238000007622 bioinformatic analysis Methods 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- 210000001519 tissue Anatomy 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 5
- 238000005138 cryopreservation Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 102000004594 DNA Polymerase I Human genes 0.000 claims description 3
- 108010017826 DNA Polymerase I Proteins 0.000 claims description 3
- 101710163270 Nuclease Proteins 0.000 claims description 3
- 238000009004 PCR Kit Methods 0.000 claims description 3
- 239000011324 bead Substances 0.000 claims description 3
- 210000003855 cell nucleus Anatomy 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 239000012149 elution buffer Substances 0.000 claims description 3
- 238000007710 freezing Methods 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- NBQNWMBBSKPBAY-UHFFFAOYSA-N iodixanol Chemical compound IC=1C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C(I)C=1N(C(=O)C)CC(O)CN(C(C)=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NBQNWMBBSKPBAY-UHFFFAOYSA-N 0.000 claims description 3
- 229960004359 iodixanol Drugs 0.000 claims description 3
- 238000003012 network analysis Methods 0.000 claims description 3
- 238000012856 packing Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 3
- 239000011541 reaction mixture Substances 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000010841 mRNA extraction Methods 0.000 claims description 2
- 229920001213 Polysorbate 20 Polymers 0.000 claims 1
- 230000004186 co-expression Effects 0.000 claims 1
- 238000010828 elution Methods 0.000 claims 1
- 238000001502 gel electrophoresis Methods 0.000 claims 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims 1
- 108020004414 DNA Proteins 0.000 description 34
- 241000929167 Sparassis latifolia Species 0.000 description 30
- 238000005516 engineering process Methods 0.000 description 18
- 238000009395 breeding Methods 0.000 description 12
- 230000001488 breeding effect Effects 0.000 description 12
- 238000011160 research Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 6
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010353 genetic engineering Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 3
- 101150044508 key gene Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108091028026 C-DNA Proteins 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000009402 cross-breeding Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000000050 nutritive effect Effects 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 240000008397 Ganoderma lucidum Species 0.000 description 1
- 235000001637 Ganoderma lucidum Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 238000001190 Q-PCR Methods 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000012214 genetic breeding Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000001497 healthy food Nutrition 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000009107 upstream regulation Effects 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A kind of method that the present invention discloses joint ATAC-seq and RNA-seq screening edible and medical fungi functional gene, using ATAC-seq method test out edible and medical fungi environmental factor induction before and after the cultural hypha stage mycelia and by environmental factor induction former base differentiation after former base opening Chromatin domains and analyze open area encoding gene, edible and medical fungi is tested out in the mycelia in mycelia stage and the mRNA sequence of the former base after former base is broken up using RNA-seq method, and the shared differential gene between the gene order obtained by ATAC-seq method and RNA-seq method is found using Venn figure, the critical functionality gene order for influencing the differentiation of edible and medical fungi former base is found in shared differential gene eventually by biological analysis.
Description
Technical field
The invention belongs to biology techniques fields, more particularly, to a kind of joint ATAC-seq and RNA-seq screening food medicine
With the method for bacterium functional gene.
Background technique
Edible and medical fungi is the higher fungus that a major class has large-scale fructification, is commonly called as mushroom or gill fungus, and there are about 1000 in China at present
Multiple eating bacterium, largely belongs to basidiomycetes, and fraction belongs to sac fungus.Edible and medical fungi polysaccharide rich in, protein, three
Terpene, polypeptide, dietary fiber, taurine, mannitol, unsaturated fatty acid, adenosine, lactones, minerals and vitamins
Deng, while having the characteristics that less salt, low fat, low sugar and high protein, one of ten big healthy food are recommended as by nutritionist, are had
There are huge market prospects and potentiality to be exploited.Wherein, Sparassis crispa is a kind of rare edible and medical fungi, is mainly distributed on the sub- heat in East Asia
The ground such as band and Temperate Region in China, including China Jilin, Heilungkiang, Yunnan contain protein, essential amino acid in Sparassis crispa fructification
It is surveyed with several functions compositions, main active beta glucan rich content, japanese food analytical tests such as vitamins
Its fixed content is 43.6%, is the 2 times or more of ganoderma lucidum, Agricus blazei, be mushroom class most, and medicinal, healthcare function with higher,
There is the title of " mushroom of illusion " in Japan.Modern study confirms that Sparassis crispa has the physiology such as antibacterial, antitumor, immunological regulation, hematopoiesis
Biochemical activity.As a kind of rare edible and medicinal fungi, Sparassis crispa is received due to its good nutritive value and health-care efficacy
The extensive concern of scholar and consumer.
In recent years, with the rising of China's edible and medical fungi proportion of output value and in the raising of international market share, about
Edible and medical fungi cultivation and the research of yield-increasing technology are concerned.Currently, each research institution is mostly by the research collection to edible and medical fungi
In in terms of artificial cultivation either Crop Physiology, biochemical activity research, capture emphatically with good nutritive value and guarantor
It is good for effect and wild resource is few, acquire domestication's work of difficult edible and medical fungi.But the cultivation skill about edible and medical fungi
Art is still not mature enough, cannot achieve extensive cultivation.As genetic engineering constantly develops, Biotechnology in Genetic Breeding is introduced into food
The important channel of an edible and medical fungi artificial cultivation and volume increase will be become in the culture of medicinal fungus.It is applied to edible mushroom heredity at present
The mode of breeding mainly includes that artificial selection breeding, mutation breeding, crossbreeding, protoplast fusion breeding and genetic engineering are educated
Kind.Wherein, three kinds of artificially breeding, mutation breeding and crossbreeding methods are more common at Development of Molecular Biology initial stage, although
The excellent bacterial strain of character at energy breeding, but screen more blindly, and labor intensive and time;Protoplast fusion breeding
The character of fusant enhancing is only limitted to the character that two parents have had in the process, it is difficult to obtain new character.And gene work
Journey breeding is genetic manipulation at the genetic level, can will replicate table in any one functional channel genes recipient cell
It reaches, to select new varieties.Genetic engineering breeding is that the edible and medical fungi strain of breeding more merit brings dawn.
Mostly important in the overall process of gene breeding is exactly from being filtered out in edible and medical fungi to edible and medical fungi growth
To the functioning gene of key effect.Functioning gene screening technique mainly passes through proteomics, functional genomics etc.
Biological omics technology is screened, and the elementary tactics of research is: (1) by express spectra variance analysis, bioinformatic analysis
Obtain candidate gene with approach such as gene clonings: (2) carry out Evaluation of Functional to candidate gene, make a definite diagnosis its function to be screened
Gene.These researchs are currently limited to the fields such as biology, medicine and disease treatment, do not have also in edible and medical fungi and are generally applicable in
Property.Genescreen about edible and medical fungi is only limitted to sieve using single technologies such as transcript profile sequencing, proteomic techniques
Choosing, but the method that single technology screening goes out difference expression gene in edible and medical fungi former base atomization in this way would generally
A large amount of differential gene is found, cause the workload of subsequent gene Function Identification and verifying very big, and monotechnics are found out
The specificity of specific gene is lower, is easy to appear more false positive, can not efficiently filter out edible and medical fungi former base differentiation rank
The key gene of section.Genescreen and Function Identification are carried out by the biology techniques of multiple combinations, and then finds and can influence
The critical functionality gene of edible and medical fungi former base differential period improves edible and medical fungi artificial cultivation efficiency, stabilization and new varieties
Cultivation is the trend of the following edible and medical fungi cultivation technique development.
Summary of the invention
To solve the above-mentioned problems, the present invention provides a kind of joint ATAC-seq and RNA-seq screening edible and medical fungi function
The method of gene can be opened wherein having combined two kinds of gene order surveying methods of ATAC-seq and RNA-seq using ATAC-seq
The information of Chromatin domains is put, then cooperates RNA-seq to obtain corresponding transcript information, finds the upstream regulation of related gene
Sequence, the regulated and control network under the specific space-time of global analysis, and being mutually authenticated, in combination with former base differentiation critical environments because
Son efficiently filters out the key gene of former base differentiation.
The purpose of the present invention is what is be achieved through the following technical solutions:
A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene, utilizes ATAC-seq method
Test out the mycelia in cultural hypha stage of the edible and medical fungi before and after environmental factor induction and by environmental factor induction former base point
The opening Chromatin domains of former base and open area encoding gene is analyzed after change, tests out edible and medical fungi using RNA-seq method
In the mycelia in mycelia stage and the mRNA sequence of the former base after former base is broken up, and is found using Venn figure and pass through ATAC-seq
The shared differential gene between gene order that method and RNA-seq method obtain, eventually by biological analysis shared poor
The critical functionality gene for influencing the differentiation of edible and medical fungi former base is found in allogene.
It is a kind of joint ATAC-seq and RNA-seq screening edible and medical fungi functional gene method screening Sparassis crispa function base
Because of upper application.
Further, the mycelia in the cultural hypha stage of the Sparassis crispa takes the mycelia cultivated under dark condition and warp
It crosses light induction but does not go out the mycelia of former base also.
Further, joint ATAC-seq and RNA-seq is in the method for screening edible and medical fungi functional gene in screening silk ball
Application on bacterium functional gene, the specific steps are as follows:
S1, the mycelia for cultivating Sparassis crispa under dark condition and by light induction but also do not go out former base mycelia,
The mycelia cultivated under dark condition and the former base after light induction pass through ATAC experiment respectively and obtain purifying DNA progress
Acquisition mRNA progress Illumina HiSeq sequencing is tested in Illumina HiSeq sequencing by RNA-seq;
S2, mycelia and pass through light that Sparassis crispa is cultivated under dark condition are obtained respectively after the sequencing of ATAC-seq method
The mycelia contrast groups and the mycelia cultivated under dark condition and the original after light induction of former base are not gone out according to induction but also
The lower gene dosage for reconciling and raising is expressed in base contrast groups, while is obtained respectively after the sequencing of RNA-seq method in dark item
The mycelia cultivated under part and the bacterium for passing through light induction but also not going out the mycelia contrast groups of former base and being cultivated under dark condition
The lower gene dosage raised that reconciles of expression in silk and the former base contrast groups after light induction;
S3, the bacterium for passing through light induction using Venn map analysis but also not going out the mycelia of former base and being cultivated under dark condition
The gene dosage and common table of downward are co-expressed in silk contrast groups after the sequencing of ATAC-seq and RNA-seq integrated processes
Up to the gene dosage of up-regulation;Also with former base of the Venn map analysis after light induction and the bacterium cultivated under dark condition
The gene dosage for co-expressing downward in silk contrast groups after the sequencing of ATAC-seq and RNA-seq integrated processes, co-expresses
The gene dosage of up-regulation;
S4, comprehensive analysis, which are passed through in two contrast groups obtained in step S3, co-expresses the lower gene dosage for reconciling and raising,
And the shared differential gene of two contrast groups is found using Venn map analysis;
S5, the key that bioinformatic analysis filters out the differentiation of light induction Sparassis crispa former base is carried out to shared differential gene
Functioning gene.
Further, ATAC experiment specific steps are as follows:
A1, sample preparation: it takes mycelia under the dark condition in silk ball bacteria cultivation, go out former base by light induction but also
Mycelia, the former base after light induction, with liquid nitrogen flash freezer, cryopreservation;Sample is put into and is pre-cooled containing homogenate
In the homogenizer of buffer, the tissue of freezing is allowed to thaw and by tissue grinder, pre-cooling centrifugation takes supernatant, utilizes Iodixanol
Gradient method separating nucleus, counts nucleus, and every 50000 cell nucleus packing saves;
A2, swivel base reaction and purifying: 50000 nucleus are transferred to containing 1ml ATAC-RSB and 0.1%Tween-
In 20 pipe, Omni-ATAC ATAC-seq reaction mixture is added in centrifuging and taking supernatant, and 30min purifying is incubated at 37 DEG C
DNA, with 10 μ l elution buffer eluted dnas;
A3, PCR amplification: take 10 μ l dense by DNA, water, the 2.5 μ l of 10 μ l nuclease frees of step (2) swivel base after purification
Degree for 25 μM PCR primer 1,2.5 μ l concentration be 25 μM the μ l NEB Next of PCR primer 2 and 25 High-Fidelity 2 ×
PCR Master Mix;
A4, sequencing and gene data are analyzed and then obtain the gene dosage of the different lower reconciliation up-regulations of sample expression.
Further, the RNA experiment is successively by sample preparation, mRNA extraction, library construction and sequencing and data
It analyzes and obtains the lower gene order raised that reconciles of expression in turn.
Further, Sparassis crispa mycelia and former base sample need to be ground in liquid nitrogen in the RNA experiment, utilize Trizol
RNA extracts reagent and extracts mRNA.
Further, the step of RNA experiment Chinese library building is as follows:
B1, with the enrichment with magnetic bead mRNA with Oligo, NEB Fragmentation is added into obtained mRNA
Buffer makes its fragmentation become short-movie section;
B2, using the mRNA after fragmentation as template, synthesize the first chain of cDNA with hexabasic base random primer, and buffering be added
Liquid, dNTPs, RNaseH and DNA Polymerase I synthesize the second chain of cDNA, simultaneously by the purifying of QIAQuick PCR kit
EB buffer is added to elute;
B3, be purified by flash after double-strand cDNA carry out again end reparation, plus base A, plus sequence measuring joints processing, through agarose
Gel electrophoresis recycling purpose size segment simultaneously carries out PCR amplification, completes library construction work.
Further, bioinformatic analysis includes carrying out GO analysis, KEGG to shared differential gene in the step S5
Analysis, GSEA analysis and signal network analysis.
Beneficial effects of the present invention:
1, the method in the present invention using joint ATAC-seq and RNA-seq carries out edible and medical fungi in former base differential period
Critical functionality gene is screened, middle compared to the prior art to have higher effect using monotechnics screening function gene
Rate, preferably specificity and accuracy, it is big to overcome the differential gene quantity occurred in monotechnics screening process, subsequent gene
Verifying heavy workload, low efficiency are easy to appear the problems such as false positive, and two kinds of sequencing approaches of ATAC-seq and RNA-seq are for eating
The environmental factor that medicinal fungus genescreen can will affect edible and medical fungi growth is taken into account, and then obtains the something lost under specific space-time
Communication breath;ATAC-seq obtains the information of the open Chromatin domains of the edible and medical fungi under specific space-time, all in the specific space-time
The lower gene transcribed and cis-regulating element can detecte, and obtain in combination with RNA-seq in the specific space-time
Under corresponding transcript information, so that it may accurately find under the specific space-time upstream regulatory sequence of related gene and under
Swim regulating and controlling sequence;The joint of two kinds of sequencing approaches of ATAC-seq and RNA-seq can help (two kinds from different perspectives of genescreen
The differential gene that sequencing approach obtains) and different level (different growing environment factors) account for, global analysis is specific
Regulated and control network under space-time, while ATAC-seq sequencing approach and RNA-seq sequencing approach can be under same specific space-times
It is mutually authenticated, improves the accuracy of key function genescreen structure.
2, the method for combining ATAC-seq and RNA-seq is used for the sieve of the critical functionality gene of Sparassis crispa in the present invention
Choosing, while the specific space-time-illumination that will affect environmental factor i.e. Sparassis crispa growth that Sparassis crispa grows is taken into account, and selects
Mycelia of the Sparassis crispa under dark condition, the mycelia for by light induction but also not going out former base, the former base after light induction
For test sample, it is contrasted group, by finding two contrast groups differential genes, and finds common difference base from differential gene
Cause filters out the important controlling gene of Sparassis crispa mycelia growth, that is, the key gene of fruit-body formation.
Detailed description of the invention
Fig. 1 is the overall technology route map of Sparassis crispa functional gene screening in the present invention;
(a) is the Sparassis crispa mycelia of dark condition culture and light after the sequencing of RNA-seq and ATAC-seq method in Fig. 2
According to the gene dosage Venn analysis chart for the mycelia expression downward for inducing but not going out also former base;(b) pass through RNA-seq and ATAC-seq
The mycelia of dark condition culture and light induction but the gene dosage that also the mycelia expression of former base is not raised out after method sequencing
Venn analysis chart;(c) by RNA-seq and ATAC-seq method sequencing after dark condition culture mycelia and light induction after
The gene dosage Venn analysis chart that former base expression is lowered;(d) dark condition is trained after the sequencing of RNA-seq and ATAC-seq method
The gene dosage Venn analysis chart of former base expression up-regulation after feeding mycelia and light induction;
(a) is former base contrast groups of the Sparassis crispa after the mycelia of dark condition culture and light induction and dark item in Fig. 3
The mycelia of part culture and light induction but do not go out in the mycelia contrast groups of former base to co-express gene dosage Venn points of downward also
Analysis figure;It (b) is former base contrast groups of the Sparassis crispa after the mycelia of dark condition culture and light induction and dark condition culture
Mycelia and light induction but the gene dosage Venn analysis chart for not going out in the mycelia contrast groups of former base to co-express up-regulation also.
Specific embodiment
In order to better understand the present invention, below by embodiment to the present invention into further explanation, embodiment is served only for
It explains the present invention, any restriction can't be constituted to the present invention.
A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene, utilizes ATAC-seq method
Test out the mycelia in cultural hypha stage of the edible and medical fungi before and after environmental factor induction and by environmental factor induction former base point
The opening Chromatin domains of former base and open area encoding gene is analyzed after change, tests out edible and medical fungi using RNA-seq method
In the mycelia in mycelia stage and the mRNA sequence of the former base after former base is broken up, and is found using Venn figure and pass through ATAC-seq
The shared differential gene between gene order that method and RNA-seq method obtain, eventually by biological analysis shared poor
The critical functionality gene for influencing the differentiation of edible and medical fungi former base is found in allogene.
It is a kind of joint ATAC-seq and RNA-seq screening edible and medical fungi functional gene method screening Sparassis crispa function base
Because of upper application.
Further, the mycelia in the cultural hypha stage of the Sparassis crispa takes the mycelia cultivated under dark condition and warp
It crosses light induction but does not go out the mycelia of former base also.
Further, joint ATAC-seq and RNA-seq is in the method for screening edible and medical fungi functional gene in screening silk ball
Application on bacterium functional gene, the specific steps are as follows:
S1, the mycelia that Sparassis crispa is cultivated under dark condition and the mycelia, black for not going out former base by light induction but also
The mycelia of dark condition culture and the former base after light induction pass through ATAC experiment respectively and obtain purifying DNA progress Illumina
Acquisition mRNA progress Illumina HiSeq sequencing is tested in HiSeq sequencing by RNA;
S2, by ATAC-seq technology sequencing after obtain respectively Sparassis crispa in the mycelia of dark condition culture, by illumination
Induction but the gene dosage lowered that do not go out also to reconcile under expression in the mycelia of former base and the former base after light induction, pass through simultaneously
It crosses after the sequencing of RNA-seq technology and obtains the mycelia cultivated under dark condition respectively, do not go out former base by light induction but also
The lower gene dosage for reconciling up-regulation of expression in mycelia and former base after light induction;
Referring to fig. 2, what is obtained after the sequencing of ATAC-seq technology lures in the mycelia of dark condition culture and by illumination
Lead but also do not go out former base mycelia contrast groups in express downward gene dosage have altogether be 198, by RNA-seq technology be sequenced
The mycelia cultivated under dark condition that obtains afterwards and under being expressed in the mycelia contrast groups for not going out former base by light induction but also
It is 830 that the gene dosage of tune, which has altogether,;After the sequencing of ATAC-seq technology the mycelia cultivated under dark condition that obtains and
It is 182 that the gene dosage for not going out in the mycelia contrast groups of former base to express up-regulation by light induction but also, which has altogether, by RNA-
The mycelia cultivated under dark condition and pass through light induction but do not go out the mycelia expression of former base also that seq technology obtains after being sequenced
It is 795 that the gene dosage of downward, which has altogether,;
Referring to fig. 2, the mycelia cultivated under dark condition that obtains and by illumination after the sequencing of ATAC-seq technology
It is 1227 that the gene dosage that downward is expressed in former base contrast groups after induction, which has altogether, is obtained after the sequencing of RNA-seq technology
The mycelia cultivated under dark condition and the gene dosage that downward is expressed in former base contrast groups after light induction have altogether
It is 1435;By ATAC-seq technology sequencing after obtain in the mycelia of dark condition culture and the original after light induction
Expressed in base contrast groups up-regulation gene dosage have altogether be 1241, by RNA-seq technology sequencing after obtain in dark item
It is 1469 that the mycelia cultivated under part and the gene dosage that up-regulation is expressed in the former base contrast groups after light induction, which have altogether,;
S3, using the above-mentioned differential gene data of Venn map analysis, obtain by light induction but do not go out also the mycelia of former base
Under being co-expressed after the sequencing of ATAC-seq and RNA-seq combination technology in the mycelia contrast groups cultivated under dark condition
The differential gene quantity of tune has 45, and the differential gene quantity for co-expressing up-regulation has 32;It is obtained also with Venn map analysis
It the former base after light induction and is combined in the mycelia contrast groups of dark condition culture by ATAC-seq and RNA-seq out
The differential gene quantity for co-expressing downward after technology sequencing has 174, and the differential gene quantity for co-expressing up-regulation has 350
(as shown in Figure 2);
S4, comprehensive analysis, which are passed through in two contrast groups obtained in step S3, co-expresses the lower differential gene number for reconciling and raising
Amount finds the shared differential gene of two contrast groups using Venn map analysis;
Referring to Fig. 3, the former base after light induction and the mycelia contrast groups cultivated under dark condition are co-expressed
The gene of downward and the mycelia and the mycelia contrast groups cultivated under dark condition that do not go out former base by light induction but also are common
The shared differential gene quantity 13 for obtaining and co-expressing downward in wherein two contrast groups is compared in the gene that expression is lowered
It is a, shared differential gene quantity 17 of up-regulation are co-expressed, therefore shared differential gene quantity is 30, specifically shares difference
Gene is shown in sequence table;
S5, GO analysis, KEGG analysis, GSEA analysis and signal net are carried out to the shared differential gene obtained by step S4
The bioinformatic analysis such as network analysis filter out the critical functionality gene of light induction Sparassis crispa former base differentiation.
Wherein, specific step is as follows for the ATAC experiment:
A1, sample preparation: it takes mycelia under the dark condition in silk ball bacteria cultivation, go out former base by light induction but also
Mycelia, the former base after light induction, with liquid nitrogen flash freezer, cryopreservation;Sample is put into and is pre-cooled containing homogenate
In the homogenizer of buffer, the tissue of freezing is allowed to thaw and by tissue grinder, pre-cooling centrifugation takes supernatant, utilizes Iodixanol
Gradient method separating nucleus, counts nucleus, and every 50000 cell nucleus packing saves;
A2, swivel base reaction and purifying: 50000 nucleus are transferred to containing 1ml ATAC-RSB and 0.1%Tween-
In 20 pipe, Omni-ATAC ATAC-seq reaction mixture is added in centrifuging and taking supernatant, and 30min purifying is incubated at 37 DEG C
DNA, with 10 μ l elution buffer eluted dnas;
A3, PCR amplification: take 10 μ l dense by DNA, water, the 2.5 μ l of 10 μ l nuclease frees of step (2) swivel base after purification
Degree for 25 μM PCR primer 1,2.5 μ l concentration be 25 μM the μ l NEB Next of PCR primer 2 and 25 High-Fidelity2 ×
PCR Master Mix;
A4, sequencing and gene data are analyzed and then obtain the gene dosage of the different lower reconciliation up-regulations of sample expression.
Wherein, the RNA experiment is successively extracted by sample preparation, mRNA, library construction and sequencing are analyzed with data
And then obtain the different lower gene dosages raised that reconcile of sample expression.
The preparation of sample in RNA experiment: the mycelia cultivated under the dark condition in cultivation, by light induction but also not is taken
The mycelia of former base, the former base after light induction out, with liquid nitrogen flash freezer, cryopreservation.
MRNA is extracted: after sample is ground in liquid nitrogen, being extracted according to the operating instruction that Trizol RNA extracts reagent total
RNA.Utilize NanoDrop2000 ultramicrospectrophotometer, Ago-Gel, Agilent 2100RNA Nano 6000Assay
Kit carries out pattern detection.
Steps are as follows for library construction:
B1, with the enrichment with magnetic bead mRNA with Oligo, NEB Fragmentation is added into obtained mRNA
Buffer makes its fragmentation become short-movie section;
B2, using the mRNA after fragmentation as template, synthesize the first chain of cDNA with hexabasic base random primer, and buffering be added
Liquid, dNTPs, RNaseH and DNA Polymerase I synthesize the second chain of cDNA, simultaneously by the purifying of QIAQuick PCR kit
EB buffer is added to elute;
B3, be purified by flash after double-strand cDNA carry out again end reparation, plus base A, plus sequence measuring joints processing, through agarose
Gel electrophoresis recycling purpose size segment simultaneously carries out PCR amplification, completes library construction work.
Wherein, after the completion of library construction, tentatively quantitative, dilution library to 1ng/ μ l is first carried out using Qubit2.0, then
It is detected using Insert Fragment length of the Agilent 2100 to library, after Insert Fragment meets expection, uses Q-PCR method
Accurate quantitative analysis (library effective concentration > 2nM) is carried out to the effective concentration in library, to guarantee Library Quality.
The above description is only an embodiment of the present invention, is not intended to limit the scope of the invention, all to utilize this hair
Equivalent structure or equivalent flow shift made by bright description is applied directly or indirectly in other relevant technology necks
Domain is included within the scope of the present invention.
Sequence table
<110>Edible Fungus Research Institute, Fujian Academy of Agricultural Sciences (Fujian Mushroom Fungal Research Station)
<120>a kind of method of joint ATAC-seq and RNA-seq screening edible and medical fungi functional gene
<160> 30
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1509
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 1
atggtggtca gttcctctca gcatgacgca cccaggcgtc tcgtagacga gcaggatgtc 60
ttcgagagca acaccgacgc tctcgaaggt caaaagtctg agcctaaggc caccgttacc 120
cccctcccaa aggcccagct cttcaccctc tgtactgtaa gactggtcga tcccatcgca 180
ttcacacaga ttttccctta tgtcaacgag atgatggagc ggctacgcct caccaacgat 240
ccgtcgaaga ttggtttcta cagtgggatg gtggaaagca gttttgccat ctctcagctg 300
tgttgcatat accactgggc acgcctttcc gatagaatag gtcgtcgccc ggtggttctc 360
gtcggtgttg ctggaattgg gtttgctact atctgttttg gcttgtcgca cactcttact 420
gctgttttgt tcgctcgctg tctggccggt atattctctg gcaacatcgc agttgtccac 480
tccgttcttg gcgaattaac cgactctacc aaccaagcga ccgccttccc gatttacgga 540
ttgttctggc cgttaggtgc catcgtcggg cctctgctag gaggcacttt ttctaatccc 600
gcagaacgat ttccgcaatt tttcgactac gagttcctca aggcatatcc ttattttctc 660
ccatgcttag tggctgggat tgtatccctt atgggcgcca ccctcgtata cttctgcctg 720
gaagaaacac tgccgagtaa acggtggaag aatgactatg tacaaatgcg gcaaatgggt 780
tcagaacata gaggcggtga tccagaaaag ccgccagagc ccaagagtct caaattctta 840
ctatcaatac ccgtcatccg tgccctgtgc ctcagtggat tcgctttgac cttcctcaat 900
accggctttg atgtcacatt tgtactcttc tgctactccc ctatccagcg cggcggtctc 960
gctttcacgg cgtccgaaat cgggtactca ctcgcaacat cgggcgtgat ctccgtgctg 1020
ctccagttgt tctgcatgcc gtacctgctg cgcaaggtcg aacatgcgaa gatgtacaac 1080
ttctgcatgg cgctctggcc gtactgttac gtgctcctcc ccggcctcaa cctcctcgct 1140
cgcggcggca tcgacgaggc gactggccag atcctccccg catcgcgcgc gttcatctgg 1200
atgggcatcg ccggcctgct gtccatcgcg aaggtcgcgg gcttggcgtt ctctatcagc 1260
atgatcctag tgaaggacgc cgcccccgat cctgactccc tcggggccac taacggcctc 1320
gcacagttcg cgatgtgctt cgcccgctca ttcagccccg cgttcgcgag ctcgcttttc 1380
gcgttctcaa acagatatga gttcatcttg ctccgatacc tgtgggtcct ggtaatggtg 1440
atcttatcct tcctcggcac cacgctatcg cgccgcatcg cggagattag aaagacgtcg 1500
tacacttaa 1509
<210> 2
<211> 327
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 2
atgacttggc tactctatga agctaccata gctggttgct tcaagggctc atattcactg 60
gtatctgggt catcggacat gaatttcctc acatacctcg agattgcaca taccattctt 120
ttgacaccat atttcagctg gaaaattaca caccatcgac accacattgc ccatgcatct 180
atggaacggg atcagctatt tgttccgagg accaggagcg accttggtat tccttcgaaa 240
ggacaacagc tcgactacga agactacttc ggagataccc cgttcttgca atatctctgg 300
gcagaagaat tacccaaggt ggactaa 327
<210> 3
<211> 3028
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 3
atggcggcat tccgttgtat ttctcgcgca tgtcttggtt cagctcggcc tactctgtgc 60
actcgctctg ctctcgccgc gacgcgtctc gcgcgaggtc ttgccaccgc gaaaccgccc 120
tcttcgtttg ctgcgttaga cacgttcgtt gaccgccata ttggcccaga cgaccatgac 180
gtctcctata tgctctcgca gctcggttat gagtccatcg atgcgtttat agcggacaca 240
gtgcctccta agatcagaat ttcctccgcg acggtgagca atgagtccat accctccctc 300
agcgagtccg agttataccg caccgcgaga ggcttggccc atgccaacaa gcctttcagg 360
agctacattg gcatgggcta tcacaatgcg gtagtgccgc cggttattct ccgcaacatc 420
ttggagagtc ctgcttggta tacgccgtat acgccttacc agcctgagat tgcccaagga 480
cgtcttgagt cacttgtcaa ctaccagaca atggtcatgt ctctgacggc aatggaaatt 540
gcgaacgcgt cgcttctgga cgaagctacc gctgccgcag aagcgatggt catggcatat 600
gcttcgtccg gtcacaagaa gcatactttc ttcgcggaca aaggtgtatc gcctcagact 660
ctggccgttc tccagacgcg cgcgaatggg tttggtctcc ggcttgttgt aggaaacgta 720
ttttcgatta ccaaggacga aactctcatt tcggaccttt gcggcgtact ggtgcaatat 780
ccggatgtta atggcagcat caaagattac ggtgacctgg tccgagccat ccatggctcg 840
ggcgcattag ttgtggctgc gacggacctt ctggcttgac agtgctcaag ccgcctggga 900
atggggtgct gacattgtcc tcggtaactc tgcccgcttt ggtgtcccag ctggctatgg 960
tggtccccac ggagcgttct tcgcgtgcac ggataaactg aaacgtaaga tgcctggaag 1020
gcttattggt aggagccgag atgtgtacgg gaagcccgcg taccgattgg cattgcaaac 1080
tcgggaacag cacatccgac gggagaaggc gacgagcaat atctgtacca gtcaggctct 1140
tctcgccaac atggccgcga tgtatgctgt gtaccatggt cccacaggtt tgcaacgcat 1200
cgcgagcaag gtccacgcgc ttacacaagt gctgaagtct tcggtcgagg cctacggtta 1260
caaggcgata aacacagatt tcttcgatac actgacattc gacgtgactg gtgccgcgaa 1320
ggacgtgaat gctgtgcatt cagcagcttt ggcctcgagc atcaatttcc gcaaggtcga 1380
tgacaagctc gtcggagtga ccttggacga gagcgtcagg cctgaagaca tcgtcgacat 1440
cgccaacgtc ttcgcggcag cagcatcggc caagccaata tcgctttctg ccatcgcgcc 1500
cgtgcaatcc tccgccgttc cccaacccct tcagcggaca tcggagtacc ttccccacca 1560
ggtcttcaac tcgcaccact cggaaacaga gatgcttcgc tacatctacc atcttcagtc 1620
gaaggacctc ggcctcgagc acgctatgat ccccctcggc agttgcacca tgaagcttaa 1680
cagcacgagc agcatgatcc ctctgacatg gcccgagttc ggcaacgtgc atccgttcgt 1740
ccctgctgat caagtcaagg gttacgaaca gttgatcaag gaactcgagt ctgacctctg 1800
taaggtcact ggcttccatg cttgctctct acaacccaac tctggcgctg ctggtgaata 1860
tgctggtctg tcggtcatca gggcatacca ccagtcccgc ggcgagagcc atcgcgatat 1920
ctgtctcatt cctgttagcg cacacggaac aaaccctgct tcggctgtta tggctggcct 1980
caaggtcgtg cccgtaaaga ctctgacgga cggcaaccta gacttgggag acctgaacgc 2040
taaggctgag aagtacaagg acaatctcgc tgcgttcatg attacatacc cgtcgacgtt 2100
cggagtattc gagcacggtg tgcaggacgc ttgcaagatc atccacgaca acggcggaca 2160
ggtctacctc gatggtgcaa acctcaatgc tcagattggc ttgacgaatc ccgcgacatg 2220
tggtggcgat atttgtcata tgaatttgca caagaccttc gctatccccc atggtggcgg 2280
tggtccaggt gtcggaccaa tctgtgccgc cgagcatctc gcacctttct tgcccggcca 2340
cccagttatt gcaactggcg gagataatgc aatcaacgcg gttgcagctg caccgtacgg 2400
aagcgcgtcc attcttctca tctcctgggc atacatcaag atgctcggtg gtgacggtct 2460
cgcacaagcc tcaaagatcg cgctgctgaa cgccaactac atggcgcatc gcctgtccgc 2520
acattacaac cttcgcttca agaacggcaa cggccgcgtt gcgcacgagc tcctgcttga 2580
cctcgctgag ttcgacaagg ctgcgggcat caaggtgaac gacttcgcga agcgtcttca 2640
ggactacggc ttccacccgc ctacatgttc ttggcccatc tcgacgtgca tgctcattga 2700
gcccacggag tcagaaacgt tgcaagaaat tgacaggttc tgtgatgcca tgatccaaat 2760
ccgccaagaa gcagaagaca tcatcacgaa caagcagccc aaagacaaca atgtgttgaa 2820
gaatgcccca catcctgtct ctattatcgc cctctctgaa gaggagtgga accgcccgta 2880
ttctcgccac caagccgcgt atcctgtgcc agggctactg gagaggaaat tctggcccac 2940
ggtgtcgagg attgacgatg catatggtga tctgcatctc atctgcgatt gcccttctgt 3000
agaggagctg gctgctcctt ccccgtga 3028
<210> 4
<211> 939
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 4
atgggcgcat tcgggttgaa tgctagcatt ctcgactccg ctaacctcgc gtggaagatg 60
ggactctgcg cacgtgggtt ggccgatacc gagaagctga tgcccactta cgaacacgaa 120
cgccgtcggc atgctgtgcg cattatcgaa acttccggca cttacttgcg ctttgtctgc 180
gcttcaaacg cacccattgt tcgcctggat ggcgtgggta cggaggctcg cgaggacgat 240
gacgatagac cggccctccc gaaggagata accgaagaag cggatccaga caggcgattc 300
ttgaaggagt tcttcgctaa gctcggggcg ttcttgctgg gcgtggactt cgagtacgga 360
cacaacctgc tcaacccgcc tcagcagatg aggaacgacg tctctctgtc ccgcgttttg 420
ctgaagcctg cgacggaagt cgcgtggggt gtgcgcgctc ccagcccgcg cgtcacgctc 480
agccagcaga agacgggcta tctgtatgac gtctgtggcg gggcggacaa gttcacgctc 540
ctcgtcttcg cgtccaactt ccagggcccc atcctgcgcg gtcttaccgc gttggatgcc 600
catctcgcct catctcagtc gttctacaat cggtttggcc ggtcgaacat gtttaagatc 660
gtcctgatca ccaacctcct cccactcgat tacgaggacc atttcaccgg cgatgccacg 720
ggcactctgg agtaccttcg caagattgcg acgctcgtct gggacgacca gctgccaggc 780
agggatgcgc acacggtgta cggagtcgat cacgcaaagg gcgctgtcgc cgtcgtgcgg 840
cctgacttgt ggaccgggat atccgttctg cccggggaag cagagatgct ggacgaatat 900
ttcgaaaggt tcttgacggt ccctgggaag aaatcgtag 939
<210> 5
<211> 1596
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 5
atggttgagg tcaagaacaa agtctgtctg atctggtgga atcgtcgctc accccgtcaa 60
gatagtgtgc acgacggctg gggtatcgcc cccgagaaga acatgaaggg cgatgccatc 120
tccgccgggg acacgcccaa catggacgcc ctcgccaagg agcacaacta ccgcacgttg 180
cacgcccacg ggatctccgt cgggctcaac gacgggctca tgggcaactc ggaagtcgga 240
cacctgaaca tcggcgcggg ccgtattgta tggcaggaca tcgtcaggat cgatgtgtcc 300
atcaagaagc ggcagttcca caagaacgag accattgtcg cgagctgtaa acacgcgaaa 360
gagggcaatg gccgtttgca cctcctcgga ttggtttctg acgggggtgt tcactcgcac 420
attcgccacc tatatgcgct cctcgagacc gcgaaagagc agggcgttcc gcacgcatac 480
atccactttt tcggtgatgg tcgcgacacc gcaccgcgct ccgcggcggg ctacgccaag 540
gaactgctcg agttcatcga gaaggagaag tacggcgaga tcgcgaccgt cgtcgggcgg 600
tactacgcga tggaccgcga caagcgctgg gagcgaatca agatcgccgt agacgggctt 660
gtgaagggtg tgggcgagaa gggtgaggat gccgtcaagg ccatcgagga gcgctatgcg 720
aaggacgaga cggacgagtt cttgaagcct attatcgtca atggcgacga gggccgcatt 780
aaagatggcg ataccctgtt cttcttcaac taccggtctg accgtatgcg cgagatcgcc 840
acggttctcg gcctccccga caagcccatg gaggtagacg tgcccaagga tctccacata 900
tctacaatgt cgaggtacaa cgccgacttc cccttcccag tcgccttccc gccgcaggcc 960
atgacgaacg tgctcgccga gtggctctcc aagcagggca tcaagcaggc gcacgtagcc 1020
gagacggaga agtatgcgca cgtcacgttt ttcttcaacg gcggcgtcga gaagcagttc 1080
acggcggagg agcggcacat gatcccgtcg cccaaggtcg cgacgtatga caagcaacca 1140
aagatgagcg tgcagggcgt cgcggacaag gtcgcggagc tcgtcaagca gggcaagcat 1200
gagttcgtca tgtgcaactt cgcgccgccg gacatggttg ggcacacagg cgtttacgac 1260
gccgcggtcg aggcaatcgg cttcacagac aaggcagtcg cgacggtata taaggcctgc 1320
gaggcggcgg ggtacgttct gctcgtgacc gcggaccacg ggaacgcgga gcagatgatc 1380
aacccggaga cgggcgcgcc gcacaccgcg cacacgacga acgccgtgcc cttcatcatg 1440
accggcccca aggagctgaa gttcgcagag gataagaagg atggtgagga agaagagggt 1500
gcgctgtgcg acgtcgcgcc gaccgtgctt gctgttatgg gactacccca gccagaagaa 1560
atgaccggcc gttccctact tgcgaaggcg tcttag 1596
<210> 6
<211> 1521
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 6
atgtcagtca ctcaccaaga tacgacgtct gttgaagaga aagctgctgg ggctttccag 60
accgcgacgt tccttgtcga gccgttacat ggggagagga gactcgtgag gaggttggac 120
gcccggatca tgccgatcgt ctgcctgctt tacctgttcg cctatctgga cagaacaaac 180
ctagggaatg cacgcttgca gggactcccc ggggacgctc taaatggaga ccctacgggt 240
gttctgtttg aatgggtcaa ctccgtgttt ttcttctcct acattatttt ccaaattccg 300
gcaacaatta cctcgaagct tttccctcca cgcatatggc taggttgctc tgcgcttgga 360
tgggggcttt gttcaactct gtcggcctgc ggtttcaact tcgccggttt aacagttgca 420
aggatcggac tcggtatgtt cgaagcagga tttggtccag gaattccgct ttacatgtca 480
ttctattaca ccaagcaaga gatcgggatg cgattagcat acctgtttgg cttcggtgct 540
gtcgcaggag cctgtggagg gctcatcgcg tttggcgtcc agaatgcaca cacggcactg 600
gcgaattgga ggctgttatt tatcattgag ggtttgccga cgatcttcct tggtgttctg 660
tgcttgttcc tcctgcccga ccgtcccgag gagacaacat tcttgaacga acgagaacgc 720
gagttagcta tggagcgagt taatagagga atcaaggcag acatagggag gacaattaag 780
aaaaaacaca ttgcggcggc ttttctggat tggaaggtgt gcatctcatc gccgcttcgg 840
gtctgtcaat cgactcattg tccttcacct cagatttacg ctgcaggtgt gatctacttt 900
ggtgcaaact gtgcactggc atcaatatct gctttcctcc caaccatcat cacgaccttc 960
ggatactcga atgcgctcgc acagttgctc acggtccctc catacgctgt tgctgccatt 1020
attctttgca gtacttcata ttgctcagat aggttgcaaa gtcgtggctt ttccgtcgtc 1080
gctgcgagta tgctaggcgt tctgggctat gttctgttac tcgctgttcc ttataacgac 1140
catgtccggt attttgcaac attctgcatc acaagtggaa catacacgat tattggcgtt 1200
gtcattgctt ggttcacaca taatcttggg tcggagacta aaaaggctac gggcatcccg 1260
atgtacattg ccattggaca gtgcggaagc gtactgggct cccatttatt cccaactaca 1320
gacggtcctc gattcatcac tggatttgca gtttcatgtg ccctggagtt cgtttccgcg 1380
gtaacagcta ttattctcac catgtattat cgcatggaga acaagcgaag agacggtaag 1440
tttgggaagc ccattaggga tgcaatggta gatacgtcag aactggctga tatggccccc 1500
gattttcgtt acgtcccgtg a 1521
<210> 7
<211> 889
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 7
atgtcgaacc gtgaagaatt cctaacctcg accgacggca cgaagctctg ggcagaatcg 60
gccggcgacc cttccaaacc ggcgctggtc ttcatccacg gcctggcatg cactgccttg 120
ggattcgaga ggcagttcac cgatccgaaa ctgctcgaga acttgcatct ggtgcggtac 180
gagatgcggg gacacgggcg gagcgatatg ccagaattcc cggaggcgta tggttccatc 240
caccatgcag aggattttcg caccgtgtgt gaggcgtttg ggctgcacag accattcgtg 300
ctgggatgga gccttggtgg ctgtatcccc gtggacatcg tcgccgcgta cggcgcggac 360
ttcatctccg gcgtagtcta cgtcggcgga cccgtcctat ccttcaggct gaacgaagaa 420
tgctggcatc cgctcttcca cgccatgatc cccctgattt gctctgagga ctcagaagtt 480
gtagccaaga gcgcgtccat gttcttcgac tcgtgcgtcg cggatcccat cccgtaccct 540
acgaagctgc tgtggatggg cggctttggc tcgcagccgc cgaagattag gcactattcg 600
ctccgcgcgg gcaggacgac acgcggtggc ggccgaggcg gggaagctgc ccgtgctgat 660
cctgcagggg acggaagata cgcactgttt gtatgagagg atgctcgagc aggcgagggc 720
ggtctatgac gatgtggaag tgcagttgat ggagggggtc gggcacaccc cgcattacga 780
acggcatgaa gacaccaatc ggcatattct tgcttttgtc gagaagaaag cgtcccaagc 840
gcaggaacga gaggctcgga ggagcagatg tagggtctca ccaggataa 889
<210> 8
<211> 2442
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 8
atgaccgtca ctcgcgggtt cacggaggaa gcggacaaac ttctagacta cctcgaacac 60
ggaatttttg atgctttgca gaagcaatac ctccgcagtt tcatattcgc aatctacctc 120
gataatcaag accccaacaa tatcgtggaa gcatatacct tcaacttcaa ggtatgctcc 180
tgcgctagct gctatcttcg gaacactgag atgatccgcc ctcagtacta tactcttcct 240
gggactgaca ctgtagtgcc tgtgatgtct cttgacgcag accttgagaa actatccctc 300
accaaaacta agaaagttgc cgatccagtg gcagacgcaa tgaagaatgg aagggtgcct 360
accttgggag aagtgaagag aagcctcaag aactccagcg ctgatattgg catcacccca 420
gagcgccgat ttgccacgtt caagctcttc tatcaagatc acactccgga cgattacgag 480
ccgaagcact ttcgttcggg tgatgtgaag aaagataagt ggttcttcac cacacatgac 540
aaaggagaag tcccagagag gtgcagtgtg ggttctctcg agaccggcta tcacggcgtc 600
aacgtacgcg tgacttcggt ctctgcgtac ttgccctcag ccgaggataa caatgcgccg 660
ttcttgggca cgaccagcgg acacgcccat gcagcgccga tcctttcgcc agcggaagaa 720
gccgccttgc ggaaccagca aacgcagata cagcgccaag atgctataga caggcgggtc 780
gtttgggatg cagacgatgg tcttggcgat gcggacgctg acggtgagga tgacccagat 840
gttacgtcag gtgaaaatgc gagcttctac cttggaagtt ggcgagtgca tgattctggt 900
gtcgagttcg tcatgcccat tggtataagg gacgacgaag ggaatatcaa gcctttctct 960
aaggaagaaa gacaggagcg tgcagttagc cgagccgaag aagcgcaata tactggaaag 1020
caggacagcg tcccaagtca cgtagctcaa ctggcgcaag ctgaacgcca ccccgcggaa 1080
gcgataatgc gaacgcaaca actggaccat acccaggtga tcgagacacc cctcagcgcg 1140
ctctcccgcc gtccgtcccc gtctccttct cgctcgccat cccctactcc taagcagagc 1200
aagcgaggga cttccgggcg tataccgtca gcagggcctt ctcttcctcc ttcagaccta 1260
gatgcacagt cgttctcttc gctgtccagc ctcgcggacg gtatccagtc catcgatacg 1320
cagatggtga aagatctcat tgcgaatgct gcggctacgg aaattgaaga taccgagatg 1380
ttagacatgg aaactcaggt tgttcctcaa gcctcagctg agaatgattc tattcagtcg 1440
ttctccaaca tcgccggcac ccagcgatca cctcatattc gacctccaag gagtacagca 1500
gataaagaac gcagcgacgc cgaagacgat tcttcgctgg attgtgaatg cggcgtaacg 1560
aacgaagata acgactgctg catgtgcgag ggtggatgca agaggtggtt ccatatatgg 1620
tgtatgggct tccactcggc tcaggacgaa cgcataccag cagtctttgt ctgctttgac 1680
tgccgtgtga gggcggacaa gaactgggac ctcatcatgg tgcatgatct gtacccgagg 1740
atgctcgcgc ggttcaggga cctggccata ttcaggagag cgatcaagat cttcgagatg 1800
tataacccgg agaacttgtc ttcgttcacg aagttgatgg attgcgattc tgtcgtcgca 1860
gggcagctgt tcaagcgtct cgagacagaa ggcttcatcg cgaaggagac catagaggtg 1920
gacgacctcg gtctgatgga gacgagcacc cgtaccgcca agggaaagca aaaggggaag 1980
gctggggcga agacgagaca gtcgcagcgc cggaagacca tgcagaagcc aaagtacgtg 2040
tttgtgcggg ctaccacgaa gggtcaggcg tacgacgact atttcaatcc ggatcctgag 2100
gtcgagaaga gactgcttgg gttatctaac ctgaaaccag cgcgcagatc gcacaagaag 2160
agagtagtgg aggacatgga tgtcgaaatg gacgtaccgc tctcccagcc acggctggtg 2220
gacgttgata tcaacatggc ggtggattcg aacacagatg gcttgcctac aattctcgca 2280
gagtctcaga cccaagcaga aactcagcag atcgatgcgc atggcgaggg cgaaggtggc 2340
caaatcaggc gcaagacgac gaggacgttc agtcaagagg tgccccggac gagcaaaaaa 2400
atcaagatgt ccgtcggacc agcggtggac cttggggact ga 2442
<210> 9
<211> 1288
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 9
atgtcccttc cgcttcgcaa aattggaacc acgccggtga ccgccatcgg ttacggagct 60
atgggaatat ctgccttcta cggaaaggcg ctgcctgacg aagaacgctt aaagattctt 120
gatgccgtgt acgagaacgg ttgcaccatg tgggataccg ccaatatata cgatgacagc 180
gaggtgctca tcggaaaatg gttcaaacgc actggcaagc ggaacgagat tttcctcgcg 240
accaagttcg gaattttcaa ctccggcggc agagctatca acggtgatcc ggagtatgtc 300
caccaggcat tcgaaaatcg ctgaagcggc ttggtgttga caaggtcgag cttactatct 360
gcatcgtcca gactccactg tcccgatcga gcgcaccgtt ggtgccatgg cggagctcgt 420
aaaagccggc aaagtgaagt acctcggtct ctccgagtgt tccgccgaaa cgctgcgccg 480
cgcacacgcg gtgcacccga tttccgcact tcaagtcgag tactcgcctt tcaccctaga 540
cattgaggac gagaagatcg ggctgctaaa gacggcgcgt gagctcggcg tcaccatcat 600
cgcgtactcg ccactcggtc gtggtctcat cacgggaaaa taccggtctc ccgacgactt 660
cgantatgtc cagcgcaccg ttggtgccat ggccgagctc gtaaaagccg gcaaagtgaa 720
gtacctcggt ctctccgagt gctccgccga aacgctgcgc cgcgcacacg cggtgcaccc 780
gatctccgca cttcaagtgg agtactcgcc gttcacgctg gacatcgagg acgagaagat 840
tggtctgcta aagacggcgc gtgagctagg cgtcaccatc atcgcgtact cgccactcgg 900
ccgtggcctt atcacgggca aataccggtc ccccgacgac ttcgatgagg acgacttccg 960
gcttacggtg ccgcgatact cgaaggagaa cttccccaac atcctcaaac tcgcggatgg 1020
cctcaagagg atcggggatc gccacggcgc gacggctggc caagtctcgc tcgcgtggct 1080
cctcgcgcag ggccccgacg tcatccccat ccctggaact accaagattc cctcactgaa 1140
ggagaatttg ggcgcggcga agcttacgct gacgccggag gagatccagg aggtgcggga 1200
gatcgcaaag gcagcagatg catcgaacgg ccctcgttac cctggcggta tggagtccct 1260
cttgtttgct gacaccccgc cgttgtaa 1288
<210> 10
<211> 1350
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 10
atggctgacc gtgttgcctc gtcgaaatgg tctgcgttca tgagggactc gtatgtcaag 60
cgcagaatcc ctgttggcgg tacaattgat gtcaagaagc tcgaagaaac tgcacgacag 120
aagctgaagg atcgacaaga tgcatttctc tatgccttcg gtagtgcagg aacgagttct 180
acgtgtgacg ccaatttagt agagtttact aagtggagga tcataccccg aatgctgcgc 240
gacgtcacaa tgcgcaattt agaggcaagt acatcatccg catgcctatc tcacacgttg 300
ttgaatcagg attccgctcc acagaccact atctttggag tcaaatatcc atcccctctg 360
ttcctatctc caatcggtgt ccaaaccctt tatcatgctg atggagaact tgcttctgct 420
gcagccgcgg cgcaagtcgg tgttcccttc atcatgagca ccgcttcgac ccgcagtatc 480
gaggcggtcg ccaaagccag cgggtccggt ccccgctggt accagctgta ctggcccgtg 540
tcgcccgatc tgacactatc gttgatatct cgtgcaaagg cgaacggctt cagtgcgctc 600
gtgattacgc tcgataccat gcttctgggt tggcgcccac atgaccttga caccgcctat 660
ttacccttct tccacggggt cggcacgcag attgggttca cggacccggt gttcatggcg 720
aagcatggcc tccagccgtt cccggaagac gatgcaccat cgtttcccta tgacccagag 780
gagatggaaa ggcgtatcaa ggctggggac gagacgttga agcagcgcgc gtacttgggc 840
gtgaagtaca tgggagagac tgcttcgggc gttttcagaa gctgggacga cctgaagttc 900
atccgtgata actgggatgg accgctaatt ttgaaaggca tcctatccgt tgaaagattg 960
caatggacaa tggcattgat ggaatcgtcg tgtctaatca cggcaagcgg ccgtcaggtc 1020
gacggcgccg ttcccgcact gtatgcgctc gagcaaatca tgaagagccc aagggtgaag 1080
gaagcccagg caagcggcaa gttgacaatt ctcttcgact ccggcatccg caccggcagt 1140
gacgtcttca aagcgattgc gctgggcgca caaggtattt tatatgcaag gccgtacatc 1200
tacgggctca tagttggcgg ccaagcgggc gtcgagaacg ttctcagaag tgttctcgcc 1260
gacactgaga tcactctcgg tcttagcggt tatgagagtt tgcagcaaat acatgggaaa 1320
gctgacaagg ttatggtcaa gctggggtaa 1350
<210> 11
<211> 2298
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 11
atggtcgcct ccagcgtttt gggtttcccc cgtatcggtg caaaccgtga ggtgaaaaaa 60
gccgtggaaa gctactgggc tggcaaaatc tctgccgaag ccttaaccaa ggttgctgcc 120
gacgtcaaga agactacctg gaccagcctc aaggccagag gcgtagatct catccccagc 180
ggtgatttct ccctctatga tcacgtcctc gatcactccg ccgctttcaa cgccattccc 240
aagcgttacc tcggccatgg cctctccgcg ctcgatgtat atttcgccat gggccgcggt 300
cgtcaggcgg acggcgtcga cgtgcctgcg tctgagatga agaagtggtt cgactccaat 360
taccacttcg tcgtccccga gtttgcagag gacaccgatt tcaagctcaa cttcaacaag 420
gccctcgagg agtacaacga ggcgaaggcc atcggcatcg tcacccgccc cgtcgtcctt 480
gggcccctct ccttccttgc cctcggtaag gctgccaagg aggcgaaggc cggtttcgag 540
cccatcacac tcctccccag gctcctcccc gtctacaagc agcttcttgc tgatctcaag 600
gcggccggcg tggagtccgt ccagatcgat gaacccgtgt tggtcctcga ctctgctgct 660
ggtctggaaa agcggttctc tgctgcctac gtggaacttg agcccgtctc tcccaagatc 720
gtgctgacga cgtactacgg gcgcctcgac tccaacctca cgttcgtcgc caagctcccc 780
gtcgccggtc tccacatcga cctcgatcgc gctcctggtc aacttgacca ggtgatcgca 840
gctgttaagc ccacgagcat cgtcctgtcc ctcggtgttg tctccggccg caacatctgg 900
aagaccgacc tccaggcagc aatcaagctc ggccagaaga cgatcgatgc cctcggcgct 960
gaccgcgtca tcatcgcaac ctcctcttcg ctcctgcata cgcccgttac gcttgatgct 1020
gagaataagc tcacgccgga tcagaaggac tggttctcgt tcgcgctcga gaaggccagc 1080
gaggtcgccg tcgtcgccgc tgttctctcc ggctcccagg accccaaggt agccgaggcc 1140
ctcgcggcga acaccgcgtc catcgctaag cgtcgcgagt tcgagcgtac atcggacgat 1200
gcggtacgga agcgcgtcgc tgctatcacc cctgatatgc tggagcgcaa gagtcccttt 1260
gctgtccgca aggaggtgca gcagaagtat ctcaacctgc ctaagttccc cactactacc 1320
atcggttcct tcccgcaaac gaaggagatc cgtaccgctc gtgcgaagct caacaagaag 1380
gaaatcaccg tggagcagta caacgagttc atcaagaagg agatcgagag cgtcgtacgc 1440
ttccaggagt cgatcggcct tgacctcctt gtccacggtg agccggagcg gaacgacatg 1500
gtgcagtact tcggcgagca gctcgagggc ttcgtcttca cccagaatgg ttgggtgcag 1560
agctacggct ctcgctacgt ccgtccccca atcgtcgtct ccgatgttcg ccgttctggc 1620
ccgatgaccg tcgcgtggag cagctacgcg cagagcctca cgaccaaacc catgaagggt 1680
atgttgactg gccccgtcac tatcctcaac tggtccttcc cccgtgcgga tgtctcccgt 1740
gagctccagt gcaagcagct tgcgcttgcc ctccgcgacg aagtcggcga cctcgagaag 1800
gccggcatca aggctgtcca ggtggacgag cccgctcttc gtgagggcct gcctctccgt 1860
aaggccgact gggagcctta cctaaactgg gcgctgccgt catttaagat cgcgacggcg 1920
ggcgtgtccg acgcgctgca aacgcactcg cacttctgct actccgactt cgacgacatc 1980
ttcccgtcga tccaggcgct cgatgcggac gtcatctcca tcgaggcctc caagagcgac 2040
atgaagctgc tcaacacgtt caagcactac gggtactcga accagattgg gcccggtgtc 2100
tacgacatcc actcaccgcg tgtccccggc gagcaggaga tcaaggaccg catagcgtct 2160
atgctccaga tccttcccga gtcgctcctt ttcgtcaacc ctgactgtgg tctgaagact 2220
cgcggctgga aggagacaga ggcatcgctc aagaatgtcg tcactgccgc ccgctgggcg 2280
cgccagacat acgcttaa 2298
<210> 12
<211> 1441
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 12
atggatatga tcacctattt tatgtgggca gtcgccgtca tagcttgtgc ggcgctgctg 60
agcaggaaca agcgaaaccc actctacctc cttgtcctcc tgcagatcca ttaatcggcc 120
atctgcgtca attcacgttc gctcctcaac gtgagctctt ccagaaatgg gctacggctt 180
acggcgacgt cttccatctc aatatcttag ggcagattat cgtagttgtg aactccctcc 240
aagtcgcaac tgacctcctc gagaaacgga gtgcgaacta cagtgacagg cctgcttgta 300
ctgccctgga gatgatgggc tggaaggcga acgttgcctt tatgcggtac ggcgcgcggt 360
ggaggaagca cagaaagctt ttccaagagt actttggcca gagtcaaagc ctgacatacc 420
gcgcccatca gactgaggaa gcgcgtatgc tcctgaaaga tttgctactt cgcccgcgga 480
gttcaaggca tgtacgcaga agtatgctct tctgagcatc ataggcattg catacggaca 540
tcaggtaaag ttggatgacg acgtctatgt caaaatcgca caaggcgcaa tccacggact 600
cgaagaagcc gctgcaggaa ccacgctgct cgacctctta cccttccccg aacaggaagc 660
ggggaccgcg cagaattcgt tctttgtgtc tcatttggag cgcctcggca cggacggcgt 720
ggacgaagaa gacctcgagg acatccaggg tgccgctgcg acgatactta catcctcgct 780
catccagagt ttcctcatgt tcatgctgct gttccccgac gtgcagcgca aggcgcagga 840
agagatcgac caagtcgtcg gctccgggcg gctcccagac ttcgatgacc gcgatacgct 900
gccgttcgtg gaatgcgtgc tccaggagac catacgatgg tacccaatcg ctccgttcgg 960
tagagaaccc ccgatagatc ggcactcgga tgttgctgac cttagacccc tagctattcc 1020
tcaccgaagt ctcgacgacg acatatacaa cggaatgctt attccgaaag gctctgtaat 1080
catacctaac gtgatggcaa tgagccgcga tgagacaatg tacaaagatg cagacaagtt 1140
cctccctgag cgcttcctac cggctcctgc cggtcgcggc gagccgcatc tcggcgtcat 1200
ctttgggttc ggtcggcgga tctgccccgg gcagtatttt gcagacaaca gcgcatggat 1260
cgtcatcgcg agtatcctcg cggctttcga catctgcaag cccgttggag cggacgggat 1320
agcagttgag ccccacatgg agtacaccac tgacgggatt gcaagccgtc cgatgccttt 1380
cgagtgtgtt ctgcgaccgc gctcagagac ggcgaaggcg ctggttgagc agcacacgta 1440
a 1441
<210> 13
<211> 519
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 13
atggctctca aggtcgacaa tattccccgc ctcagtggaa cagaccttgt tcatgctgat 60
gatcagttgc acggtcctga agtcgctcct tccatctcag taacttccac attccgtgct 120
gagcagccgc tcaccagcac aacggtggga agtgatgacc acgatttcga ccccctcaac 180
ccgatcaacc acgtgtactc tcgctacacc caaaacgtca gcagcagggc cgagaaagtc 240
ctcagcaaaa tcaacggagg ttatgctatt acctttgctt cgggactggc tgcgtcatat 300
gctgccttag tacacctgaa gcccaagcgt gtcgccatca caggtggtta tcacggatgc 360
catctcacca tacaagtgta caagcagagc cgaggcgagg ggttgcccat tatcggcata 420
gacgacagtt tccagcctgg tgatctatgc tggctggaga cgcctctgaa cccgacaggt 480
gaagccagag atattcagta ttatgctgac aaggcatga 519
<210> 14
<211> 2121
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 14
atgctctcac tcgcccgcgt gcggtcggtc gcagagctgc tcgcgatgct ccttgcaagc 60
gttcggacgc gtccgctcaa gctcctcggc cccgccgctg cggtgagtgc actcgtgctc 120
gtcctgcggc atctctgtgc gcgtcgggca catacgcagg cgtatactcg agcgctggcg 180
ggagacgcgg cgcgtgtggc gcgccgtatc aagagcggag acgaggagta cgatccagag 240
gagtatgacg tcattgtcgt tggcggaggc accgcgggct gtgtggtcgc ggcacggctg 300
tcggaggacc cgtcgatacg tgtcctgctt atcgaggccg gcgagagctc ccggcatatg 360
gtgttctcgc agataccatc tgcctttgct tctctatttc atggcaagca cgaatacaat 420
ttctacacca tcccgcaacc aaacgctggt gggaaggcaa agtactggcc gcgaggcacg 480
ttgcgttatt ctcgttatcg gttggacgct aacaattgtt cgatggtagc caagcttttg 540
ggtggatgtt cctcattaaa tgcgatgatt ttccaccact gcgcgccgtc cgactatgac 600
gaatgggtaa ggtaccagaa aggcgcggag ggtgcagagg gctggtcgta cagcgaattc 660
ctcccgtact tcatcaagtt cgagaatttc caccccagtg aaaaatttcc cctcgttgac 720
ccgacgctgc gtggatccgg cggtcctgtc gccagtgagt ctcctccctt gtatatgcat 780
atggagctga tcgaacctgc agctgggtat tttggaaatg ctgcggtgca tacgatgaat 840
ttcatcgagg cctgcgacag ggtcggcata ccgcgcaatc cggacctgaa cacgaagaac 900
gcgttgggcg tgagcaagac catgacaacc atcgactcca acggccgccg tgtgacgaca 960
gagaccgcat acctgactcg caaggttctc gctcggccaa acctcaaggt tgtaaccaag 1020
gctcgggtgt tgcgcattgt cttcgacgtc agcagtgaga caccgcgtgc ggtgagcgtg 1080
cagttcctcg acgagcaggg caagcgcttc gaggcgaagg cacgtaagga ggtcgtcctc 1140
agcgcgggtg cgatccatac gccccagctt ctcatgctgt ccggcgttgg gcccgccgca 1200
caccttgcgg agcatggcat ccccgtcgtc gcggacctgc ctggggttgg tgcgcacctg 1260
atggaccacc ctacgatcga cctgtacttc agggacaaga cgcgggcact ggaggctgga 1320
atgtcgcaca cgcccaaggg gttcatgaag acgctggggt tcttccgtgc gatgctgcag 1380
taccagctca cgcgccgagg accccttacg acgaaccttg ccgaggctgt tgcattcata 1440
cgttcgtccg accgctcact gttcctcaag gacgagttta tcccagatgc ggagctcgag 1500
gacacatcgt ccgcgcccga cgcgccggac atcgaactct tcagctcgcc gatggcgtat 1560
acagagcacg gatatggcca gcctttcgac gggtacacct ttgggctgca tgccacgctc 1620
ttgcggccaa cgagcacggg caccatccgc ctcagctccg ctgatccgct cgacccaccc 1680
attatcgatc ccaactatct ctccacgcgg cacgatgtcg cgctcctcgc gcgtgccgca 1740
cgcctgctcg cgcgcatcgc gtatacggag ccactcgcgg gcatgcttga ccccaccggc 1800
gaggcggagc cggcgttcaa tcataaattg cttgcgctgg acgacgcggc gctcgaggaa 1860
ctcgtgcgcg cgcgcgtgga gacgctgtac cacccggcgt gcaccgcacg catggcgccc 1920
gccgcggacg gcggtgtcgt cgacccgttt ttgcgcgtgc atggcattcc gaacttgagg 1980
gtcgcggatg cgtcggtgtt tccgacgatt gttgcgggcc acacggcact tgagattggg 2040
acacagacac ggagcgacgg gtggggctcg gtacgtgagt cgctcaagta caccatctgt 2100
gaccaccggc caccgtcgtg a 2121
<210> 15
<211> 366
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 15
atggtcttcc cagtccgagg ctttgcgaat ggcagaagaa gtgagcaagc gcgagcggca 60
cgtcactgtg ctcttcgaca acgcagggat cacgggcgca cgcgctccgc ggcctgcggc 120
gcccaccgca gcggagttcc gcaaagcctt cctcgacggg gtccccgagg aagccttccc 180
caacatgaac gccgtggggc tcttcgtcac atcgatgaac acgctgggcc aggtcgacga 240
gctcgggcgg gtaacacctc ccgcccggcc gtgagttccc gttcgaggtt cccgccgtgc 300
agcccggccc gcagtcgctc ctcgggggct cgaacaagga cgtgggcacg ctcgcgctgt 360
gcttag 366
<210> 16
<211> 366
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 16
atggtcttcc cagtccgagg ctttgcgaat ggcagaagaa gtgagcaagc gcgagcggca 60
cgtcactgtg ctcttcgaca acgcagggat cacgggcgca cgcgctccgc ggcctgcggc 120
gcccaccgca gcggagttcc gcaaagcctt cctcgacggg gtccccgagg aagccttccc 180
caacatgaac gccgtggggc tcttcgtcac atcgatgaac acgctgggcc aggtcgacga 240
gctcgggcgg gtaacacctc ccgcccggcc gtgagttccc gttcgaggtt cccgccgtgc 300
agcccggccc gcagtcgctc ctcgggggct cgaacaagga cgtgggcacg ctcgcgctgt 360
gcttag 366
<210> 17
<211> 321
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 17
atggaacgtg gttgcgcgtt ggagttgtac gtgatttcgc tgggtgctta tcgtgtattt 60
gttctaccag cgcgccacag aactttgtcg gaatgccgta ctatcgtacc agacgtcgag 120
gtgcgcaaac acgaactctg cggtgaagtt agggttccaa attggctgtt aatggcgact 180
ccaggaccgg tgaaattcca gggttggctc gaagcacaag ttgacgatcc gcgggacaca 240
cttgggcttc tctcgctcgg gatcgcgcca ctgcgcgacg tggagctccg aggacgccac 300
cacgcatcgg cgggtatctg a 321
<210> 18
<211> 820
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 18
atgcccgact accccgagtc gtcccaccgc accgtcctcg ccgatccccg cccgtccggg 60
gggccctccg cccgcccgcc gcagtggtcc cgggcgcagc agctgtacac catcgagtcc 120
gagcccgcgc ccgccgtcga ccgggcatct tcctccccag cccccgctcc ccgtccccgg 180
ccgagaacat caagccggag ccctcggacc ccgactccga cttcatcttc gagctcgagc 240
cgcctccccg cccccgaccg atcccgacca tctctcctcg tgcaccgagg tccccctccg 300
cgccaccaac gcatcccccg cgatgcgcaa gatgatgagc gtcttccgcc tgcacccctt 360
cgccgtccac aacggccgcg gcgctgccgt cgctgccgtg cccctcgtcg acgtcgggcc 420
cctcaccgag gagcccatca tggtcgagtt ccaggtctat ctcccatatc ccctcgtccc 480
ccagtctccc gagccagacg acgaccgccc ccagtacacc cgccagcgca tgcacgcccg 540
cgaacagccc cccgcttggc tccgctcccc atccccagcc tccagcacat atccagaccc 600
atccgacgcc cacgaggacc agcgcaactg gcgctttgcc gacgcggacc tcccatatcc 660
ctcgagcccc gtcgaatctc cccccttcgc gcccctcatg acccccgccc agagcctcca 720
ctggagcatg cgctacggcg tcgacggcac catccccttc ccaacacctg ccgaagcgca 780
gggtgagttg cattaccctc ctacgcgtca acgctgctga 820
<210> 19
<211> 2145
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 19
atgtccagct ccagatcttg cgctcccagc cgtccacctt accggccgaa gccgacctct 60
ccttgccacc cactccacac agcggcacct ccgactggac acccttggcg ggcgaagaga 120
acgccgagcc cgaaaatccg cgtcgttcag atgatgacaa cgaactccac gcggagaaag 180
cggaggggtt catcctcggg cctatgccca tcgaggaatt cctcgacttc ctccctgcga 240
agcacacggc acgcaggccg tcgacgcagg gagcgttcaa cgacgtcgac gagcctgatg 300
gagcttccca gctgttggcg gccatcaggg actacgaccg ctgcccaggg ttcgagttta 360
aacacaacgc cctggacttg acgtcggtca agcccgctct gatctgcgtc ccgaaggact 420
cgatcgggtc ggacaacgag gcagcggcga agtacgcagg ggagctgttc attgacgtgc 480
aaagcggcga ccagggcgat ttcttccgcg acccgaagcc gttcgccgac cgcgcgcgcc 540
acaagttcgt cctgtcgcag cccgacgcgg agaagacgca ccgggcgaag gcgcggcaag 600
ccctggggcg gaacgtccgc tgggccaccg acgcgctgat gcaccaacac cggctgcact 660
acttctcggt gtcgatccac gggctgcgcg cgcgcctgct gcgctgggac atgagcgggc 720
tcgtcgcgtc ggagtcgttc agcctccggg agaagcccga ggcgctgtgc gagttcctgt 780
ggaggttcgc gcacacgtcc accgtcgagc gcggctacga cccgacggtg gagcgcgcgt 840
cgagcggcga ggagtgtctg ttccggcagc tggtttcatg ccacgtccgg gaacagctgg 900
acctgaagct ggtggacgtt ccggaggggg aggtcaagga tgaggtgcgg gcggagtacg 960
aggcgcagtg tgcgcttcat gagaagaccg tggcgctgca ttatgaggcg gggcgcgtcg 1020
cggcgctgac catctgtgcg gaggacggga ggctcaagcg gtgtctcgtg tcgaggccga 1080
tcgctacgaa cttctcgatg aggcggggtg cgatgcgcgg gtactgggcg gtgatggaag 1140
gcagggttgt tttcttgaag gacacctggc ggcagtacgt ccatgagccc gaaggccgca 1200
tactgaggga gcttgaagcg cacaaagtca agaacatccc gcatgtggag cacgatggag 1260
atgttccgaa ggtgatgtac tgtgacggca tgctcacgcg gttctcggcc atggcgaact 1320
tcgagaggac gactcggagc aaggcaggcc aacagccgtc attccaatgc actgagacgg 1380
acttacaccg ggaggccgaa tggctatgtt atggcggcgc tcggattgtg gtgcacccgc 1440
gggtccacca ccgtctgatc ctcaaggaag tcggcttccc acttcagaca tgcgaggcac 1500
gaaggagctg ctcaacgcga cgcacgacgc gttccaagat ttatctatta acctgcgctg 1560
atcgctgcgc acgacaaggc acggaggatc caccgagaca tcagcgcggg caacatcatg 1620
ctttatcggc agccatatca ggaccatcgg ataggttatc tgatcgactg ggagctctcg 1680
tcgaaggtac aggaggacgg gcaggcgacg gacaagtata tcgtgggcac gcgcatgttc 1740
ctgtcgcagc gtctcgaggc gcgaagccag cggaggcaca tgttacagga cgacatggag 1800
gcactcctgt atgtcgtcgc gcactgtggc ctccactggc ttcagcatcc tgcgcactcc 1860
aaggacacga ggcaagtcgt tcaggctatg ttccacaacc gcaaggaggt ccacgcgggg 1920
gatgtacctg gggtgacaca cacgacattc cagacgatgg agccgggcaa aggcaagctg 1980
gacatcaagg agaatcggac ctacatcgac ctcccgaact tcaacgcgga tctcaaggat 2040
tggctggtcg atggacctga attagccgcg ggatgcaaat gcggcgacgc agtgggacac 2100
gcccgagccg tggaacgatt actggaagga attcttggac cgtaa 2145
<210> 20
<211> 1116
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 20
atggctgctt taattttcgg tctatctcca gaaagctggc agagggcaga ccagacattc 60
aagacacttc tctccaatga agaacgttgg agagatagac agcagttcct tgagtctcgc 120
ggatacatgc tgcgtccaag atatcgtccg ggttggattc cttcatggac aggtacgaag 180
aaaaaccctg tgttctgtga ggatgcgaag acacttccag cacgcccgca cctcatagat 240
gccactcgac tctcggatgg caaactggtg tacatcaaga gagttcagac aggggacaac 300
gaatcacagc tcgctactat gttatcgtcc gaaactctgc gcaaggatcc gaggaacaat 360
tgtgttcccg tcattgatct gttccaggat tcagacgatc ctaccatttc ctacatggtt 420
atgccgtttc tccgtcttgt caatgatccc ccgttcacaa ttatcgaaga cttggtagat 480
ttcattgaac agatgctgca gggtctcgtt tttcttcacg aaaatggagt ggctcatcgc 540
gattgttcgt acaagaatgt tatgatggat gcaagtgcta tgtaccccca tggctttcat 600
ccggtgaagg aggattactt gcccgatgga gaaaccggag tagaacctct cccacgttct 660
accgtctcca tccggtatta ctacgtcgat ttcggcatct cagtgctcat ccctcctgac 720
gtccatccta aactcaccgt tggagaactc ggtcgagatc gagagccgcc ggagttgtcg 780
cctgatgtcc catacgaccc gttcaaactc gatgtctttc tcattggcaa tttattccga 840
cgtcttctct acgatgaata ttccaatgtg gaatttttgt cttctctttt cggcccgatg 900
attcgagatg atcctgcatc taggcccgat gcccaagacg cactgcaaca gtggcacaca 960
attcgaaagg gactgtcgtt cttcaaccgc aggtgggagc tgcggtctcg tgaggaaacg 1020
cggagcacat tcgtcttgga tgccatgtgc ttcgtcaaag tagcgatgta cgctgtcagg 1080
cagctgttcg gatgggctgt agatgttcaa gggtga 1116
<210> 21
<211> 795
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 21
atgaaccatc tcaatttgaa gttgccgctg ctgctgtctg cagcatatat agttcaactg 60
tgtgtgctgg tcccgcaacc gccgccgaag gaagatgcac aggcgaggtt tatctccgtg 120
gaaccaagac actccaggga gacgtttcgc tggctgccga agttcatcat ggtgagtccg 180
acctctgctc gacatctggg cgctcaccgt ggttgtacct caaagcggac agtctgggcg 240
gcctgtttgt gcgagtccgc gatcctcatt gcataccaat ttccggccca ccatctctcg 300
cgccgagtac tgcaagcgct catccgcggg cccgctccag acaccttcgc tggcgtcggg 360
atccgcgtta cagtcccgtt catcatcggc tggtgtttcc tcattgcagg aaccttcatc 420
cggcagtcgt gctaccgcac actcgggcac tttttcaccg ccgagctcgc ccttcacgag 480
gaccacaagc tcgtgacctc cgggccgtac acgctcgtgc gccatccgag ctacacgggc 540
ggcatcatgg gtgcgttcgg ggtcgccctc atgcagatgt gccctggctc gtggctgagt 600
gagtgcatgg gcatttggga tacccgcagc gggacggtgt tctgctactc gtggtttgcc 660
atcctaggca tcgtgtcggt gcagatgatc cgcaggacgg gtatcgagga ccgtgtcctc 720
aaggacgagt ttgggaagca gtgggaagat tgggctcagg gagccaagtg gaggttggtg 780
cccggcattt tctga 795
<210> 22
<211> 864
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 22
atgcccccga gctacagtcc ctgtcccagg ccctgcctca aacgcccctc ccaagatcgc 60
tgcgcctcac ccttgtctcc ccgcgacgaa tccacccagc tgctcgccat cgaccccggc 120
atcctccacc ccctcgtcca cttcgcaccc tccacagagc tcgccagcac gcactccgcg 180
tactctgcag ccgtctacga ccgctctccc atcgtcgtcc ttcccaatcg ctgcgccctc 240
cccgagcgcg gctgccccgg ccgcacctac aacgtcggtg acggcacagc ccccagcacc 300
tcgcgccagc gtcagcgcag ccccgccgcg cgccatcgcc atccccgcgc caaggacctc 360
gacctccccg aggacgagga cgacgatgat ttgacaccgc gcacctcccc gctcgcccac 420
gcctacgcgc tcccgccact cgtgcccgac ctctcctccg agtcggacga gtccgacgcc 480
gcccccggcg agcacgaccg tgcgctcatg ttcgcgcagt acgcgatgac ccagcgctcg 540
ttcgccggcg cgggcgagct cgcgcagggc atgtccgcga tgtacatcaa caccgccaag 600
ccctccgcgc tctccttcct cccgcacccg ccctcgccgc gtcgcgcgca ctcgcccacg 660
ccgccgtcgc gcgaggacga gcacgaccgc cgccgccatc ctccgtccgc gtccgcgtcg 720
tcaatgtcga gacgcaagtc gaagagcggc gagaatcgca gtccggagag tcccgcgcgg 780
gcgcggtata aggcgttctc ggaaaagagc gcgctcggcg gcgggttcgg cgtcggggac 840
ctcggctgct tgggcggctt ctga 864
<210> 23
<211> 330
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 23
atgttctccc gcatcgccac cttcaccgcg gtcctcgcgc tccccttcct tgctgttgcc 60
agccccaccg gccagaccga ccagtgcaac gtcggatcgc tccagtgttg caatagcgtt 120
atctcgcccg actcaacaga gggcttgggg ctcttgggtc tcatcggtgt cgccgtcgga 180
tccgtcacag gcagcttggg tgttacttgc tcgcccatca ccgtcatcgg agttttgggc 240
ggcagcagct gcgaggccaa ccctgtctgc tgcacagata acagctacgg caacttggtt 300
tccctcggct gcatcccagt ttctctttga 330
<210> 24
<211> 1224
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 24
atgccgttac gccctactgt caccgcggtt acggctggtg tcccaccctt tcatggctac 60
gtggatacca cggaggacgc cctctgtcta atagagatct atcgagagct cgcagatcga 120
gcggacactc gtacccacca cgaagctgca acgcactctg aagcatcgca ggaggaccac 180
tctacggaag gaggcgtcat gcttaagcga tatggcctaa taaaaaagac aattactgtc 240
aaaattgacg ggtcagacca ccacctcata tcgtactaca cccaagagga tgttcgttca 300
ggcaggcttc aacgtccgtc cagtcggaca gaccttcggt ctgttgaaat cccagcggaa 360
ctccttaagt cctctagttt tcggtatccg ctgaagtatg aatcgcaacg tggcagtaag 420
ctgaaccata taaatgatgg agataggatt gataatcagc gctcagctgt cccatcttcg 480
ccttcaagga gggcgacggg cgaacccgca ccacgtttct ccccgattag tcctgctcaa 540
ttctcacaca tacctgccca atcctccaac gcgttccatc aatctccaag caggaaatat 600
gagccgtcct atccgtcctt gtcactagcg cttcctgcgg acgttcggca gtctgcatcc 660
ccatctccca cagacacggc gtactccccc ctcagcgtcg atagttcgcc gctagagcag 720
agacgatctt cgccttggcc atccgcaagc ggcgtaactc catttcccga ccctgccgca 780
gtctacgaag caaggcaaaa tgccgtgcag acggaaccta gctcgatacc tgggcgtacc 840
tggcccaatc aacagcctgc tcgattcgac cgtacattcg atcaaggcgc ttcaaatgct 900
ggagccggcg cgcaccgcgt tggagtgtct gcatggccgc cagggaccgc tacgttctct 960
gggcaaacat acacctctgc gtcgccgatg tcgcctctaa cctccagcta ccctgggtct 1020
tccacacgag gatgcgacca gacgcgagcc agggtgtcgt ctcctgcgtg ggcatggatg 1080
caggactccg cttcttctca gtactgtcaa ttgcctcagg ccgctgcctc gacgttctcg 1140
acggagcgcc aggcatctgc aacagatttg ccatcacctc gaagtccaca agtacggccc 1200
ctgggatacc catacaggca ctga 1224
<210> 25
<211> 1826
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 25
atgtctcgca tcgcggacaa gggaaaggcc cgtgcgcgag acgacgacga ggacaatccc 60
ggccagcctt cacgccgctc accgcccgca cccgagccgg gccgttcgcc gtccctccgc 120
cgccatcctc cgtcccccga cgccatcctt cctctcctgc actgccccca atgctctccc 180
tcgcgtctcc tccacgcgcc tctcactctc cgctgcggtc acactctttg ctcgcaacac 240
attctgtctc cccccacctc gtccccgtcc ccgtccaacc ccctctccgc actctatcaa 300
ggctcagccc cctcatgtcc actcccaacc tgcaacgcgc cctcctccga gacacccacc 360
accaccacca ccaccaccag cagtcccggc gtacacttct ctccggcccc cgtgtcctct 420
tcgcgtccgt ccacacccgt ttcgcgcgtc gatgtctccg taaacaagat catctctctc 480
gtcgtccgcg cccacaacaa cacagacccc gacgcgtccg ccaccgtccg cacttacccc 540
gcagacatcg acgaccaaac cgatgacagc gatgccgcgg acgacctcga cgagcatccc 600
ttgccttcca ccgacgctgt ttccgatccc gatcgacaca gcggtctagg ccccgccgcc 660
cctgcctcta gccatccccg cccgcagtcc ccaccgcgtt cgcgcaagcg tcgccgcggt 720
ccccgcccgc gccaccgccc tcacgaccac ccgcccagcc cttcttcgga tcctgccgcg 780
cgattcgaaa aggagctgct caccgagctc acctgcgaga tctgctttgc gctgctctgg 840
cagcccgtta cgaccccgtg ccagcacacc ttctgctccc cgtgtctcgc ccgcgctctc 900
gatcacaacc tcgcctgccc cctctgccgc cagatcctcc ccgggtacga ctactttcag 960
gagcacccct gcaacaagct cgtcctctcc atcctgctcc gcgcgttccc cgaggctacg 1020
ccgagcgcgg cgccgccctc gaggccgagg cccgcgactc ccgcctcgac accccgctct 1080
tcgtctgcca gctcagcttc ccgggcatgc ccaccatcct ccactttttc gagcctcggt 1140
accgcctgat gctccgccgg tgcctcgccg cgccgtaccc cgccttcggg atggtgcccc 1200
cgccgcgcgc ctccgccggc gtggtggagt tcgggacgat gctcgagatc cgcaacgtgc 1260
agatgctgcc cgacgggcgg agcgtcgtcg agacctgggg cgtgtggcgc tttcgggtca 1320
tggagcgtgg gaccctcgac gggtatggcg tcgcgcgcgt ggagcgtgtc gaggactggg 1380
aggaggacga cgaggaggcc gttctggacg tgcggcctgt tgcgagtggg gaggaggggt 1440
ctgggacgcc cggtccgtcc tcgtcgtcct cggtcgcgtc gatgtccact tctccgcctc 1500
tttcggagcc cccgggctct gcgttgacga gcgttggccc gtcgacgatc ccgcgcagtg 1560
cgccgacgaa cgtggagctg atggcgatct gccacgagtt tcttgagtac ctccgcgagg 1620
gcacgccgtg ggtcgtgcag cacctcaaca cgtcgtacgt ccccatgccg gcggatcccg 1680
ctgcgttcag tttttggatt gggatggtgg ttctctggtg gctgcgtcgt ctcgtgatgc 1740
ggctctactt ttcgcgcgct gctggcccgt acgcctgcgt cgtcgcgctg cttgcgttcg 1800
ctgtgtactc tatacaaggc ggctga 1826
<210> 26
<211> 2008
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 26
atgtcctcct cgcgccagaa ggccccgccg gtccaacgtc ggccgcgcac cgtcgacccg 60
cccttccgag ccgtgctctc actcccccgc cgcctgctgc gcccgcccag cccccgcggc 120
aagctgccct cgtggggcat cgccccgcgc ttcaccgtca ccctggacga catcctcgac 180
cgccgccacc tcccgcccct cggcctcaaa gactttgagg agtggctcct cttcgtcgag 240
cactcccccg agtccctgta cttcatccta tggctccgcg agtacaccgc ccgcttcgac 300
gcctggatcc acgcctccaa gggcgcgttc acccccaccg accctgtcca ccccagctcg 360
taccgcactc cgcccacacg tccccctccc agccccgccc tgctttcctt ctatatgcgc 420
gcaaagcaca cattcctcct ccacgacgcc ccctacgaac tcctcgtccc caccgacgcc 480
ctcgccccct tccgctcctc gcaagcctat ccgtatgatt gcaacgccga tttcgagcag 540
tgtccacacg cacaccccgt cttcaggtcc aagctgcagc caagagaaac tgatctaccc 600
ccctttgcag gcttgccacc ggaccccctc gtcttcgccg agctcgccgc cctcgtgcgc 660
acggccctcg ccgagagtct cgcccgcttc gtccgcgcga ccttcgccaa cgtcgacgca 720
ccccgcgccg tctgcgggtg ctacggcggg acggtgatct tactcgcggg cagcatcccg 780
ccgatcgtca cgagtatcgt gctgggcagc agccgatggt ggcggctgtt tgcgctcccc 840
gggatgtggc tcggcctgac ggtgctcatc gcggccatgt acggcgtctg catgatgatc 900
tacctcttcg gcgacctccg ccaattgcgc tcgttcgagc tccttcggcc gccctccgac 960
cctgcgctga ccgttgaccg ctcgaagaag gccgggtggc tgaccccgcg cgtgacaccc 1020
gcgatctcgc cgcccacgct gctcacatcc acagccgtag agagtccggg gctgctgcct 1080
gtcccgtgtg ccccccctgc acctgcagac gcgaaggcgc cccagaagcc gcagctgagc 1140
atcgtctgcg gcccccccgc gcactggccc gggccagacc gcgcgctcac accattctcg 1200
tacgactcgc gcagcatgta ctcgcagtcc acgggcggcc tcagcgagca ctacggctcg 1260
gactacgagg acgaggacga ggacgacgcg tgcagcgacg cgcgcatcca cgtctccgac 1320
gcgttcttcg acgagcaccc cgccgcgccg gacgcgccgt tccccgcgcc ccccctcacc 1380
gcgtcgttca tccggcccta tgtctaccgc gccgaggacg cgtacgcgga gggcgacgtc 1440
gagcgtggag aggccgggac cccgccgcgc gccagcccgt cgacgtgttc gactttgacg 1500
cgctcccgcc cgcgcgccgc aggctgtccg tgccgcacgc ggccgccacg ctccaggcgc 1560
ctgcgccggt gcacatcatc gcgccggacg agaagccgcg ccgcgacggg ccgcgggcgc 1620
tcctcggcgt gctgcaggcg cgatgcgcgc cgcggaatat cgtgcgcacg cgcttcgcgg 1680
gggacgtggg cgtcggtatt gggctcggtg ccgtgagggc gcgcgggcgc gttgcgatcc 1740
cggcgtttgc gctcctcccg agcccgacgc gtcgagcgcg tcgttctccg cggcggcgag 1800
cgcgaaggcc ccctccgcgc gggagaagga acgggcgagg gggtggatcc ctgctgcgcc 1860
gtttgcggtg ccggtgacgc cggtgctgag cccggtggtg tcgcgtgcgc agtgggagat 1920
tgtggtgcgg agcggggtgc tggctgcggt tgtgagcggg cttttgggtg tggttgtttt 1980
ggcgctgcct gtgcggcgca cggtgtag 2008
<210> 27
<211> 264
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 27
atgaaactga ttgttctgcg gctgaagagc agacgactca cggaggcact tcttcaccgc 60
gatttccaat tatctgtaac aatcccggac gacaggcttt gtccccctgt accgaacagg 120
ctcaactaca ttttatggat gcaagacatc gtgcatgcga cctccatcgc ggaacctgaa 180
atatcgaaga gaattatcaa gggagttgat atgtatgttc ttccgcattc tcttgcactc 240
ctggatatcg atcgctccga atag 264
<210> 28
<211> 2617
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 28
atgccctttg agcggtatct ccaggcgccg tcctcgtcct cccagcaccg tcgctcctat 60
gacaattatc ccgtcgccca tcccgacccg tctttcggca tcgatgcctc gaccttctct 120
ccaatgtcca gttccaggtc ccccgcatga tgaaccctgc tcccaccctc gctcacggcg 180
gtggtgcaga ggttcttccc ccaggtctcc ttccctcctc cggccccatc tcctcctggt 240
tccccgccgc cggttatcgt tccccggacg acttttcccc ctcctgctct gcatcccccg 300
tctatcgtag ccacccatcg ctgactgctc cagcctattc tcttccccca ggtccacact 360
cctaccgcca ccccgacttt gccgactcac ccgtgaactc tcctcccgat tctattccct 420
cctcctccgc cgccccatac gccttccctc tccagcaacc tcctcccgct gacatcctca 480
tctcccccga ttcccacatc cacctcgatg cccagctctt actccgtgct cacctctcca 540
ttccatcctc ttctctcccc ctctccatcc cctcggccat gggccttccc gtttattccg 600
cttccggctt cgatttcctc tccatcctca gccgtgtagc caaccgtcct caccccaagg 660
tccttctcgg tcccgtagac ctcacctgct cctttgtcgt cgtcgacgtc cgtcgctacg 720
actcccccat cgtgtacgcc tcccccactt ttttcaaact caccggctac gacgaacacg 780
aggtcttggg caggaactgc cgctttctcc agtctcccga tggccgcctc cagcgcggcg 840
agcagcgtct tcatactgcc cccgaggccg tcggcctcct caaacgctgt ctcgtcgccg 900
acaaagagtg ccaaaccagc atcaccaact acaagaaggg cggggccgcc ttcatcaacc 960
tcgtcaccgt cattcccatc ccaggcggcg tcaataatac tcccgcagag gcagacgacg 1020
tcgcctacca cgtcggcttc caaatcgacc tcacagagca gcccaacgcc attctcgaga 1080
agctccgcga cggtagctac gtcgttgact acagccgcaa accgcatgcc ctcccgctcc 1140
tcggaaaccc ttctgggtcc cgcaactggc gatccaactc gatatccatg agcggcgtgt 1200
ccacggaact gcgcaccctc ttggcagacc ccgcctttct tcagtcgatc tcggtcacca 1260
cttccaccac cgcctcctgc ccaccttccg gcgagaagct cgacgtatac gacggcaaca 1320
agccgctgca tatgttcctc ctcgagtgtg cccccgactt tatccacgtc gtttccctca 1380
agggcgcctt cctctacgtc gctccagccg tccgcagcgt cctcggctat gccccagacg 1440
acctcgtcgg tcgcgccgtc tccgatttct gccaccctgc cgacgtcgtc cccctcatgc 1500
gcgagctcaa agagtcctcc ataacccccg gtccaggaag cagccaccta atcgccgcat 1560
cgtcagacgc aggcccgcgc aacgtcgacc tccttttccg catgcgcgcc cagtcgggcc 1620
actttgtctg ggtcgagtgc cgaggtcgcc tccacgtcga gcccggcaag ggtcgcaaag 1680
ccatcatcct ttccggtcgc ctccgcagca tgccccgcct tgactgggat cctgtcgacc 1740
gcgccggtgg cctcgccgcg tccgcgcgca gtcccggcga cgactcgcgc aaggaacgcg 1800
agcgcgaatt ttgggcgctc ctcagcacca acggcacctg cctctttgtt ggcgctgccg 1860
tgcacgacgt gctcggctgg ggcgcgggcg aagtcatcgg cagggctctc ggcgatttta 1920
tcggcggtgc tactacggcg gatgcgcgcc gggcgttgga ggacgagctc gcgcgcgcgc 1980
tctctccgct ctcccccgtc ccgaggtgcg ccaacgcggc gtgtcgtgcg agatgatgcg 2040
caaggatggc gtgcaggtcg tcgtgcacat cactcttttc cgctcgcagg acaacagcga 2100
tgtgctcgcg cccgacgacg cgtggcaggg cgcggtggcc gttccacacg ccccgccgtg 2160
ccccgtggtc tgccaggtga agctgttcga cgcgccgtca gatggaccgc cggcggcggc 2220
ggcggggggt atcttgcacc cactgacgga cagcgtgttc gacgagctgc acatcgcgcg 2280
cgggagcagc tggcagtacg agctgcagca gctcaagttt gcgaaccagc gcataaaaga 2340
ggaagtcgcc gcgctggagg ccagcctctg ctctaaaaca cgccaacgtc ccttttcgca 2400
gagtacctcg cgggcaaacc ctgcccacga gcagcaacag cagcagtcgc agcagcaaca 2460
acagcgagag caatacgcgc atcatccgga gctactgccc gataatacca acaattggag 2520
cacgccatat gtgcagtacc cagtaaacct cgccccgttg cagccgtcgc aaacgttgaa 2580
gcggtcatgg cacgccatag acggggcacc cacctaa 2617
<210> 29
<211> 960
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 29
atgcccgaat ttagcacttc tttgggctgc tcaaatgccc cttacatcta caatgcgacc 60
gataccacct tcctcgtgcc agttggcttg aacaatgccg accacgagat cgaaatcctt 120
ggcaaggcgg tcggcacact cacattcgtg cagggcgact ctgatgcgac ggacgtcaag 180
tacgacatca ccctccgtgc tgaccaggac gggctcttcg actccattct gctgcagcac 240
tccacggcat acgaaatcga gcacggcatc tcgaacagtc acacgcgtct tgcgacaact 300
tacgaatcgt cagcgtgcat gcgctatgat atcaaagtct ctgtgccgcc gaccctcaag 360
aacttggctg taagcacgcg cacggtcacc cacatcaagt tcgacaccga ctccatgttt 420
gacttcgaca agctctcagt gagcatgcgc gcaatgatgg aaaccggcca tcttctcctc 480
ccgcatacgg gcgttcacgc gggcatgctc ttattcgata tttcccgtgg atggctcgtt 540
ggcgacgtcg cgatcgtgga caagaccacg ctgtcgacat caaagggcga cgcagtgatg 600
aacgtgcacg tgcaccccgt cccgtcaacc gcagaccttc ccgcgaccgc tgaactgcag 660
acgacaacgg gcacgggacg caccgacgtc ttcttcgtta gcagcgctgg tcacgttcac 720
cgccccattt ctagcactca cagctcgatg cgcggtggcg aaatgtacct gacgtacaag 780
gaggcggagt tcaagggcga ggtcgacctc tctgcgaagt cgtattctgc tagtggcctc 840
cagggctcaa tgatgcgcca cggtggcatg ggcggcgagc tcccttgggt tggggacaag 900
aacggcggcg ataagatcgt tgcgcagtct cccaatggct ggattgggtt gtacttctga 960
<210> 30
<211> 594
<212> DNA
<213>wide leaf Sparassis crispa (Sparassis latifolia)
<400> 30
atgaagcagc ttgcactgct tcccgaggga aagggtctct tcaatttgtg taccaccgga 60
ctcaccttcg tccctctaaa cacgatttgt gccgacacga cgacgataca gaagacggta 120
tccgagacga tcctcgcagg tatcgcgcaa aatgtgtacc cgccaggtct gcgaaagcag 180
tacacaattc aactcaaaca ccttgagcag caggtaccta gtctcgaatt aattcttggt 240
cccggcataa tgataccgcc tgccaacccc gaccccacca agaaacacat caccctcggc 300
ttcggcctca acagtccctt ctctcggggc accatccacg tcgggtccag cgacccgctg 360
gtaccacccg tcatcgaccc gcacgtattc gaagaatcat acggcgagta cctcacgact 420
atggttgaac ttgtcaaatt tctccgccgc ctggcgaaga ccgagccact gaagagcctc 480
ctcgttggta agcatgtttg atacttgatt ttgcatttct actccagctc ttgaaactcg 540
tgcgtcggac acagagacgg aggtcagccc cggtccacag gtcgaatcag atga 594
Claims (9)
1. a kind of method of joint ATAC-seq and RNA-seq screening edible and medical fungi functional gene, it is characterised in that: utilize
ATAC-seq method test out edible and medical fungi environmental factor induction before and after the cultural hypha stage mycelia and by environment because
Son induction former base differentiation after former base opening Chromatin domains and analyze open area encoding gene, utilize RNA-seq method survey
Edible and medical fungi is tried out in the mycelia in mycelia stage and the mRNA sequence of the former base after former base is broken up, and is found using Venn figure
The shared differential gene between gene order obtained by ATAC-seq method and RNA-seq method, eventually by biology
Analyze the critical functionality gene found in shared differential gene and influence the differentiation of edible and medical fungi former base.
2. a kind of method of joint ATAC-seq and RNA-seq screening edible and medical fungi functional gene as described in claim 1 exists
Screen the application on Sparassis crispa functional gene.
3. a kind of method of joint ATAC-seq and RNA-seq screening edible and medical fungi functional gene as claimed in claim 2 exists
Screen the application on Sparassis crispa functional gene, it is characterised in that: the mycelia in the cultural hypha stage of the Sparassis crispa is taken black
The mycelia cultivated under dark condition and the mycelia for not going out former base by light induction but also.
4. a kind of joint ATAC-seq and RNA-seq as claimed in claim 3 is in the method for screening edible and medical fungi functional gene
Application on screening Sparassis crispa functional gene, which is characterized in that specific step is as follows:
S1, the mycelia for cultivating Sparassis crispa under dark condition and by light induction but also do not go out former base mycelia, in dark
Under the conditions of the mycelia cultivated and the former base after light induction pass through ATAC experiment respectively and obtain purifying DNA and carry out Illumina
Acquisition mRNA progress Illumina HiSeq sequencing is tested in HiSeq sequencing by RNA-seq;
S2, mycelia and lure by illumination that Sparassis crispa is cultivated under dark condition are obtained respectively after the sequencing of ATAC-seq method
Lead but do not go out also the mycelia contrast groups and the mycelia cultivated under dark condition and the former base pair after light induction of former base
It is obtained under dark condition respectively than expressing the lower gene dosage for reconciling and raising in group, while after the sequencing of RNA-seq method
The mycelia of culture and do not go out by light induction but also the mycelia contrast groups of former base and the mycelia cultivated under dark condition and
The lower gene dosage for reconciling and raising is expressed in former base contrast groups after light induction;
S3, the mycelia pair for passing through light induction using Venn map analysis but also not going out the mycelia of former base and being cultivated under dark condition
Than in group by ATAC-seq and RNA-seq integrated processes sequencing after co-express downward gene dosage and co-expression on
The gene dosage of tune;Also with former base of the Venn map analysis after light induction and the mycelia pair cultivated under dark condition
Than the gene dosage for co-expressing downward in group after the sequencing of ATAC-seq and RNA-seq integrated processes, up-regulation is co-expressed
Gene dosage;
S4, comprehensive analysis, which are passed through in two contrast groups obtained in step S3, co-expresses the lower gene dosage for reconciling and raising, and sharp
The shared differential gene of two contrast groups is found with Venn map analysis;
S5, the key function that bioinformatic analysis filters out the differentiation of light induction Sparassis crispa former base is carried out to shared differential gene
Property gene.
5. a kind of joint ATAC-seq and RNA-seq as claimed in claim 4 is being sieved in the method for screening edible and medical fungi functional gene
Select the application on Sparassis crispa functional gene, which is characterized in that ATAC experiment specific steps are as follows:
A1, sample preparation: it takes mycelia under the dark condition in silk ball bacteria cultivation, go out the bacterium of former base by light induction but also
Silk, the former base after light induction, with liquid nitrogen flash freezer, cryopreservation;Sample is put into pre-cool and is buffered containing homogenate
In the homogenizer of liquid, the tissue of freezing is allowed to thaw and by tissue grinder, pre-cooling centrifugation takes supernatant, utilizes Iodixanol gradient
Method separating nucleus, counts nucleus, and every 50000 cell nucleus packing saves;
A2, swivel base reaction and purifying: 50000 nucleus are transferred to containing 1ml ATAC-RSB and 0.1%Tween-20
Omni-ATAC ATAC-seq reaction mixture is added in Guan Zhong, centrifuging and taking supernatant, and 30min is incubated at 37 DEG C and purifies DNA,
With 10 μ l elution buffer eluted dnas;
A3, PCR amplification: the 10 μ l are taken to be by step (2) swivel base DNA after purification, the water of 10 μ l nuclease frees, 2.5 μ l concentration
25 μM of PCR primer 1,2 × PCR of the μ l NEB Next High-Fidelity of PCR primer 2 and 25 that 2.5 μ l concentration are 25 μM
Master Mix;
A4, sequencing and gene data are analyzed and then obtain the gene dosage of the different lower reconciliation up-regulations of sample expression.
6. a kind of joint ATAC-seq and RNA-seq as claimed in claim 4 is being sieved in the method for screening edible and medical fungi functional gene
Select the application on Sparassis crispa functional gene, it is characterised in that: the RNA experiment is successively by sample preparation, mRNA extraction, library
Building and sequencing are analyzed with data obtains the lower gene order raised that reconciles of expression in turn.
7. a kind of joint ATAC-seq and RNA-seq as claimed in claim 6 is in the method for screening edible and medical fungi functional gene
Application on screening Sparassis crispa functional gene, it is characterised in that: Sparassis crispa mycelia and former base sample need to be in RNA experiment
It is ground in liquid nitrogen, extracts reagent using Trizol RNA and extract mRNA.
8. a kind of joint ATAC-seq and RNA-seq as claimed in claim 4 is in the method for screening edible and medical fungi functional gene
Application on screening Sparassis crispa functional gene, it is characterised in that: the step of RNA experiment Chinese library constructs is as follows:
B1, with the enrichment with magnetic bead mRNA with Oligo, NEB Fragmentation Buffer, which is added, into obtained mRNA makes
Its fragmentation becomes short-movie section;
B2, using the mRNA after fragmentation as template, with hexabasic base random primer synthesize the first chain of cDNA, and be added buffer,
DNTPs, RNaseH and DNA Polymerase I synthesize the second chain of cDNA, purify by QIAQuick PCR kit and add EB
Buffer elution;
B3, be purified by flash after double-strand cDNA carry out again end reparation, plus base A, plus sequence measuring joints processing, through Ago-Gel
Electrophoresis recycling purpose size segment simultaneously carries out PCR amplification, completes library construction work.
9. a kind of joint ATAC-seq and RNA-seq as claimed in claim 4 is in the method for screening edible and medical fungi functional gene
Application on screening Sparassis crispa functional gene, it is characterised in that: bioinformatic analysis includes to shared in the step S5
Differential gene carries out GO analysis, KEGG analysis, GSEA analysis and signal network analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910211118.1A CN109837335A (en) | 2019-03-20 | 2019-03-20 | A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910211118.1A CN109837335A (en) | 2019-03-20 | 2019-03-20 | A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109837335A true CN109837335A (en) | 2019-06-04 |
Family
ID=66886070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910211118.1A Pending CN109837335A (en) | 2019-03-20 | 2019-03-20 | A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109837335A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110910950A (en) * | 2019-11-18 | 2020-03-24 | 广州竞远生物科技有限公司 | Flow method for combined analysis of single-cell scRNA-seq and scATAC-seq |
CN111154835A (en) * | 2020-01-19 | 2020-05-15 | 广州基迪奥生物科技有限公司 | Method for constructing ATAC-seq sequencing library |
CN112562785A (en) * | 2020-12-10 | 2021-03-26 | 哈尔滨医科大学附属第一医院 | Method for screening key gene of endometrial cancer based on ATAC sequencing data and application |
CN116042896A (en) * | 2022-12-09 | 2023-05-02 | 福建省农业科学院食用菌研究所 | Indel molecular marker for identifying SP-A strain of Pediococcus guangdalina She Xiu and application |
CN117487956A (en) * | 2023-12-29 | 2024-02-02 | 云南菌视界生物科技有限公司 | Primer pair for identifying Sparassis crispa novel strain JSJ-Spar8-1C and identification method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107058557A (en) * | 2017-05-12 | 2017-08-18 | 安徽省农业科学院畜牧兽医研究所 | Influence the function candidate gene and its screening technique of pig flesh characters |
CN108220394A (en) * | 2018-01-05 | 2018-06-29 | 清华大学 | Identification method, system and its application of gene regulation sex chromatin interaction |
CN108410995A (en) * | 2018-02-02 | 2018-08-17 | 塔里木大学 | The screening of the more unrestrained sheep physiological period ovary genes in Xinjiang and identification method |
-
2019
- 2019-03-20 CN CN201910211118.1A patent/CN109837335A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107058557A (en) * | 2017-05-12 | 2017-08-18 | 安徽省农业科学院畜牧兽医研究所 | Influence the function candidate gene and its screening technique of pig flesh characters |
CN108220394A (en) * | 2018-01-05 | 2018-06-29 | 清华大学 | Identification method, system and its application of gene regulation sex chromatin interaction |
CN108410995A (en) * | 2018-02-02 | 2018-08-17 | 塔里木大学 | The screening of the more unrestrained sheep physiological period ovary genes in Xinjiang and identification method |
Non-Patent Citations (3)
Title |
---|
DAVID G. HENDRICKSON等: ""Simultaneous Profiling of DNA Accessibility and Gene Expression Dynamics with ATAC-Seq and RNA-Seq"", 《METHODS IN MOLECULAR BIOLOGY》 * |
凌志琳等: "基因组学在食药用菌栽培育种中的研究进展", 《食用菌学报》 * |
肖冬来等: "光照胁迫下广叶绣球菌菌丝基因差异表达的初步分析", 《中国食用菌》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110910950A (en) * | 2019-11-18 | 2020-03-24 | 广州竞远生物科技有限公司 | Flow method for combined analysis of single-cell scRNA-seq and scATAC-seq |
CN111154835A (en) * | 2020-01-19 | 2020-05-15 | 广州基迪奥生物科技有限公司 | Method for constructing ATAC-seq sequencing library |
CN112562785A (en) * | 2020-12-10 | 2021-03-26 | 哈尔滨医科大学附属第一医院 | Method for screening key gene of endometrial cancer based on ATAC sequencing data and application |
CN116042896A (en) * | 2022-12-09 | 2023-05-02 | 福建省农业科学院食用菌研究所 | Indel molecular marker for identifying SP-A strain of Pediococcus guangdalina She Xiu and application |
CN116042896B (en) * | 2022-12-09 | 2024-05-14 | 福建省农业科学院食用菌研究所 | Index molecular marker for identifying SP-A strain of She Xiu cocci and application |
CN117487956A (en) * | 2023-12-29 | 2024-02-02 | 云南菌视界生物科技有限公司 | Primer pair for identifying Sparassis crispa novel strain JSJ-Spar8-1C and identification method thereof |
CN117487956B (en) * | 2023-12-29 | 2024-03-22 | 云南菌视界生物科技有限公司 | Primer pair for identifying Sparassis crispa novel strain JSJ-Spar8-1C and identification method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109837335A (en) | A method of joint ATAC-seq and RNA-seq screens edible and medical fungi functional gene | |
CN110366596A (en) | For being analyzed the Whole microbial strain in complex heterogeneous group, determining its functional relationship and interaction and being identified based on this and the method, apparatus and system of synthesis of biologically active modifying agent | |
CN110392738A (en) | For being analyzed the microorganism strain in complex heterogeneous group, being determined its functional relationship and interaction and determine the method, apparatus and system of diagnosis and biological aspect management based on this | |
CN103534352A (en) | Method for selecting plasma cells and plasmablasts, method for producing target antigen-specific antibody, and new monoclonal antibody | |
US20190095778A1 (en) | Biological organism development system | |
Turner et al. | Roles of crustacean hyperglycaemic hormone in ionic and metabolic homeostasis in the Christmas Island blue crab, Discoplax celeste | |
Gao et al. | Maturation-associated changes in internal distribution and intra-ovarian microdistribution of tetrodotoxin in the pufferfish Takifugu pardalis | |
CN114426955A (en) | Insect-resistant protein Cry3Bb hybridoma cell strain, antibody produced by same and application of antibody | |
EP3571509A1 (en) | METHODS AND REAGENTS FOR DETERMINING IMMUNOGLOBULIN GAMMA (IgG) ANTIBODY ISOTYPE CONCENTRATION FROM BIOLOGICAL SAMPLES | |
CN110106150A (en) | A kind of preparation method and application of synovial sarcoma cells system hSS-005R | |
CN101891815A (en) | CK19 monoclonal antibody, and preparation method and application thereof | |
Stewart | Differences in the life cycles between a vaccine strain and an unmodified strain of Babesia bovis (Babes, 1889) in the tick Boophilus microplus (Canestrini) | |
Van Dolah et al. | Cell cycle behavior of laboratory and field populations of the Florida red tide dinoflagellate, Karenia brevis | |
Qin et al. | Molecular ecological basis of grasshopper (Oedaleus asiaticus) phenotypic plasticity under environmental selection | |
CN103509101A (en) | Cell factor for amplifying umbilical cord blood hematopoietic stem cells and culture medium thereof | |
US20180322241A1 (en) | Biological organism development system | |
CN108611324A (en) | A kind of eukaryotic cell lines and preparation method thereof of stable coexpression recombination human source sweet receptor albumen | |
van Kammen | The occurrence of infectious virus ribonucleic acid in the ribosomal fraction from tobacco mosaic virus infected tobacco leaves | |
CN103214572B (en) | Anti-sterigmatocystin monoclonal antibody | |
Sher et al. | Dynamic nitrogen fixation in an aerobic endophyte of Populus | |
CN108118061A (en) | Epinephelus coioides innate immunity receptor TLR22 genes and its carrier for expression of eukaryon and application | |
Yao et al. | Biochemical characteristics of a diffusible factor that induces gametophyte to sporophyte switching in the brown alga Ectocarpus | |
CN113150122A (en) | Preparation method of high-throughput whole rabbit-derived monoclonal antibody | |
Brzosko et al. | In Which Way Do the Flower Properties of the Specialist Orchid Goodyera repens Meet the Requirements of Its Generalist Pollinators? | |
CN116203146B (en) | Method for detecting charge heterogeneity of anti-LILRB 4 monoclonal antibody |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190604 |
|
RJ01 | Rejection of invention patent application after publication |