CN109818158B - Broadband SIW back-cavity slot antenna array adopting L-shaped slot units - Google Patents

Broadband SIW back-cavity slot antenna array adopting L-shaped slot units Download PDF

Info

Publication number
CN109818158B
CN109818158B CN201910187943.2A CN201910187943A CN109818158B CN 109818158 B CN109818158 B CN 109818158B CN 201910187943 A CN201910187943 A CN 201910187943A CN 109818158 B CN109818158 B CN 109818158B
Authority
CN
China
Prior art keywords
siw
cavity
antenna array
slot
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910187943.2A
Other languages
Chinese (zh)
Other versions
CN109818158A (en
Inventor
王海明
谢家豪
无奇
余晨
洪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910187943.2A priority Critical patent/CN109818158B/en
Publication of CN109818158A publication Critical patent/CN109818158A/en
Application granted granted Critical
Publication of CN109818158B publication Critical patent/CN109818158B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种采用L型缝隙单元的宽带基片集成波导(Substrate Integrated Waveguide,SIW)背腔缝隙天线阵列,包括并馈式功分网络和若干SIW背腔缝隙天线单元,天线单元主要由SIW矩形谐振腔和两对相对于谐振腔中心旋转对称的L型缝隙对组成,L形缝隙对的两个L型缝隙面对面放置。通过设计金属化通孔和金属化盲孔的位置,各天线单元在介质黏贴层中形成了单侧长边开放的矩形SIW隔离腔,显著降低了黏贴层中泄露的电磁场对天线阵列方向图和增益的影响。本发明实现的天线阵列具有方向图带宽较宽、带内增益平坦、方位面俯仰面均为窄波束、交叉极化电平低的特点。

Figure 201910187943

The invention discloses a broadband substrate integrated waveguide (SIW) cavity-backed slot antenna array using an L-shaped slot unit, comprising a parallel-fed power division network and several SIW cavity-backed slot antenna units. The antenna unit is mainly composed of The SIW rectangular resonator is composed of two pairs of L-shaped slot pairs that are rotationally symmetrical with respect to the center of the resonator cavity, and the two L-shaped slots of the L-shaped slot pair are placed face to face. By designing the positions of metallized through holes and metallized blind holes, each antenna unit forms a rectangular SIW isolation cavity with one long side open in the dielectric adhesive layer, which significantly reduces the electromagnetic field leaked in the adhesive layer to the direction of the antenna array. Figure and gain effects. The antenna array realized by the invention has the characteristics of wide pattern bandwidth, flat in-band gain, narrow beams on both azimuth and elevation planes, and low cross-polarization level.

Figure 201910187943

Description

一种采用L形缝隙单元的宽带SIW背腔缝隙天线阵列A Broadband SIW Cavity-Backed Slot Antenna Array Using L-shaped Slot Elements

技术领域technical field

本发明涉及一种基于基片集成波导(Substrate Integrated Waveguide,SIW)技术,采用新型L形缝隙单元的宽带背腔缝隙天线阵列,属于天线技术领域。The invention relates to a broadband cavity-backed slot antenna array based on a substrate integrated waveguide (Substrate Integrated Waveguide, SIW) technology and adopts a novel L-shaped slot unit, and belongs to the field of antenna technology.

背景技术Background technique

随着人们对行车安全和自动驾驶的需求日益增长,毫米波车载雷达应用前景十分广阔。天线阵列作为毫米波车载雷达系统的关键元件,其性能直接影响着雷达系统的探测距离、探测角度、抗干扰能力和分辨率。With the increasing demand for driving safety and autonomous driving, the application prospect of millimeter-wave vehicle radar is very broad. Antenna array is the key component of millimeter-wave vehicle-mounted radar system, and its performance directly affects the detection distance, detection angle, anti-interference ability and resolution of the radar system.

近年来业界对毫米波车载雷达研究日趋深入,其雷达系统的天线阵列也开始朝着多功能、宽频带、高增益等方向发展。但由于毫米波车载雷达系统对其天线阵列的各项指标较为严格,且受限于加工精度等因素,许多提高天线性能的方法并不实用。因此,毫米波车载雷达对易于平面集成、宽带化、窄波束、交叉极化电平低的天线阵列有着大量需求。In recent years, the industry's research on millimeter-wave vehicle radar has become more and more in-depth, and the antenna array of its radar system has also begun to develop in the direction of multi-function, broadband, and high gain. However, because the millimeter-wave vehicle radar system is relatively strict in various indicators of its antenna array, and is limited by factors such as processing accuracy, many methods to improve antenna performance are not practical. Therefore, millimeter-wave vehicle radar has a large demand for antenna arrays that are easy to plane integration, wideband, narrow beam, and low cross-polarization level.

发明内容SUMMARY OF THE INVENTION

发明目的:针对现有79GHz毫米波车载雷达天线技术中存在的问题和不足,本发明采用基片集成波导技术,提供一种可以覆盖整个76~81GHz毫米波车载雷达频段的宽带天线阵列。该天线阵列具有宽带化、带内增益平坦、交叉极化电平低等优点。Purpose of the invention: Aiming at the problems and deficiencies in the existing 79GHz millimeter-wave vehicle-mounted radar antenna technology, the present invention adopts the substrate integrated waveguide technology to provide a broadband antenna array that can cover the entire 76-81GHz millimeter-wave vehicle-mounted radar frequency band. The antenna array has the advantages of wideband, flat in-band gain, and low cross-polarization level.

技术方案:为实现上述发明目的,本发明采用如下技术方案:Technical scheme: In order to realize the above-mentioned purpose of the invention, the present invention adopts the following technical scheme:

一种采用L形缝隙单元的宽带SIW背腔缝隙天线阵列,包括并馈式功分网络和若干SIW背腔缝隙天线单元;所述SIW背腔缝隙天线单元由上下两层介质基板通过黏贴层粘合而成,包括上层SIW背腔缝隙辐射层和下层SIW馈电层;所述的L形缝隙设在SIW谐振腔所在上层介质基板的上表面,天线单元通过设在下层介质基板的上表面的耦合缝隙馈电;SIW背腔缝隙天线单元设有两对相对于SIW谐振腔中心旋转对称的L形缝隙对,L形缝隙对的两个L型缝隙面对面放置,每对L形缝隙在缝隙附近设有用于改善阻抗匹配的盲孔。A broadband SIW cavity-backed slot antenna array using an L-shaped slot unit, including a parallel-fed power division network and a plurality of SIW cavity-backed slot antenna units; the SIW cavity-backed slot antenna unit is composed of upper and lower dielectric substrates through an adhesive layer. It is formed by bonding, including the upper SIW cavity-backed slot radiation layer and the lower SIW feed layer; the L-shaped slot is arranged on the upper surface of the upper dielectric substrate where the SIW resonant cavity is located, and the antenna unit is arranged on the upper surface of the lower dielectric substrate through the The SIW cavity-backed slot antenna unit is provided with two pairs of L-shaped slot pairs that are rotationally symmetric with respect to the center of the SIW resonant cavity. There are blind vias nearby for improved impedance matching.

在优选的实施方案中,SIW谐振腔工作在TE210模式,SIW谐振腔中心的两侧会得到等幅反向的电场,激励的两对L形缝隙对上的电场等幅同相。In a preferred embodiment, the SIW resonator operates in the TE 210 mode, the two sides of the center of the SIW resonator will get equal-amplitude and opposite electric fields, and the electric fields on the two excited L-shaped slot pairs are equal in magnitude and in phase.

在优选的实施方案中,所述天线阵列设有从顶层铜层贯穿至底层铜层的金属化过孔,所述金属化过孔既构成了部分下层的SIW馈电结构,又在黏贴层中形成了单侧长边开放的矩形SIW隔离腔。In a preferred embodiment, the antenna array is provided with metallized vias penetrating from the top copper layer to the bottom copper layer, and the metallized vias not only constitute part of the SIW feeding structure of the lower layer, but also form part of the SIW feed structure of the lower layer. A rectangular SIW isolation cavity with one long side open is formed in it.

在优选的实施方案中,天线阵列在y方向组阵时将天线x方向上的同一列单元关于阵列中心180°旋转对称复制,其中y方向为L形缝隙长度方向,x方向为L形缝隙宽度方向。In a preferred embodiment, when the antenna array is arrayed in the y-direction, the same column of elements in the x-direction of the antenna is 180° rotationally symmetric about the center of the array, wherein the y-direction is the length direction of the L-shaped slot, and the x-direction is the L-shaped slot width. direction.

在优选的实施方案中,天线阵列为2×4天线阵列,8个SIW背腔缝隙天线单元通过并馈式一分八功分网络为其馈电。In a preferred embodiment, the antenna array is a 2×4 antenna array, and 8 SIW cavity-backed slot antenna units are fed through a parallel-fed one-to-eight power division network.

有益效果:与现有的79GHz毫米波车载雷达天线阵列相比,本发明具有如下优点:Beneficial effects: Compared with the existing 79GHz millimeter wave vehicle radar antenna array, the present invention has the following advantages:

1)采用全并馈方式,使天线阵列能够在75~82GHz的宽频段内具有稳定的方向图特性,且带内增益波动小于1dB,覆盖整个76~81GHz毫米波车载雷达频段。1) The full-parallel feed method is adopted, so that the antenna array can have stable pattern characteristics in the wide frequency band of 75-82GHz, and the in-band gain fluctuation is less than 1dB, covering the entire 76-81GHz millimeter-wave vehicle radar frequency band.

2)针对位于毫米波频段的多层缝隙耦合馈电的阵列天线,通过巧妙设计金属化过孔和盲孔的位置,在介质黏贴层中形成了单侧长边开放的矩形SIW隔离腔,显著降低了黏贴层中泄露的电磁场对天线阵列方向图和增益的影响。2) For the multi-layer slot-coupled feeding array antenna located in the millimeter-wave frequency band, by cleverly designing the positions of metallized vias and blind holes, a rectangular SIW isolation cavity with one long side open on one side is formed in the dielectric adhesive layer. The influence of the electromagnetic field leaked in the adhesive layer on the antenna array pattern and gain is significantly reduced.

3)天线单元的L形缝隙对采用旋转对称的方式放置,组阵时关于阵列中心镜像对称的方式放置,可以这样可以抵消L型缝隙拐角处在交叉极化方向上的电场,获得较低的交叉极化电平。3) The L-shaped slot pair of the antenna unit is placed in a rotationally symmetrical manner, and is placed in a mirror-symmetrical manner about the center of the array when forming an array, which can offset the electric field in the cross-polarization direction at the corner of the L-shaped slot and obtain a lower cross-polarization level.

4)天线阵列为平面结构,易于集成在电路板上。4) The antenna array is a plane structure, which is easy to be integrated on the circuit board.

附图说明Description of drawings

图1为本发明中天线阵列整体结构模型图;Fig. 1 is the overall structure model diagram of the antenna array in the present invention;

图2为本发明中天线阵列侧视图;2 is a side view of an antenna array in the present invention;

图3为本发明中天线阵列上层介质基板模型图;3 is a model diagram of the upper dielectric substrate of the antenna array in the present invention;

图4为本发明中天线阵列黏贴层模型图;4 is a model diagram of an antenna array adhesive layer in the present invention;

图5为本发明中天线阵列下层介质基板模型图;FIG. 5 is a model diagram of the lower dielectric substrate of the antenna array in the present invention;

图1-5中:1-L形缝隙1;2-匹配盲孔;3-SIW谐振腔;4-馈电点;5-金属地;6-SIW转接WR10测试结构;7-金属化通孔;8-金属化盲孔;9-黏贴层;10-上层介质基板;11-下层介质基板11;12-并馈式一分八功分网络;In Figure 1-5: 1-L-shaped slot 1; 2-matching blind hole; 3-SIW resonant cavity; 4-feed point; 5-metal ground; 6-SIW transfer WR10 test structure; 7-metallized through hole; 8-metallized blind hole; 9-adhesive layer; 10-upper dielectric substrate; 11-lower dielectric substrate 11; 12-parallel-fed one-to-eight power division network;

图6为本发明中天线阵列仿真和测试驻波参数结果图;Fig. 6 is the result diagram of antenna array simulation and test standing wave parameter in the present invention;

图7为本发明中天线阵列仿真和测试增益结果图;Fig. 7 is the result diagram of antenna array simulation and test gain in the present invention;

图8为本发明中天线阵列在76GHz处E面仿真和测试方向图;FIG. 8 is an E-plane simulation and test pattern of the antenna array at 76 GHz in the present invention;

图9为本发明中天线阵列在76GHz处H面仿真和测试方向图;Fig. 9 is the H-plane simulation and test pattern of the antenna array at 76GHz in the present invention;

图10为本发明中天线阵列在79GHz处E面仿真和测试方向图;FIG. 10 is an E-plane simulation and test pattern of the antenna array at 79GHz in the present invention;

图11为本发明中天线阵列在79GHz处H面仿真和测试方向图;11 is the H-plane simulation and test pattern of the antenna array at 79GHz in the present invention;

图12为本发明中天线阵列在81GHz处E面仿真和测试方向图;Fig. 12 is the E-plane simulation and test pattern of the antenna array at 81GHz in the present invention;

图13为本发明中天线阵列在81GHz处H面仿真和测试方向图。FIG. 13 is an H-plane simulation and test pattern of the antenna array at 81 GHz in the present invention.

具体实施方式Detailed ways

下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with specific embodiments, the present invention will be further illustrated, and it should be understood that these embodiments are only used to illustrate the present invention and not to limit the scope of the present invention. The modifications all fall within the scope defined by the appended claims of this application.

本发明实施例公开的一种采用L形缝隙单元的宽带基片集成波导背腔缝隙天线阵列,主要包括若干个SIW背腔缝隙天线单元和并馈式功分网络,功分网络末端与SIW转接WR10测试结构相连。SIW背腔缝隙天线单元为双层结构,包括上层SIW背腔缝隙辐射层和下层SIW馈电层;L形缝隙设在SIW谐振腔所在上层介质基板的上表面,天线单元通过设在下层SIW上表面的耦合缝隙馈电,天线可采用印刷电路板(Printed Circuit Board,PCB)工艺加工。具体地,本发明实施例以2×4的天线阵列结构对本发明的详细结构设计及测试结果做具体说明。The embodiment of the present invention discloses a broadband substrate integrated waveguide cavity-backed slot antenna array using L-shaped slot units, which mainly includes several SIW cavity-backed slot antenna units and a parallel-feed power division network. The end of the power division network is connected to the SIW switch. Connect to the WR10 test structure. The SIW cavity-backed slot antenna unit is a double-layer structure, including the upper SIW cavity-backed slot radiating layer and the lower SIW feeding layer; the L-shaped slot is arranged on the upper surface of the upper dielectric substrate where the SIW resonator is located, and the antenna unit is arranged on the lower SIW through the The coupling slot on the surface is fed, and the antenna can be processed by a printed circuit board (Printed Circuit Board, PCB) process. Specifically, in the embodiment of the present invention, the detailed structural design and test results of the present invention are described in detail by using a 2×4 antenna array structure.

如图1所示,SIW背腔缝隙天线阵列在x方向上有4个阵元,y方向上有2个阵元,一共8个阵元,SIW背腔缝隙天线阵列的结构模型主要包括:位于SIW谐振腔3上的L形缝隙1和匹配盲孔2;馈电点4;金属地5;SIW转接WR10测试结构6;金属化通孔7;金属化盲孔8;黏贴层9;上层介质基板10;下层介质基板11;并馈式一分八功分网络12。As shown in Figure 1, the SIW cavity-backed slot antenna array has 4 array elements in the x direction and 2 array elements in the y direction, a total of 8 array elements. The structural model of the SIW cavity-backed slot antenna array mainly includes: L-shaped slot 1 and matching blind hole 2 on SIW resonant cavity 3; feed point 4; metal ground 5; SIW transfer WR10 test structure 6; metallized through hole 7; metallized blind hole 8; adhesive layer 9; The upper layer dielectric substrate 10 ; the lower layer dielectric substrate 11 ;

SIW背腔缝隙天线单元由两层厚度为h1=h3=0.508mm的Rogers RO3003板材组成,上下两层介质基版通过黏贴层Rogers 4450B来粘合在一起,其厚度为h2=0.09mm。天线单元的下层介质基板11为馈电层,通过一个开在其上表面铜层的横缝来为上层天线的辐射结构馈电。上层介质基板10为SIW背腔缝隙辐射层,SIW谐振腔3的左半部分是一对面对面放置的L形缝隙1,将这对L形缝隙相对于SIW谐振腔3的中心旋转对称复制,即得到了两对旋转对称的L形缝隙对。为了能同时给这两对L形缝隙对馈电,合理优化SIW谐振腔3的长度和宽度,使其工作在TE210模式,这样在SIW腔3中心的左右两侧会得到等幅反向的电场,激励的两对L形缝隙对上的电场等幅同相,形成边射方向图。The SIW cavity-backed slot antenna unit is composed of two layers of Rogers RO3003 sheets with a thickness of h 1 =h 3 =0.508mm, and the upper and lower dielectric substrates are bonded together by an adhesive layer of Rogers 4450B, the thickness of which is h 2 =0.09 mm. The lower dielectric substrate 11 of the antenna unit is a feeding layer, which feeds the radiating structure of the upper antenna through a transverse slot opened on the upper surface of the copper layer. The upper dielectric substrate 10 is the SIW cavity-backed slot radiation layer, and the left half of the SIW resonator 3 is a pair of L-shaped slots 1 placed face to face. Two pairs of rotationally symmetric L-shaped slot pairs were obtained. In order to feed the two L-shaped slot pairs at the same time, the length and width of the SIW resonator 3 should be reasonably optimized to make it work in the TE 210 mode, so that the left and right sides of the center of the SIW cavity 3 will get equal amplitude and opposite Electric field, the electric fields on the two excited L-shaped slit pairs are equal in amplitude and in phase, forming an edge-emitting pattern.

通过优化匹配盲孔2的位置参数Xm和Ym,可以改善天线单元的阻抗匹配,同时保证四个L形缝隙同相激励。同时,每个横缝的一端都引入了一小段纵缝,通过调节纵缝的长度t,可以显著改善天线单元的阻抗匹配。By optimizing and matching the position parameters X m and Y m of the blind hole 2 , the impedance matching of the antenna unit can be improved, and at the same time, the in-phase excitation of the four L-shaped slots can be ensured. At the same time, a small longitudinal slot is introduced at one end of each transverse slot. By adjusting the length t of the longitudinal slot, the impedance matching of the antenna unit can be significantly improved.

图3~图5为天线阵列的各层结构模型示意图,其中,L形缝隙1的长度为Ls1,宽度为Ws1;SIW谐振腔3的长度为Lc,宽度为Wc;金属化通孔7和金属化盲孔8的半径为d,孔间间距为p;上层介质基板10的长度为Lup,宽度为Wup;天线单元之间x方向的间距为Dex,y方向的间距为Dey;黏贴层9中金属化通孔7形成的SIW隔离腔长度为Lisc;耦合缝隙的长度为Ls2,宽度为Ws2,与短路端的距离为Ds2;SIW直角拐角匹配孔与直角处在x和y方向上距离分别为Dvx和Dvy;Dm1和Dm2为匹配孔与SIW侧壁的距离;d2为中心匹配金属化盲孔的直径;Ld和Wd分别为下层介质基板11的长度和宽度。3 to 5 are schematic diagrams of the structure model of each layer of the antenna array, wherein the length of the L-shaped slot 1 is L s1 and the width is W s1 ; the length of the SIW resonant cavity 3 is L c and the width is W c ; The radius of the hole 7 and the metallized blind hole 8 is d, and the distance between the holes is p; the length of the upper dielectric substrate 10 is L up and the width is W up ; the distance between the antenna elements in the x direction is D ex , and the distance in the y direction is D ex . is Dey; the length of the SIW isolation cavity formed by the metallized through hole 7 in the adhesive layer 9 is Lisc ; the length of the coupling slot is L s2 , the width is W s2 , and the distance from the short-circuit end is D s2 ; SIW right-angle corner matching hole The distances from the right angle in the x and y directions are D vx and D vy respectively; D m1 and D m2 are the distances between the matching hole and the sidewall of the SIW; d 2 is the diameter of the center matching metallized blind hole; L d and W d are the length and width of the underlying dielectric substrate 11, respectively.

通过将金属化通孔7打在用于构成SIW谐振腔3的金属化盲孔8附近,形成两个“王”字形的金属化通孔阵列,可以显著减小从黏贴层9泄露的电磁能量对天线阵列方向图的影响。由图3~图5可以看出,金属化通孔7在不破坏上下层SIW结构的情况下,从顶层铜层贯穿至底层铜层,既构成了下层介质基板11的并馈式一分八功分网络12,又在黏贴层9中形成了8个单侧长边开放的矩形SIW隔离腔,由于等效电壁的存在,从阵列中一个单元的耦合缝隙通过黏贴层9泄露的能量会与周边单元的耦合缝隙完全隔离开来,且这些泄露的电磁能量分别朝着相反的方向传输,这样泄露的电磁能量在y方向上相互抵消,不会影响天线阵列的增益和远场方向图特性。另外,天线阵列在y方向组阵时将天线x方向上的一列单元关于阵列中心再次180°旋转对称复制,这样可以抵消L型缝隙拐角处在y方向上的电场,减小交叉极化电平。By punching the metallized through holes 7 near the metallized blind holes 8 used to form the SIW resonant cavity 3 to form two “king”-shaped metallized through-hole arrays, the electromagnetic leakage from the adhesive layer 9 can be significantly reduced The effect of energy on the pattern of an antenna array. It can be seen from FIG. 3 to FIG. 5 that the metallized through hole 7 penetrates from the top copper layer to the bottom copper layer without destroying the SIW structure of the upper and lower layers, which not only constitutes the parallel-fed type of the lower dielectric substrate 11 1/8. The power division network 12 also forms eight rectangular SIW isolation cavities with one long side open in the adhesive layer 9. Due to the existence of the equivalent electric wall, the coupling gap of a unit in the array leaks through the adhesive layer 9. The energy will be completely isolated from the coupling gap of the surrounding units, and the leaked electromagnetic energy will be transmitted in opposite directions, so that the leaked electromagnetic energy will cancel each other in the y direction and will not affect the gain and far-field direction of the antenna array. graph properties. In addition, when the antenna array is arrayed in the y-direction, a column of elements in the x-direction of the antenna is replicated 180° rotationally symmetrically about the center of the array, which can cancel the electric field in the y-direction at the corner of the L-shaped slot and reduce the cross-polarization level. .

采用电磁仿真软件对天线尺寸进行优化,得到天线尺寸参数如表1~表4所示。各参数代表的意义已在上文说明。The antenna size is optimized by electromagnetic simulation software, and the antenna size parameters are shown in Tables 1 to 4. The meaning of each parameter has been explained above.

表1图2中模型对应的天线参数值Antenna parameter values corresponding to the model in Table 1 and Fig. 2

参数parameter 数值(mm)Value (mm) 参数parameter 数值(mm)Value (mm) h<sub>1</sub>h<sub>1</sub> 0.5080.508 h<sub>3</sub>h<sub>3</sub> 0.5080.508 h<sub>2</sub>h<sub>2</sub> 0.090.09

表2图3中模型对应的天线参数值Antenna parameter values corresponding to the model in Table 2 and Fig. 3

参数parameter 数值(mm)Value (mm) 参数parameter 数值(mm)Value (mm) L<sub>s1</sub>L<sub>s1</sub> 1.651.65 D<sub>ex</sub>D<sub>ex</sub> 5.55.5 W<sub>s1</sub>W<sub>s1</sub> 0.250.25 D<sub>ey</sub>D<sub>ey</sub> 3.153.15 tt 0.2450.245 dd 0.30.3 X<sub>m</sub>X<sub>m</sub> 0.170.17 pp 0.50.5 Y<sub>m</sub>Y<sub>m</sub> 0.340.34 L<sub>up</sub>L<sub>up</sub> 24.1824.18 L<sub>c</sub>L<sub>c</sub> 4.594.59 W<sub>up</sub>W<sub>up</sub> 8.258.25 W<sub>c</sub>W<sub>c</sub> 2.152.15

表3图4中模型对应的天线参数值Table 3 Antenna parameter values corresponding to the model in Fig. 4

参数parameter 数值(mm)Value (mm) 参数parameter 数值(mm)Value (mm) L<sub>up</sub>L<sub>up</sub> 24.1824.18 L<sub>isc</sub>L<sub>isc</sub> 5.55.5 W<sub>up</sub>W<sub>up</sub> 8.258.25

表4图5模型中对应的天线参数值The corresponding antenna parameter values in the model shown in Table 4 and Fig. 5

参数parameter 数值(mm)Value (mm) 参数parameter 数值(mm)Value (mm) L<sub>s2</sub>L<sub>s2</sub> 1.181.18 D<sub>vy</sub>D<sub>vy</sub> 0.60.6 W<sub>s2</sub>W<sub>s2</sub> 0.280.28 D<sub>m2</sub>D<sub>m2</sub> 0.530.53 D<sub>s2</sub>D<sub>s2</sub> 1.331.33 d<sub>2</sub>d<sub>2</sub> 0.40.4 D<sub>m1</sub>D<sub>m1</sub> 0.650.65 L<sub>d</sub>L<sub>d</sub> 48.7748.77 D<sub>vx</sub>D<sub>vx</sub> 0.60.6 W<sub>d</sub>W<sub>d</sub> 4040

测试结果如图6至图13所示。图6为本发明中天线阵列的仿真和测试驻波参数;图7为本发明中天线阵列仿真和测试增益;图8为本发明中天线阵列在76GHz处E面仿真和测试方向图;图9为本发明中天线阵列在76GHz处H面仿真和测试方向图;图10为本发明中天线阵列在79GHz处E面仿真和测试方向图;图11为本发明中天线阵列在79GHz处H面仿真和测试方向图;图12为本发明中天线阵列在81GHz处E面仿真和测试方向图;图13为本发明中天线阵列在81GHz处H面仿真和测试方向图。由实测结果图可见,设计的宽带SIW背腔缝隙天线阵列实现了75~82GHz的-10dB阻抗带宽,在中心频率79GHz处实现了16dBi的增益和-30.3dB的交叉极化电平。The test results are shown in Figure 6 to Figure 13. Fig. 6 is the simulation and test standing wave parameters of the antenna array in the present invention; Fig. 7 is the simulation and test gain of the antenna array in the present invention; Fig. 8 is the E-plane simulation and test pattern of the antenna array in the present invention at 76GHz; Fig. 9 It is the H-plane simulation and test pattern of the antenna array in the present invention at 76GHz; Figure 10 is the E-plane simulation and test pattern of the antenna array in the present invention at 79GHz; Figure 11 is the H-plane simulation of the antenna array in the present invention at 79GHz and test pattern; Figure 12 is an E-plane simulation and test pattern of the antenna array at 81GHz in the present invention; Figure 13 is an H-plane simulation and test pattern of the antenna array at 81GHz in the present invention. It can be seen from the measured results that the designed broadband SIW cavity-backed slot antenna array achieves a -10dB impedance bandwidth of 75-82GHz, and achieves a gain of 16dBi and a cross-polarization level of -30.3dB at the center frequency of 79GHz.

Claims (4)

1. 一种采用L形缝隙单元的宽带SIW背腔缝隙天线阵列,其特征在于:包括并馈式功分网络和若干SIW背腔缝隙天线单元;所述SIW背腔缝隙天线单元由上下两层介质基板通过黏贴层粘合而成,包括上层SIW背腔缝隙辐射层和下层SIW馈电层;所述的L形缝隙设在SIW谐振腔所在上层介质基板的上表面,天线单元通过设在下层介质基板的上表面的耦合缝隙馈电;SIW背腔缝隙天线单元设有两对相对于SIW谐振腔中心旋转对称的L形缝隙对,L形缝隙对的两个L型缝隙面对面放置,每对L形缝隙在缝隙附近设有用于改善阻抗匹配的盲孔;所述天线阵列设有从顶层铜层贯穿至底层铜层的金属化过孔,所述金属化过孔既构成了部分下层的SIW馈电结构,又在黏贴层中形成了单侧长边开放的矩形SIW 隔离腔。1. a broadband SIW cavity-backed slot antenna array that adopts L-shaped slot unit, it is characterized in that: comprise and feed type power division network and some SIW cavity-backed slot antenna units; Described SIW cavity-backed slot antenna unit is composed of upper and lower layers. The dielectric substrate is formed by bonding the adhesive layer, including the upper SIW cavity back cavity slot radiation layer and the lower SIW feeding layer; the L-shaped slot is set on the upper surface of the upper dielectric substrate where the SIW resonant cavity is located, and the antenna unit is arranged on the The coupling slot on the upper surface of the lower dielectric substrate is fed; the SIW cavity-backed slot antenna unit is provided with two pairs of L-shaped slot pairs that are rotationally symmetrical relative to the center of the SIW resonant cavity, and the two L-shaped slot pairs of the L-shaped slot pair are placed face to face, each For the L-shaped slot, there are blind holes near the slot for improving impedance matching; the antenna array is provided with metallized vias penetrating from the top copper layer to the bottom copper layer, and the metallized vias both constitute part of the lower layer. In the SIW feeding structure, a rectangular SIW isolation cavity with one long side open on one side is formed in the adhesive layer. 2.根据权利要求1所述的采用L形缝隙单元的宽带SIW背腔缝隙天线阵列,其特征在于:SIW谐振腔工作在TE210模式,SIW谐振腔中心的两侧会得到等幅反向的电场,激励的两对L形缝隙对上的电场等幅同相。2. The broadband SIW cavity-backed slot antenna array using L-shaped slot unit according to claim 1, it is characterized in that: SIW resonator works in TE 210 mode, and both sides of the center of SIW resonator can obtain equal-amplitude opposite Electric field, the electric field on the excited two pairs of L-shaped slits is equal in magnitude and in phase. 3.根据权利要求1所述的采用L形缝隙单元的宽带SIW背腔缝隙天线阵列,其特征在于:天线阵列在y方向组阵时将天线x方向上的同一列单元关于阵列中心180°旋转对称复制,其中y方向为L形缝隙长度方向,x方向为L形缝隙宽度方向。3. The broadband SIW cavity-backed slot antenna array using L-shaped slot unit according to claim 1, it is characterized in that: when the antenna array is arrayed in the y direction, the same row unit in the x direction of the antenna is rotated about the center of the array by 180° Symmetric replication, where the y direction is the length direction of the L-shaped slit, and the x direction is the width direction of the L-shaped slit. 4.根据权利要求1所述的采用L形缝隙单元的宽带SIW背腔缝隙天线阵列,其特征在于:天线阵列为2×4天线阵列,8个SIW背腔缝隙天线单元通过并馈式一分八功分网络为其馈电。4. The broadband SIW cavity-backed slot antenna array adopting L-shaped slot unit according to claim 1, is characterized in that: the antenna array is a 2×4 antenna array, and 8 SIW cavity-backed slot antenna units are divided by parallel feeding It is fed by an octagonal network.
CN201910187943.2A 2019-03-13 2019-03-13 Broadband SIW back-cavity slot antenna array adopting L-shaped slot units Active CN109818158B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910187943.2A CN109818158B (en) 2019-03-13 2019-03-13 Broadband SIW back-cavity slot antenna array adopting L-shaped slot units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910187943.2A CN109818158B (en) 2019-03-13 2019-03-13 Broadband SIW back-cavity slot antenna array adopting L-shaped slot units

Publications (2)

Publication Number Publication Date
CN109818158A CN109818158A (en) 2019-05-28
CN109818158B true CN109818158B (en) 2020-09-11

Family

ID=66608845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910187943.2A Active CN109818158B (en) 2019-03-13 2019-03-13 Broadband SIW back-cavity slot antenna array adopting L-shaped slot units

Country Status (1)

Country Link
CN (1) CN109818158B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429375A (en) * 2019-07-05 2019-11-08 惠州市德赛西威智能交通技术研究院有限公司 A kind of broad-band chip integrated waveguide double-slit antenna
CN110649388B (en) 2019-10-10 2021-04-13 东南大学 Low-loss feed network and high-efficiency antenna equipment
CN112886253B (en) * 2021-02-07 2021-11-30 北京星英联微波科技有限责任公司 Compact 5G millimeter wave dual-polarized horn antenna
CN113922073B (en) * 2021-09-30 2022-09-23 杭州电子科技大学 A compact high-gain single-fed millimeter-wave cavity-backed patch filter antenna
CN114204285B (en) * 2021-12-21 2025-06-27 中国人民解放军陆军工程大学 A millimeter wave array antenna with high gain and low sidelobe level characteristics
EP4304010A1 (en) * 2022-07-07 2024-01-10 Aptiv Technologies Limited Radar system with adhesive layer for isolation of vertical feed lines
CN115621715B (en) * 2022-10-27 2025-06-27 上海交通大学 Stacked resonant antenna array structure with slow wave effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023551A1 (en) * 2007-08-10 2009-02-19 Arizona Board Of Regents And On Behalf Of Arizona State University Hybrid integrated mems reconfigurable antenna array (himra)
EP2258022A1 (en) * 2008-03-18 2010-12-08 Cheng, Shi Substrate integrated waveguide
CN203326117U (en) * 2013-06-27 2013-12-04 中国人民解放军理工大学 Compact-structure 16-element broadband substrate integration waveguide back chamber antenna array
CN105186139A (en) * 2015-09-30 2015-12-23 南京理工大学 Two-dimensional wave beam scanning antenna array based on SIW (Substrate Integrated Waveguide)
CN107732445A (en) * 2017-09-25 2018-02-23 华南理工大学 A kind of millimeter wave circular polarised array antenna and its radiant body
CN108987912A (en) * 2018-06-13 2018-12-11 东南大学 A kind of broadband planar substrate integrated waveguide back cavity slot antenna that five die workers makees

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242029A (en) * 2008-02-27 2008-08-13 东南大学 Substrate Integrated Waveguide Resonant 45-degree Linearly Polarized Antenna
US8648676B2 (en) * 2011-05-06 2014-02-11 The Royal Institution For The Advancement Of Learning/Mcgill University Tunable substrate integrated waveguide components
CN207587968U (en) * 2017-12-21 2018-07-06 福州大学 A kind of inverted L-shaped minor matters loading broad-band circular polarisation slot antenna
CN108550981A (en) * 2018-04-03 2018-09-18 北京理工大学 Work in TM210The W-waveband dual polarization slot antenna and feeding network of mode of resonance
CN208444942U (en) * 2018-06-29 2019-01-29 深圳市天网物联科技有限公司 A kind of SIW dual-band antenna with high-isolation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023551A1 (en) * 2007-08-10 2009-02-19 Arizona Board Of Regents And On Behalf Of Arizona State University Hybrid integrated mems reconfigurable antenna array (himra)
EP2258022A1 (en) * 2008-03-18 2010-12-08 Cheng, Shi Substrate integrated waveguide
CN203326117U (en) * 2013-06-27 2013-12-04 中国人民解放军理工大学 Compact-structure 16-element broadband substrate integration waveguide back chamber antenna array
CN105186139A (en) * 2015-09-30 2015-12-23 南京理工大学 Two-dimensional wave beam scanning antenna array based on SIW (Substrate Integrated Waveguide)
CN107732445A (en) * 2017-09-25 2018-02-23 华南理工大学 A kind of millimeter wave circular polarised array antenna and its radiant body
CN108987912A (en) * 2018-06-13 2018-12-11 东南大学 A kind of broadband planar substrate integrated waveguide back cavity slot antenna that five die workers makees

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Ka-Band Wideband SIW Cavity-Backed Slot;Guopeng Yang;《 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)》;20190207;全文 *
High-Gain SIW Cavity-Backed Array Antenna With;Dong-Fang Guan;《IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS》;20150415;全文 *

Also Published As

Publication number Publication date
CN109818158A (en) 2019-05-28

Similar Documents

Publication Publication Date Title
CN109818158B (en) Broadband SIW back-cavity slot antenna array adopting L-shaped slot units
CN108987911B (en) A SIW-based millimeter-wave beamforming microstrip array antenna and design method
WO2019213878A1 (en) Millimeter wave antenna array unit, array antenna, and communication product
CN102544724B (en) Dual-polarized single pulse broadband microstrip antenna device
CN109616751B (en) A low-profile broadband dielectric resonator antenna
CN107134653A (en) Plane compact type slot antenna array based on substrate integration wave-guide resonator
CN111799549A (en) Broadband Metasurface Antenna Based on Differential Dielectric Resonator Feed
CN101183742B (en) Rectangle substrate integrated waveguide back cavity linear polarization antenna
CN105958197A (en) Triangle substrate-integrated waveguide resonator-based planar slot antenna
CN113328266B (en) A substrate-integrated waveguide antenna array
CN109728429B (en) A Differentially-Fed Dual-Polarized Filter Antenna with Double Frequency Harmonic Suppression
CN103474780A (en) Substrate integrated waveguide cavity slot antenna
Guo et al. A compact wideband millimeter-wave substrate-integrated double-line slot array antenna
CN110380233A (en) A kind of low section Scanning Phased Array Antenna with Broadband
CN114583457A (en) Four-patch broadband microstrip antenna unit based on coupling feed and antenna array
CN111755825A (en) A Wide Bandwidth Angle Scanning Phased Array Antenna Based on Stacked Patch Matching Layers
CN116435763A (en) Millimeter wave super-surface radar receiving antenna, transmitting antenna and receiving and transmitting integrated antenna
CN108879085A (en) A kind of low-cross polarization micro-strip paster antenna
CN109888485B (en) Compact low-profile multi-beam microstrip antenna
CN108736153B (en) Three-frequency low-profile patch antenna
CN113690595A (en) Wide-beam antenna unit and phased array
CN207587968U (en) A kind of inverted L-shaped minor matters loading broad-band circular polarisation slot antenna
CN114498011B (en) High-performance microstrip array antenna
CN109273832B (en) U-shaped monopole antenna placed back to back
CN103531914A (en) High-order-mode resonant slot antenna on basis of hexagonal substrate integrated waveguide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant