CN109822550A - 一种复杂曲面机器人高效高精度示教方法 - Google Patents

一种复杂曲面机器人高效高精度示教方法 Download PDF

Info

Publication number
CN109822550A
CN109822550A CN201910130088.1A CN201910130088A CN109822550A CN 109822550 A CN109822550 A CN 109822550A CN 201910130088 A CN201910130088 A CN 201910130088A CN 109822550 A CN109822550 A CN 109822550A
Authority
CN
China
Prior art keywords
teaching
curved surface
kinaesthesia
training data
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910130088.1A
Other languages
English (en)
Other versions
CN109822550B (zh
Inventor
赵欢
葛科迪
丁汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201910130088.1A priority Critical patent/CN109822550B/zh
Publication of CN109822550A publication Critical patent/CN109822550A/zh
Application granted granted Critical
Publication of CN109822550B publication Critical patent/CN109822550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Numerical Control (AREA)

Abstract

本发明属于机器人智能加工技术领域,并具体公开了一种复杂曲面机器人高效高精度示教方法,其包括如下步骤:S1对待示教机器人进行自由牵引以完成一条曲面轨迹的动觉示教,并采集动觉示教数据;S2根据采集的示教数据创建虚拟夹具,利用创建的虚拟夹具为下一条曲面轨迹示教提供辅助,以此完成多条曲面轨迹的示教并获得动觉示教数据;S3根据现有的动觉示教数据构建不完备的曲面流形,并生成虚拟夹具,利用虚拟夹具的辅助完成多条曲面轨迹的示教;S4计算曲面流形误差,并判断曲面流形误差是否在阈值范围内,若是,则结束,若否,则返回步骤S3。本发明具有实用性好,应用简单,示教效率与精度高等优点。

Description

一种复杂曲面机器人高效高精度示教方法
技术领域
本发明属于机器人智能加工技术领域,更具体地,涉及一种复杂曲面 机器人高效高精度示教方法。
背景技术
随着工业水平的不断提高,机器人由于其成本低、柔性好、效率高等 特点,其被广泛应用在如风电叶片、高铁白车身等大型复杂曲面磨抛工作 中。目前,对于大型复杂曲面的机器人加工,往往依赖于机器人离线编程 与示教器编程两种方式。
机器人离线编程精度较高,但其严重依赖于现有模型,泛化能力差, 从成本的角度考虑只适用于零件的大批量加工,同时当机器人所要加工的 零件越来越复杂,离线编程也随之变得越来越难,甚至在某种程度上来说 是不可能实现的。机器人示教编程不依赖现有模型,能够较好地将人工经 验进行转移来处理一些离线编程难以处理的复杂零件,但其整体示教效率 低、精度低,泛化能力差。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种复杂曲面机 器人高效高精度示教方法,其能够通过现有少量示教数据生成整体曲面虚 拟夹具,使示教效率显著提高,并在虚拟夹具辅助示教过程中,可融入人 工经验,以更好地适应示教任务,具有实用性好,应用简单,示教效率与 精度高等优点。
为实现上述目的,本发明提出了一种复杂曲面机器人高效高精度示教 方法,其包括如下步骤:
S1对待示教机器人进行自由牵引以完成一条曲面轨迹的动觉示教,并 采集动觉示教数据;
S2根据采集的示教数据创建虚拟夹具,利用创建的虚拟夹具为下一条 曲面轨迹示教提供辅助,以此完成多条曲面轨迹的示教并获得动觉示教数 据;
S3根据现有的动觉示教数据构建不完备的曲面流形,并生成虚拟夹具, 利用虚拟夹具的辅助完成多条曲面轨迹的示教;
S4计算曲面流形误差,并判断曲面流形误差是否在阈值范围内,若是, 则结束,若否,则返回步骤S3。
作为进一步优选的,优选采用空间阻抗控制的方式实现机器人的自由 牵引。
作为进一步优选的,步骤S2包括如下子步骤:
S21对采集到的动觉示教数据进行稀疏采样得到N个示教数据点,利用 机器人正运动学计算得到示教机器人任务空间内的示教数据点{xi}i=0:N-1
S22对机器人任务空间内的示教数据点{xi}i=0:N-1进行三次样条插值处理 得到三次样条示教轨迹曲线,并根据三次样条示教轨迹曲线计算出时变矩 阵D(t),然后利用时变矩阵D(t)计算瞬时理想运动方向Dr与瞬时禁止运动方 向Dt
S23根据瞬时理想运动方向Dr与瞬时禁止运动方向Dt构建虚拟夹具:
V=k(Dr+ktDt)Pi
其中,V为在添加虚拟夹具时机器人位姿变化量,Pi为在不添加虚拟夹 具时机器人位姿变化量,k为比例系数,kt为虚拟夹具的刚柔性;
S24在虚拟夹具的辅助下对曲面上下一条轨迹进行动觉示教,在示教 过程中根据操作者施加的力信息对虚拟夹具的刚柔性系数kt进行调整,并采 集新的动觉示教数据{x′i}i=0:N-1
S25重复步骤S21-S24多次,获得总的动觉示教数据{xi}i=0:M-1
作为进一步优选的,所述刚柔性系数kt采用下式进行调整:
其中,h为操作者施加在机器人上的力信息,h′为设定的力值,β为比 例系数。
作为进一步优选的,步骤S3包括如下子步骤:
S31利用现有的动觉示教数据与LSML算法构建不完备的曲面流形 H(x);
S32利用曲面流形H(x)的投影特性获得曲面流形上的离散数据点,并根 据离散数据点进行三次样条插值获得三次样条插值示教轨迹曲线,然后构 建虚拟夹具;
S33在虚拟夹具的辅助下对曲面上下一条轨迹进行动觉示教,在示教 过程中根据操作者施加的力信息对虚拟夹具的刚柔性系数kt进行调整,并采 集新的动觉示教数据{x′i}i=0:N-1
S34重复步骤S31-S33多次,获得总的动觉示教数据。
作为进一步优选的,曲面流形误差采用下式计算:
其中,εi,j是曲面流形上的微小变化量,Δi,j是xi方向导数的非中心估计, S为步骤S34获得的总的动觉示教数据点的数量,Ni是示教数据点xi邻近点 的个数。
作为进一步优选的,步骤S4中阈值的取值不大于0.005。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要 具备以下的技术优点:
1.本发明的方法在复杂曲面示教过程中,能够通过现有少量示教数据, 生成整体曲虚拟夹具,使示教效率显著提高。
2.本发明在虚拟夹具辅助示教过程中,根据人的意图对夹具进行实时调 整,在保证示教精度的基础上融入人工经验,可更好地适应示教任务。
3.本发明在面对相似示教任务时,能够对现有虚拟夹具泛化以此来提升 整体示教效率与精度。
附图说明
图1是复杂曲面机器人高效高精度示教系统使用状态示意图;
图2是复杂曲面机器人高效高精度示教方法的流程示意图;
图3是机器人自由牵引的空间阻抗控制架构图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-六自由度机器人 2-六维力传感器 3-末端执行器 4-复杂曲面。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图 及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的 本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可 以相互组合。
如图1所示,本发明实施例提供的一种复杂曲面机器人高效高精度示 教方法,其包括如下步骤:
S1对待示教机器人进行自由牵引以完成一条曲面轨迹的动觉示教,并 采集动觉示教数据;
如图3所示,本发明优选采用空间阻抗控制的方式实现机器人的自由 牵引,空间阻抗控制方式为:
其中,M是惯性矩阵,D是阻尼矩阵,K是刚度矩阵,h是接触力向量, Δxdc是位姿向量,而分别为Δxdc的一阶,二阶导数;
由上式可知,采集安装在机器人末端的六维力传感器的信息h,通过六 维力信息的改变可得到机器人任务空间位姿变化量,由位姿变化量即可驱 动机器人完成相应的运动;
S2根据采集的动觉示教数据创建虚拟夹具,利用创建的虚拟夹具为下 一条曲面轨迹示教提供辅助,以此完成多条曲面轨迹的示教并获得动觉示 教数据集,其包括如下子步骤:
S21由于采集到的示教数据较密集,且为机器人六关节角的角度值,因 此首先对示教数据进行稀疏采样得到N个示教数据点,然后利用机器人正 运动学计算得到机器人任务空间内的动觉示教数据点{xi}i=0:N-1,其是现有技 术,在此不赘述;
S22接着,对机器人任务空间内的动觉示教数据点{xi}i=0:N-1进行三次样 条插值处理得到三次样条示教轨迹曲线(用p(s)表示,s为示教轨迹曲线点 的曲线参数表示),其同样为现有技术,在此不赘述,然后根据三次样条 示教轨迹曲线计算出时变矩阵D(t),并利用时变矩阵D(t)计算瞬时理想运动 方向Dr与瞬时禁止运动方向Dt
具体的,时变矩阵D(t)、瞬时理想运动方向Dr与瞬时禁止运动方向Dt采 用如下公式计算:
其中,s(pa)为示教轨迹曲线点的曲线参数表示,pa为三次样条示教轨迹曲线上的一点;
Dr=D(t)(D(t)′D(t))-1D(t)′
Dt=I-Dr
其中,I为单位矩阵;
S23根据瞬时理想运动方向Dr与瞬时禁止运动方向Dt构建虚拟夹具:
V=k(Dr+ktDt)Pi
其中,V为在添加虚拟夹具时机器人位姿变化量,Pi为在不添加虚拟夹 具时机器人位姿变化量,k为比例系数,根据实际情况设定,一般取5~10, kt为虚拟夹具的刚柔性,通过kt的改变可融入人工经验;
S24在虚拟夹具的辅助下对曲面上下一条轨迹进行动觉示教,也即在下 一条轨迹动觉示教过程中根据V=k(Dr+ktDt)Pi来对机器人进行控制,且在示 教过程中根据操作者施加的力信息对虚拟夹具的刚柔性系数kt进行调整,并 采集新的动觉示教数据{x′i}i=0:N-1,通过刚柔性系数kt的实时调整,融入了人 工经验,使得到的示教数据更符合曲面特性与加工要求;
进一步的,刚柔性系数kt采用下式确定:
其中,h为操作者施加在机器人上的力信息,h′为设定的力值,β为比 例系数,可根据实际情况设定,一般取0.5~1;
S25重复步骤S21-S24多次,获得总的动觉示教数据{xi}i=0:M-1,M为总 的示教点个数,即以步骤S24采集的新的动觉示教数据作为步骤S21中的 示教数据,进行重复循环处理,每处理一次获得一组动觉示教数据,本发 明中优选重复2次,由此共获得三组动觉示教数据,该三组动觉示教数据 构建成总的动觉示教数据;
S3根据现有的动觉示教数据构建不完备的曲面流形,并生成虚拟夹具, 利用虚拟夹具的辅助完成多条曲面轨迹的示教,即在虚拟夹具的辅助下对 多条曲面轨迹进行融入人工经验的动觉示教,以对曲面流形逐步优化,直 至生成完备的曲面流形,其包括如下子步骤:
S31利用现有的动觉示教数据(初始示教时为步骤S25中构建的动觉示 教数据{xi}i=0:M-1)与LSML算法构建不完备的曲面流形H(x)(即用H(x)表征 曲面流形,其为一个函数,x为曲面流形表征函数的参数变量,在本发明中 为示教数据点):
其中,M为训练数据集的样本数,也即总的示教点个数,Ni是预设的 示教数据点xi邻近点的个数,Δi,j是xi方向导数的非中心估计,εi,j是曲面流 形上的微小变化量,λ是权重系数,H(·)为曲面流形表示, xi,xj,xj′为现有的动觉示教数据中不同的数据点,是 Frobenius范数;通过将已知的现有的各动觉示教数据带入上述公式中即可 求出曲面流形函数H(x)中的各参数,以此获得参数已知的曲面流形函数 H(x);
S32利用参数已知的曲面流形H(x)的投影特性获得曲面流形上的离散 数据点,并根据离散数据点进行三次样条插值获得三次样条插值示教轨迹 曲线,然后构建虚拟夹具;
具体而言,利用H(x)的投影特性,指定曲面上的起始点与终点,以步 长α增加,以获得曲面流形上的离散数据点x′:
x'←x'+αH'H'T(x-x')
其中,x为曲面流形上的点,x′是经步长α增加后在曲面流形上的近似 投影点,H'=orth(H(x')),H(x')为将x'作为参数变量带入参数已知的曲面流 形H(x);
根据离散数据点进行三次样条插值获得三次样条插值示教轨迹曲线, 然后根据三次样条示教轨迹曲线利用步骤S22和S23同样的方式构建虚拟 夹具,即根据三次样条示教轨迹曲线计算出时变矩阵,并利用时变矩阵计 算瞬时理想运动方向与瞬时禁止运动方向,根据瞬时理想运动方向与瞬时 禁止运动方向构建虚拟夹具;
S33在虚拟夹具的辅助下对曲面上下一条轨迹进行动觉示教,在示教过 程中根据操作者施加的力信息对虚拟夹具的刚柔性系数kt进行调整,并采集 新的动觉示教数据,通过刚柔性系数kt的实时调整,在虚拟夹具辅助示教过 程中融入了人工经验,使得到的示教数据更加符合曲面特性与加工要求;
S34重复步骤S31-S33多次获得总的动觉示教数据,即以步骤S33采集 的新的动觉示教数据作为步骤S31中的示教数据,进行重复循环处理,每 处理一次获得一组动觉示教数据,本发明中优选重复2次,由此共获得三 组动觉示教数据,该三组动觉示教数据构建成总的动觉示教数据;
S4根据步骤S34构建的总的动觉示教数据(假设示教数据点的总数量 为S)计算曲面流形误差,判断曲面流形误差是否在阈值范围内(即小于等 于阈值),若是,则示教结束,构建了完备的曲面流形,若否,则返回步 骤S3,即以步骤S34构建的总的动觉示教数据作为步骤S31的现有的动觉 示教数据进行进一步示教,直至曲面流形误差在阈值范围内。
具体的,曲面流形误差采用下式计算:
其中,指的是将作为参数变量带入参数已知的曲面流形函数 H(x)中,xi,xj为步骤S34构建的总的动觉示教数据S中不同的 数据点,Ni是预设的示教数据点xi邻近点的个数。
进一步的,阈值的取值不大于0.005,在该阈值范围内,能够保证目前 构建的曲面流形与实际示教曲面几何形状基本一致,能够用该曲面流形对 后续加工与虚拟夹具构建具有指导意义。
本发明示教后构建了完备的曲面流形,根据完备的曲面流形进行相应 的机器人轨迹规划可以完成对复杂曲面的加工,利用完备曲面流形的泛化 特性,也可得到相似任务的虚拟夹具。
示教时,在机器人末端安装六维力传感器与末端执行器,采用动觉示 教的方式,使末端执行器与复杂曲面进行接触拖动,同时记录机器人在示 教过程中六关节角的数据生成虚拟夹具,将生成的虚拟夹具作为下一次示 教的参考,保证了示教精度与效率,同时能够在面对曲面特定情况下引入 人工经验对夹具进行修改;按上述步骤对复杂曲面不同区域示教三次,利 用现有示教数据构建不完备的曲面流形,由此得到的曲面流形来生成虚拟 夹具,利用上述虚拟夹具对复杂曲面进行示教,直至曲面流形完备,利用 曲面流形来对机器人进行轨迹规划,能够对曲面流形进行泛化,不局限在 当前加工零件,实用性好,应用简单,示教效率与精度高。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等 同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种复杂曲面机器人高效高精度示教方法,其特征在于,包括如下步骤:
S1对待示教机器人进行自由牵引以完成一条曲面轨迹的动觉示教,并采集动觉示教数据;
S2根据采集的示教数据创建虚拟夹具,利用创建的虚拟夹具为下一条曲面轨迹示教提供辅助,以此完成多条曲面轨迹的示教并获得动觉示教数据;
S3根据现有的动觉示教数据构建不完备的曲面流形,并生成虚拟夹具,利用虚拟夹具的辅助完成多条曲面轨迹的示教;
S4计算曲面流形误差,并判断曲面流形误差是否在阈值范围内,若是,则结束,若否,则返回步骤S3。
2.如权利要求1所述的复杂曲面机器人高效高精度示教方法,其特征在于,步骤S1中,优选采用空间阻抗控制的方式实现机器人的自由牵引。
3.如权利要求1所述的复杂曲面机器人高效高精度示教方法,其特征在于,步骤S2包括如下子步骤:
S21对采集到的动觉示教数据进行稀疏采样得到N个示教数据点,利用机器人正运动学计算得到示教机器人任务空间内的示教数据点;
S22对机器人任务空间内的示教数据点进行三次样条插值处理得到三次样条示教轨迹曲线,并根据三次样条示教轨迹曲线计算出时变矩阵D(t),然后利用时变矩阵D(t)计算瞬时理想运动方向Dr与瞬时禁止运动方向Dt
S23根据瞬时理想运动方向Dr与瞬时禁止运动方向Dt构建虚拟夹具:
V=k(Dr+ktDt)Pi
其中,V为在添加虚拟夹具时机器人位姿变化量,Pi为在不添加虚拟夹具时机器人位姿变化量,k为比例系数,kt为虚拟夹具的刚柔性;
S24在虚拟夹具的辅助下对曲面上下一条轨迹进行动觉示教,在示教过程中根据操作者施加的力信息对虚拟夹具的刚柔性系数kt进行调整,并采集新的动觉示教数据;
S25重复步骤S21-S24多次,获得总的动觉示教数据。
4.如权利要求1-3任一项所述的复杂曲面机器人高效高精度示教方法,其特征在于,所述刚柔性系数kt采用下式进行调整:
其中,h为操作者施加在机器人上的力信息,h′为设定的力值,β为比例系数。
5.如权利要求1-4任一项所述的复杂曲面机器人高效高精度示教方法,其特征在于,步骤S3包括如下子步骤:
S31利用现有的动觉示教数据与LSML算法构建不完备的曲面流形H(x);
S32利用曲面流形H(x)的投影特性获得曲面流形上的离散数据点,并根据离散数据点进行三次样条插值获得三次样条插值示教轨迹曲线,然后构建虚拟夹具;
S33在虚拟夹具的辅助下对曲面上下一条轨迹进行动觉示教,在示教过程中根据操作者施加的力信息对虚拟夹具的刚柔性系数kt进行调整,并采集新的动觉示教数据;
S34重复步骤S31-S33多次,获得总的动觉示教数据。
6.如权利要求5所述的复杂曲面机器人高效高精度示教方法,其特征在于,曲面流形误差采用下式计算:
其中,εi,j是曲面流形上的微小变化量,Δi,j是xi方向导数的非中心估计,S为步骤S34获得的总的动觉示教数据点的数量,Ni是示教数据点xi邻近点的个数。
7.如权利要求1-6任一项所述的复杂曲面机器人高效高精度示教方法,其特征在于,步骤S4中阈值的取值不大于0.005。
CN201910130088.1A 2019-02-21 2019-02-21 一种复杂曲面机器人高效高精度示教方法 Active CN109822550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910130088.1A CN109822550B (zh) 2019-02-21 2019-02-21 一种复杂曲面机器人高效高精度示教方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910130088.1A CN109822550B (zh) 2019-02-21 2019-02-21 一种复杂曲面机器人高效高精度示教方法

Publications (2)

Publication Number Publication Date
CN109822550A true CN109822550A (zh) 2019-05-31
CN109822550B CN109822550B (zh) 2020-12-08

Family

ID=66864021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910130088.1A Active CN109822550B (zh) 2019-02-21 2019-02-21 一种复杂曲面机器人高效高精度示教方法

Country Status (1)

Country Link
CN (1) CN109822550B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709095A (zh) * 2020-05-27 2020-09-25 华中科技大学 一种面向复杂曲面6d虚拟夹具构造方法
CN111702757A (zh) * 2020-05-27 2020-09-25 华中科技大学 基于操作者意图的控制方法、装置、计算设备及存储介质
CN114170314A (zh) * 2021-12-07 2022-03-11 深圳群宾精密工业有限公司 一种基于智能3d视觉处理3d眼镜工艺轨迹执行方法
CN114347005A (zh) * 2022-03-18 2022-04-15 中国科学技术大学 一种能避障的绳索牵引并联机器人连续重构规划方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705541A (zh) * 2002-10-21 2005-12-07 Fsi国际公司 具有触觉传感器的机器人的教导
DE102007026299A1 (de) * 2007-06-06 2008-12-11 Mrk-Systeme Gmbh Industrieroboter und Verfahren zum Programmieren eines Industrieroboters
CN104972362A (zh) * 2014-04-14 2015-10-14 沈阳远大科技园有限公司 智能力控机器人磨削加工系统和方法
CN106938470A (zh) * 2017-03-22 2017-07-11 华中科技大学 一种机器人力控示教模仿学习的装置及方法
CN107717981A (zh) * 2016-08-12 2018-02-23 财团法人工业技术研究院 机械手臂的控制装置及其教导系统与方法
CN108445834A (zh) * 2018-04-18 2018-08-24 华中科技大学 一种大型复杂构件机器人加工离线轨迹规划方法
CN108692644A (zh) * 2018-03-26 2018-10-23 华中科技大学 一种复杂曲面三坐标测量装置及误差补偿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705541A (zh) * 2002-10-21 2005-12-07 Fsi国际公司 具有触觉传感器的机器人的教导
DE102007026299A1 (de) * 2007-06-06 2008-12-11 Mrk-Systeme Gmbh Industrieroboter und Verfahren zum Programmieren eines Industrieroboters
CN104972362A (zh) * 2014-04-14 2015-10-14 沈阳远大科技园有限公司 智能力控机器人磨削加工系统和方法
CN107717981A (zh) * 2016-08-12 2018-02-23 财团法人工业技术研究院 机械手臂的控制装置及其教导系统与方法
CN106938470A (zh) * 2017-03-22 2017-07-11 华中科技大学 一种机器人力控示教模仿学习的装置及方法
CN108692644A (zh) * 2018-03-26 2018-10-23 华中科技大学 一种复杂曲面三坐标测量装置及误差补偿方法
CN108445834A (zh) * 2018-04-18 2018-08-24 华中科技大学 一种大型复杂构件机器人加工离线轨迹规划方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709095A (zh) * 2020-05-27 2020-09-25 华中科技大学 一种面向复杂曲面6d虚拟夹具构造方法
CN111702757A (zh) * 2020-05-27 2020-09-25 华中科技大学 基于操作者意图的控制方法、装置、计算设备及存储介质
CN111702757B (zh) * 2020-05-27 2021-08-17 华中科技大学 基于操作者意图的控制方法、装置、计算设备及存储介质
CN111709095B (zh) * 2020-05-27 2022-08-16 华中科技大学 一种面向复杂曲面6d虚拟夹具构造方法
CN114170314A (zh) * 2021-12-07 2022-03-11 深圳群宾精密工业有限公司 一种基于智能3d视觉处理3d眼镜工艺轨迹执行方法
CN114347005A (zh) * 2022-03-18 2022-04-15 中国科学技术大学 一种能避障的绳索牵引并联机器人连续重构规划方法

Also Published As

Publication number Publication date
CN109822550B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN109822550A (zh) 一种复杂曲面机器人高效高精度示教方法
CN107685330B (zh) 一种六自由度手腕偏置串联机器人的运动学逆解求解方法
CN106361440B (zh) 一种柔性手术工具系统及其在运动约束下的控制方法
Ajoudani et al. On the role of robot configuration in Cartesian stiffness control
CN109895101A (zh) 一种关节型机械臂逆运动学数值唯一解求取方法
Hannan et al. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots
CN108656117A (zh) 一种多约束条件下最优时间的机械臂空间轨迹优化方法
Dariush et al. Whole body humanoid control from human motion descriptors
TWI704039B (zh) 機械臂奇異點控制方法及系統
CN107253191B (zh) 一种双机械臂系统及其协调控制方法
Suh et al. Tangent space RRT: A randomized planning algorithm on constraint manifolds
CN109108978B (zh) 基于学习泛化机制的三自由度空间机械臂运动规划方法
Hannan et al. Novel kinematics for continuum robots
CN115469576B (zh) 一种基于人-机械臂异构运动空间混合映射的遥操作系统
CN111300408B (zh) 一种结合形似与神似的仿人双臂机器人运动规划控制方法
Ruchanurucks et al. Humanoid robot motion generation with sequential physical constraints
CN111230860B (zh) 机器人控制方法、装置、计算机设备及存储介质
Guilamo et al. Manipulability optimization for trajectory generation
CN108608427A (zh) 机器人力控牵引过程中的避奇异方法及装置
Merino et al. Forward kinematic model for continuum robotic surfaces
Wu et al. Dimension reduced instantaneous inverse kinematics for configuration variable limits of continuum manipulators
Tao et al. Forward kinematics solution of cable robot based on neural network and LM algorithm
Knobloch et al. Distance-aware dynamically weighted roadmaps for motion planning in unknown environments
CN114700949A (zh) 基于体素抓取网络的机械臂灵巧抓取规划方法
Sharma et al. Generalized unified closed form inverse kinematics for mobile manipulators with reusable redundancy parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant