CN109824761B - 低溶血抗菌肽BmKn2-7K及其应用 - Google Patents
低溶血抗菌肽BmKn2-7K及其应用 Download PDFInfo
- Publication number
- CN109824761B CN109824761B CN201910145440.9A CN201910145440A CN109824761B CN 109824761 B CN109824761 B CN 109824761B CN 201910145440 A CN201910145440 A CN 201910145440A CN 109824761 B CN109824761 B CN 109824761B
- Authority
- CN
- China
- Prior art keywords
- bmkn2
- hemolysis
- antibacterial
- low
- peptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明公开了一种抗菌肽BmKn2‑7K。所述抗菌肽BmKn2‑7K对铜绿假单胞菌Pseudomonas aeruginosa、肺炎克雷伯菌Klebsiellar pneumonia、大肠杆菌Escherichia coli、金黄色葡萄球菌Staphylococcus aureus与粪肠球菌Enterococcus faecalis均有优异的抑菌活性(MIC:5‑10μg/mL);并且其HC50为225μg/mL,在有效杀菌浓度范围内几乎不会引发溶血。本发明为抗菌药物开发提供了新的先导分子,具有极大的开发应用价值。
Description
技术领域
本发明属于生物工程和生物医药医疗领域,具体涉及一种低溶血抗菌肽BmKn2-7K及其应用。
背景技术
感染性疾病严重威胁人类健康,抗生素滥用导致的细菌多重耐药,使这一问题变得更加严重。阳离子型α-螺旋肽(Cationicα-helical Anti-Microbial Peptide,CαAMP)是一类具有杀菌活性的天然新型多肽。CαAMP是一种双亲性分子(amphipathic molecule),在水溶液中呈无规卷曲结构,当其与细菌细胞膜结合时,会形成具有明显亲水侧面(hydrophilic surface)与疏水侧面(hydrophobic surface)的α-螺旋构象[1,2]。CαAMP通过其带正电荷的亲水表面与带负电荷的细菌细胞膜表面结合,然后其疏水表面嵌入磷脂双分子层,形成疏水结合,最终破坏细胞膜[3-5]。因此,与靶向细菌代谢途径而缓慢杀菌的传统抗生素不同[6,7],CαAMP在细菌分裂周期内实现快速杀菌,显著地减小了耐药细菌产生的几率。因此从作用机制的角度,CαAMP是一种良好的抗菌先导分子(lead molecule),具有潜在的开发应用价值。
然而,天然CαAMP往往具有很高的溶血活性(hemolysis)。人红细胞与细菌的细胞膜含有不同种类的磷脂而呈现不同的带电性。如大肠杆菌主要含有电中性的磷脂酰乙醇胺(75%)、电负性的磷脂酰甘油(20%)与心磷脂(5%)而呈现电负性[8],金黄色葡萄球菌主要含有心磷脂(5%)、磷脂酰甘油(57%)和赖氨酰磷脂酰甘油(38%),也呈电负性[5],电负性的细菌质膜对阳离子型AMP有很强的吸引力。不同于细菌,人红细胞膜含有相等比例的胆固醇和磷脂[9],磷脂主要含有电中性的磷脂酰乙醇胺(30%)、磷脂酰胆碱(30%)、鞘磷脂(25%)和磷脂酰丝氨酸(15%)[5],呈电中性的人红细胞膜对CαAMP没有强吸引力,但磷脂双分子层的疏水部分仍可与CαAMP发生疏水作用,而过高的疏水性被认为是CαAMP高溶血活性的主要原因。
鉴于天然CαAMP的高溶血活性,如何降低溶血性、提高CαAMP对细菌质膜的选择性结合是一个非常重要的科学问题。近年来多种策略被用于降低或消除CαAMP的溶血活性:(1)与其他生物大分子进行偶联,如Thygesen团队通过偶联壳聚糖,显著地减轻了抗菌肽anoplin的溶血活性,但是这种方式导致anoplin抗菌谱显著缩窄,也显著增加了分子量和制备工艺的复杂度[10];(2)计算机辅助的随机多肽设计,优点是可以极大地增加候选多肽设计的可能性,但是多肽合成工艺难以满足多样化的候选分子实验验证的需求[11,12];(3)基于多肽本身的长度、氨基酸侧链性质进行突变设计,在这方面取得了一些进展[13-16]。上述方法虽然有一些成功案例,但是由于缺少对多肽结构-溶血活性关系(structure-hemolysis relationship)的深入分析,而CαAMP分子具有极大的多样性(如分子量10-50AA),上述方法并不普遍适用,设计选择性靶向细菌质膜的CαAMP先导分子仍然具有极大的挑战性。
参考文献:
[1]Mahlapuu M,Hakansson J,Ringstad L,Bjorn C.Antimicrobial Peptides:An Emerging Category of Therapeutic Agents.Front Cell Infect Microbiol 2016;6:194.
[2]Huang Y,Huang J,Chen Y.Alpha-helical cationic antimicrobialpeptides:relationships of structure and function.Protein Cell 2010;1(2):143-152.
[3]Fjell CD,Hiss JA,Hancock RE,Schneider G.Designing antimicrobialpeptides:form follows function.Nat Rev Drug Discov 2011;11(1):37-51.
[4]Yeaman MR,YountNY.Mechanisms of antimicrobial peptide action andresistance.Pharmacol Rev 2003;55(1):27-55.
[5]Teixeira V,Feio MJ,Bastos M.Role of lipids in the interaction ofantimicrobial peptides with membranes.Prog Lipid Res 2012;51(2):149-177.
[6]Waxman DJ,Strominger JL.Penicillin-binding proteins and themechanism of action of beta-lactam antibiotics.Annu Rev Biochem 1983;52:825-869.
[7]Bozdogan B,Appelbaum PC.Oxazolidinones:activity,mode of action,andmechanism of resistance.Int J Antimicrob Agents 2004;23(2):113-119.
[8]Edwards IA,Elliott AG,Kavanagh AM,Blaskovich MAT,CooperMA.Structure-Activity and-Toxicity Relationships of the Antimicrobial PeptideTachyplesin-1.ACS Infect Dis 2017;3(12):917-926.
[9]Mohandas N,Gallagher PG.Red cell membrane:past,present,andfuture.Blood 2008;112(10):3939-3948.
[10]Sahariah P,Sorensen KK,Hjalmarsdottir MA,Sigurjonsson OE,JensenKJ,Masson M,Thygesen MB.Antimicrobial peptide shows enhanced activity andreduced toxicity upon grafting to chitosan polymers.Chem Commun(Camb)2015;51(58):11611-11614.
[11]Rondon-Villarreal P,Pinzon-Reyes E.Computer Aided Design of Non-toxic Antibacterial Peptides.Curr Top Med Chem 2018;18(13):1044-1052.
[12]Reddy DN,Singh S,Ho CMW,Patel J,Schlesinger P,Rodgers S,Doctor A,Marshall GR.Design,synthesis,and biological evaluation of stable beta(6.3)-Helices:Discovery of non-hemolytic antibacterial peptides.Eur J Med Chem2018;149:193-210.
[13]Merlino F,Carotenuto A,Casciaro B,Martora F,Loffredo MR,Di GraziaA,Yousif AM,Brancaccio D,Palomba L,Novellino E,Galdiero M,Iovene MR,MangoniML,Grieco P.Glycine-replaced derivatives of[Pro(3),DLeu(9)]TL,a temporin Lanalogue:Evaluation of antimicrobial,cytotoxic and hemolytic activities.Eur JMed Chem 2017;139:750-761.
[14]Irazazabal LN,Porto WF,Ribeiro SM,Casale S,Humblot V,Ladram A,Franco OL.Selective amino acid substitution reduces cytotoxicity of theantimicrobial peptide mastoparan.BiochimBiophys Acta 2016;1858(11):2699-2708.
[15]Dou X,Zhu X,Wang J,Dong N,Shan A.Novel Design of HeptadAmphiphiles To Enhance Cell Selectivity,Salt Resistance,AntibiofilmProperties and Their Membrane-Disruptive Mechanism.J Med Chem 2017;60(6):2257-2270.
[16]Wang J,Chou S,Yang Z,Yang Y,Wang Z,Song J,Dou X,Shan A.CombatingDrug-Resistant Fungi with Novel Imperfectly Amphipathic PalindromicPeptides.J Med Chem2018;61(9):3889-3907.
发明内容
基于上述现有技术存在的缺陷,本发明分析了抗菌肽BmKn2和BmKn2-7的溶血活性与亲水面碱性残基的关系;基于此,对BmKn2-7进行了进一步的改造设计,获得了新抗菌肽BmKn2-7R与BmKn2-7K,并对其分子二级结构、溶血率、抑菌活性进行分析研究。
本发明目的通过以下技术方案来实现:
本发明提供了一种低溶血抗菌肽BmKn2-7K,所述抗菌肽包含SEO ID NO.8所示氨基酸序列。
进一步的,所述抗菌肽BmKn2-7K羧基端进行酰胺化修饰。
进一步的,所述抗菌肽BmKn2-7K为FIKKIARLLKKIF-NH2。
本发明提供了一种药物组合物,所述药物组合物包含所述低溶血抗菌肽BmKn2-7K。
本发明提供了一种低溶血抗菌肽BmKn2-7K在制备抑菌产品中的应用;所述抑菌产品为皮肤外用抑菌剂、食品抑菌剂、清洁抑菌剂或内服抑菌药物。
进一步的,所述皮肤外用抑菌剂为乳剂、霜剂或膏剂。
本发明提供了一种所述低溶血抗菌肽BmKn2-7K在制备抑制铜绿假单胞菌Pseudomonas aeruginosa、肺炎克雷伯菌Klebsiellar pneumonia、大肠杆菌Escherichiacoli、金黄色葡萄球菌Staphylococcus aureus、和/或粪肠球菌Enterococcus faecalis生长的产品中的应用。
本发明提供了一种低溶血抗菌肽BmKn2-7K在制备抗感染性疾病药物中的应用。
本发明的有益效果是:
本发明所述抗菌肽BmKn2-7K对铜绿假单胞菌Pseudomonas aeruginosa、肺炎克雷伯菌Klebsiellar pneumonia、大肠杆菌Escherichia coli、金黄色葡萄球菌Staphylococcus aureus与粪肠球菌Enterococcus faecalis均有优异的抑菌活性(MIC:5-10μg/mL);并且其HC50为225μg/mL,在有效杀菌浓度范围内几乎不会引发溶血。本发明为抗菌剂、抗菌药物的开发提供了新的先导分子,具有重要的科学价值和极大的开发应用潜力。
附图说明
图1.BmKn2-7与BmKn2亲水面氨基酸组成差异及突变体设计。
图2.BmKn2及其突变体HC50对比。
图3.BmKn2-7突变体设计及二级结构分析:A.突变体设计;B.二级结构分析。
图4.BmKn2、BmKn2-7及其突变体HC50与HC10比较。
具体实施方式
通过以下实施例对本发明作进一步的详细描述,但应理解本发明并不受以下内容所限制。
实施例1:抗菌肽合成
基于BmKn2-7与BmKn2氨基酸残基序列的差异,设计单点突变或组合突变。BmKn2与BmKn2-7仅仅亲水侧面具有显著区别。具体来说,BmKn2亲水侧面包含5个氨基酸残基,分别是第3、4、7、10与11位(图1)。从BmKn2到BmKn2-7,第3、4与10位分别由G、A与S变成K、R与R。基于此,我们设计了6个突变体:分别是[K]3(G3→K)、[R]4(A4→R)与[R]10(S10→R),这三个突变使BmKn2增加了1个净正电荷;[K]3[R]4(G3→K,A4→R)、[K]3[R]10(G3→K,S10→R)与[R]4[R]10(A4→R、S10→R),这三个突变使BmKn2增加了2个净正电荷;与BmKn2相比,BmKn2-7亲水面增加了3个净正电荷(图1)。
多肽的合成由上海强耀生物科技有限公司采用标准Fmoc chemistry法合成,所有多肽通过反向高效液相色谱与质谱法进行均一度和纯度鉴定(>95%)。
表1.抗菌肽突变体突变位点比较
表2.抗菌肽突变体氨基酸序列
名称编号(突变位点) | 氨基酸序列 | 序列号 | 羧基端酰胺化修饰 |
[K]<sup>3</sup>(G<sup>3</sup>→K) | FI<u>K</u>AIARLLSKIF | SEQ ID NO.1 | FI<u>K</u>AIARLLSKIF-NH<sub>2</sub> |
[R]<sup>4</sup>(A<sup>4</sup>→R) | FIG<u>R</u>IARLLSKIF | SEQ ID NO.2 | FIG<u>R</u>IARLLSKIF-NH<sub>2</sub> |
[R]<sup>10</sup>(S<sup>10</sup>→R) | FIGAIARLL<u>R</u>KIF | SEQ ID NO.3 | FIGAIARLL<u>R</u>KIF-NH<sub>2</sub> |
[K]<sup>3</sup>[R]<sup>4</sup>(G<sup>3</sup>→K,A<sup>4</sup>→R) | FI<u>KR</u>IARLLSKIF | SEQ ID NO.4 | FI<u>KR</u>IARLLSKIF-NH<sub>2</sub> |
[K]<sup>3</sup>[R]<sup>10</sup>(G<sup>3</sup>→K,S<sup>10</sup>→R) | FI<u>K</u>AIARLL<u>R</u>KIF | SEQ ID NO.5 | FI<u>K</u>AIARLL<u>R</u>KIF-NH<sub>2</sub> |
[R]<sup>4</sup>[R]<sup>10</sup>(A<sup>4</sup>→R、S<sup>10</sup>→R) | FIG<u>R</u>IARLL<u>R</u>KIF | SEQ ID NO.6 | FIG<u>R</u>IARLL<u>R</u>KIF-NH<sub>2</sub> |
实施例2:突变体的溶血活性研究
多肽的溶血性研究将以吸光度法为基本方法。
(1)人红细胞的处理:
本发明中所用人红细胞来源于湖北医药学院附属医院健康志愿者的新鲜血液,人的新鲜血液采用枸缘酸钠进行抗凝处理,然后用PBS缓冲液洗涤数次至上清液呈无色,离心保留红细胞沉淀。
(2)吸光度法测定溶血性:
将人红细胞配制成终浓度为2%(V/V)的悬液并置于96孔板中,加入不同浓度梯度的多肽;红细胞样品中加入PBS缓冲液为阴性对照;红细胞样品中加入终浓度2%的TritonX-100溶液为阳性对照。孵育1小时后,离心使红细胞沉淀。吸取上清测定540nm吸光度。溶血率定义为扣除阴性对照后,各样品吸光度除以阳性对照值得到的百分比:
%hemolysis=100×(Asample–Apositive)/(Apositive–Anegative),
此法可获得HC50或HC10值。
通过吸光度法,我们分析了BmKn2-7、BmKn2及突变体的溶血活性(图2)。BmKn2突变体初始浓度设置为0、6.25、12.5、25、50、100、200、400μg/mL;根据实验结果进一步细分浓度梯度设置(最小浓度间隔为2.5μg/mL)。研究表明:①尽管增加了一个碱性氨基酸残基(增加了1个净正电荷),[K]3、[R]4与[R]10的HC50与BmKn2基本一致;②继续增加碱性残基,[K]3[R]4与[R]4[R]10的HC50显著增加,而[K]3[R]10的HC50仍与BmKn2类似;③这些多肽中,BmKn2-7的HC50最大。以上结果表明:随着亲水面碱性残基的增加,多肽的溶血活性降低,但是亲水面碱性残基的种类与分布亦可能显著地影响其溶血活性。
实施例3:新多肽BmKn2-7K的分子设计
1、BmKn2-7K分子设计:
BmKn2-7具有对称型的分子结构:其α-螺旋可分为3个部分,两部分由疏水残基占据;其亲水侧面的碱性残基对称分布:两个Lys分别在第3与第11位,3个Arg分别在第4位、第7位于第10位。我们前面的研究结果表明,亲水面碱性残基的类别和分布对BmKn2的溶血性有显著影响。因此我们对BmKn2-7的亲水面进行了改造:我们初步设计了BmKn2-7R与BmKn2-7K(图3中A),即亲水面全部由Lys或Arg组成,研究这两种改造方式对BmKn2-7溶血性以及抗菌活性的影响。多肽由上海强耀生物科技有限公司合成,经检测其纯度与均一度>95%。
2、二级结构分析:
三氟乙醇溶液是模拟细胞膜疏水环境的试剂,常用于鉴定抗菌肽与细胞膜结合时是否能形成α-螺旋二级结构。因此我们采用圆二色谱测定突变体在70%(V/V)三氟乙醇溶液中的二级结构。BmKn2-7R与BmKn2-7K在70%三氟乙醇溶液中都形成了α-螺旋(图3中B),其中BmKn2-7K分子序列为:FIKKIAKLLKKIF-NH2。
表3.抗菌肽突变体氨基酸序列
名称编号 | 氨基酸序列 | 序列号 | 羧基端酰胺化修饰 |
BmKn2-7R | FI<u>RR</u>IARLL<u>R</u>RIF | SEQ ID NO.7 | FI<u>RR</u>IARLL<u>R</u>RIF-NH<sub>2</sub> |
BmKn2-7K | FI<u>KK</u>IAKLL<u>K</u>KIF | SEQ ID NO.8 | FI<u>KK</u>IAKLL<u>K</u>KIF-NH<sub>2</sub> |
实施例4:新多肽BmKn2-7K和BmKn2-7R的溶血率测定
我们采用吸光度法对新多肽BmKn2-7K(FIKKIAKLLKKIF-NH2)和BmKn2-7R(FIRRIARLLRRIF-NH2)的溶血率进行了检测,结果如表4、图4所示。这两种突变BmKn2-7R与BmKn2-7K的溶血性具有显著差异:其中BmKn2-7R的HC50显著减小至75μg/mL,BmKn2-7K的HC50显著增大至225μg/mL(图4中A图);HC10指引起10%人红细胞溶血的最小多肽浓度:从图4中B图可得出,BmKn2-7K的HC10达到了100μg/mL。
表4.抗菌肽溶血活性(单位μg/mL)
实施例5:新多肽BmKn2-7K的抗菌活性研究
体外抗菌活性测定:体外最小抑菌浓度(MIC)的测定是评估分子抗菌活性的基本方法,在此我们将以国内耐药性出现频率高的金黄色葡萄球菌Staphylococcus aureus、大肠埃希菌Escherichia coli、粪肠球菌Enterococcus faecalis、铜绿假单胞菌Pseudomonas aeruginosa、肺炎克雷伯菌Klebsiellar pneumonia菌株为检测对象,测定多肽作用于人病原菌的最小抑菌浓度。
具体实验方案:将对数期生长的细菌稀释至5×105CFU/mL,置于96孔板中,每个孔中加入不同浓度梯度的多肽。其中阴性对照无细菌,阳性对照无多肽。孵育前测定起始OD630值,为OD630 起始,孵育16小时后,测定OD630值。样品孵育前后OD值没有变化的最小多肽浓度为MIC。
我们比较了BmKn2、BmKn2-7、BmKn2-7R、BmKn2-7K(FIKKIAKLLKKIF-NH2)与Melittin、Vancomycin和Polymyxin B的抗菌活性,结果列于表5中。体外的MIC实验表明,BmKn2-7K对各种病原菌保持了良好的抗菌活性(MIC:5-10μg/mL),远小于其HC10(100μg/mL)。结合BmKn2-7K的溶血率数据(实施例4)可知,BmKn2-7K在有效杀菌浓度范围内几乎不会引发溶血。
表5.最小抑菌浓度(单位μg/mL)
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
SEQUENCE LISTING
<110> 湖北医药学院
<120> 低溶血抗菌肽BmKn2-7K及其应用
<130>
<160> 8
<170>PatentIn version 3.3
<210> 1
<211> 13
<212> PRT
<213> Artificial
<400> 1
Phe Ile Lys Ala Ile Ala Arg Leu Leu Ser Lys Ile Phe
1 5 10
<210> 2
<211> 13
<212> PRT
<213> Artificial
<400> 2
Phe Ile Gly Arg Ile Ala Arg Leu Leu Ser Lys Ile Phe
1 5 10
<210> 3
<211> 13
<212> PRT
<213> Artificial
<400> 3
Phe Ile Gly Ala Ile Ala Arg Leu Leu Arg Lys Ile Phe
1 5 10
<210> 4
<211> 13
<212> PRT
<213> Artificial
<400> 4
Phe Ile Lys Arg Ile Ala Arg Leu Leu Ser Lys Ile Phe
1 5 10
<210> 5
<211> 13
<212> PRT
<213> Artificial
<400> 5
Phe Ile Lys Ala Ile Ala Arg Leu Leu Arg Lys Ile Phe
1 5 10
<210> 6
<211> 13
<212> PRT
<213> Artificial
<400> 6
Phe Ile Gly Arg Ile Ala Arg Leu Leu Arg Lys Ile Phe
1 5 10
<210> 7
<211> 13
<212> PRT
<213> Artificial
<400> 7
Phe Ile Arg Arg Ile Ala Arg Leu Leu Arg Arg Ile Phe
1 5 10
<210> 8
<211> 13
<212> PRT
<213> Artificial
<400> 8
Phe Ile Lys Lys Ile Ala Lys Leu Leu Lys Lys Ile Phe
1 5 10
Claims (7)
1.一种低溶血抗菌肽BmKn2-7K,其特征在于,所述抗菌肽的氨基酸序列如SEO ID NO.8所示,所述抗菌肽BmKn2-7K羧基端进行酰胺化修饰。
2.一种药物组合物,其特征在于,所述药物组合物包含权利要求1所述低溶血抗菌肽BmKn2-7K。
3.权利要求1所述低溶血抗菌肽BmKn2-7K或权利要求2所述药物组合物在制备抑菌产品中的应用。
4.根据权利要求3所述应用,其特征在于,所述抑菌产品为皮肤外用抑菌剂、食品抑菌剂、清洁抑菌剂。
5.根据权利要求4所述应用,其特征在于,所述皮肤外用抑菌剂为乳剂、霜剂或膏剂。
6.权利要求1所述低溶血抗菌肽BmKn2-7K或权利要求2所述药物组合物在制备抑制铜绿假单胞菌(Pseudomonas aeruginosa)、肺炎克雷伯菌(Klebsiellar pneumonia)、大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、和/或粪肠球菌(Enterococcusfaecalis)生长的产品中的应用。
7.权利要求1所述低溶血抗菌肽BmKn2-7K在制备抗感染性疾病药物中的应用,所述的感染为细菌感染。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910145440.9A CN109824761B (zh) | 2019-02-27 | 2019-02-27 | 低溶血抗菌肽BmKn2-7K及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910145440.9A CN109824761B (zh) | 2019-02-27 | 2019-02-27 | 低溶血抗菌肽BmKn2-7K及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109824761A CN109824761A (zh) | 2019-05-31 |
CN109824761B true CN109824761B (zh) | 2022-05-20 |
Family
ID=66864681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910145440.9A Active CN109824761B (zh) | 2019-02-27 | 2019-02-27 | 低溶血抗菌肽BmKn2-7K及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109824761B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110437308B (zh) * | 2019-08-20 | 2023-05-05 | 倪京满 | 一类对铜绿假单胞菌具有特异活性的含β氨基酸的抗菌肽类似物及其应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10548948B2 (en) * | 2017-03-02 | 2020-02-04 | The United States Of America As Represented By The Secretary Of The Navy | Methods of treating fungal infections |
-
2019
- 2019-02-27 CN CN201910145440.9A patent/CN109824761B/zh active Active
Non-Patent Citations (5)
Title |
---|
《Fine-tuning of alkaline residues on the hydrophilic face provides a non-toxic cationic α-helical antimicrobial peptide against antibiotic-resistant ESKAPE pathogens》;Xudong Luo等;《Frontiers in Microbiology》;20210715;第12卷;第684591篇 * |
《Glycine-replaced derivatives of [Pro(3),DLeu(9)]TL, a temporin L analogue: Evaluation of antimicrobial, cytotoxic and hemolytic activities》;Francesco Merlino等;《European Journal of Medicinal Chemistry》;20170821;第139卷;第750-761页 * |
《Novel design of heptad amphiphiles to enhance cell selectivity, salt resistance, antibiofilm properties and their membrane-disruptive mechanism》;Xiujing Dou等;《Journal of Medicinal Chemistry》;20170303;第60卷(第6期);第2257-2270页 * |
《Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan》;Luz N Irazazabal等;《Biochimica et Biophysica Acta》;20160714;第1858卷(第11期);第2699-2708页 * |
《蝎活性多肽BmKn2及其突变体Kn2-7抗耐药细菌功能与机制研究》;曹路扬;《中国优秀博硕士学位论文全文数据库(博士)(医药卫生科技辑)》;20150815;第2015年卷(第8期);第E057-10篇 * |
Also Published As
Publication number | Publication date |
---|---|
CN109824761A (zh) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fox et al. | Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II | |
Zhu et al. | Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity | |
McPhee et al. | Design of host defence peptides for antimicrobial and immunity enhancing activities | |
AU2013369042B2 (en) | Cyclic cationic peptides with antibmicrobial activity | |
Koh et al. | N-lipidated peptide dimers: effective antibacterial agents against gram-negative pathogens through lipopolysaccharide permeabilization | |
Han et al. | Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides | |
JP4849764B2 (ja) | 抗微生物ペプチドおよびそれらの使用法 | |
Bhattacharjya | NMR structures and interactions of antimicrobial peptides with lipopolysaccharide: connecting structures to functions | |
WO2015161820A1 (zh) | 两亲性合成抗菌肽、其药物组合物及其用途 | |
Wood et al. | Modified cysteine-deleted tachyplesin (CDT) analogs as linear antimicrobial peptides: Influence of chain length, positive charge, and hydrophobicity on antimicrobial and hemolytic activity | |
Ben Hur et al. | Antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa biofilm from cystic fibrosis patients | |
Ajish et al. | A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities | |
Zhang et al. | Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts | |
Lyu et al. | Broad-spectrum hybrid antimicrobial peptides derived from PMAP-23 with potential LPS binding ability | |
Mitra et al. | Antimicrobial peptides: vestiges of past or modern therapeutics? | |
Agadi et al. | Structural insight into the mechanism of action of antimicrobial peptide BMAP-28 (1–18) and its analogue mutBMAP18 | |
Cárdenas-Martínez et al. | Effects of substituting arginine by lysine in bovine lactoferricin derived peptides: pursuing production lower costs, lower hemolysis, and sustained antimicrobial activity | |
Shao et al. | Bio-inspired peptide-conjugated liposomes for enhanced planktonic bacteria killing and biofilm eradication | |
CN109824761B (zh) | 低溶血抗菌肽BmKn2-7K及其应用 | |
Saikia et al. | Antimicrobial peptides from C-terminal amphipathic region of E. coli FtsA | |
WO2014107042A1 (ko) | 헬리코박터 파일로리균의 리보좀 단백질 l1으로부터 유래된 신규한 항생 펩타이드 및 이의 용도 | |
CA2451310C (en) | Antimicrobial peptides | |
AU2002317071A1 (en) | Antimicrobial peptides | |
WO2016184855A1 (en) | New amino acid sequences with microbicidal activity derived from naja atra cardiotoxin 1 (ctx-1) | |
Yang et al. | Rational Design and Antimicrobial Potency Assessment of Abaecin Analogues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |