CN109816049A - 一种基于深度学习的装配监测方法、设备及可读存储介质 - Google Patents
一种基于深度学习的装配监测方法、设备及可读存储介质 Download PDFInfo
- Publication number
- CN109816049A CN109816049A CN201910131395.1A CN201910131395A CN109816049A CN 109816049 A CN109816049 A CN 109816049A CN 201910131395 A CN201910131395 A CN 201910131395A CN 109816049 A CN109816049 A CN 109816049A
- Authority
- CN
- China
- Prior art keywords
- assembly
- image
- pixel
- depth
- physics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 52
- 238000013135 deep learning Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000003860 storage Methods 0.000 title claims description 8
- 239000003086 colorant Substances 0.000 claims abstract description 16
- 238000009434 installation Methods 0.000 claims description 30
- 229910010888 LiIn Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 abstract description 6
- 238000009877 rendering Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940098006 multigen Drugs 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/255—Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
- G06V20/653—Three-dimensional objects by matching three-dimensional models, e.g. conformal mapping of Riemann surfaces
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/004—Annotating, labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/20—Indexing scheme for editing of 3D models
- G06T2219/2008—Assembling, disassembling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/20—Indexing scheme for editing of 3D models
- G06T2219/2012—Colour editing, changing, or manipulating; Use of colour codes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/12—Acquisition of 3D measurements of objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Data Mining & Analysis (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910131395.1A CN109816049B (zh) | 2019-02-22 | 2019-02-22 | 一种基于深度学习的装配监测方法、设备及可读存储介质 |
US16/739,115 US10964025B2 (en) | 2019-02-22 | 2020-01-10 | Assembly monitoring method and device based on deep learning, and readable storage medium |
NL2024682A NL2024682B1 (en) | 2019-02-22 | 2020-01-16 | Assembly monitoring method and device based on deep learning, and readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910131395.1A CN109816049B (zh) | 2019-02-22 | 2019-02-22 | 一种基于深度学习的装配监测方法、设备及可读存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109816049A true CN109816049A (zh) | 2019-05-28 |
CN109816049B CN109816049B (zh) | 2020-09-18 |
Family
ID=66607233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910131395.1A Active CN109816049B (zh) | 2019-02-22 | 2019-02-22 | 一种基于深度学习的装配监测方法、设备及可读存储介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10964025B2 (zh) |
CN (1) | CN109816049B (zh) |
NL (1) | NL2024682B1 (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110543892A (zh) * | 2019-08-05 | 2019-12-06 | 青岛理工大学 | 一种基于多层随机森林的零部件识别方法 |
CN110666793A (zh) * | 2019-09-11 | 2020-01-10 | 大连理工大学 | 基于深度强化学习实现机器人方形零件装配的方法 |
CN110738164A (zh) * | 2019-10-12 | 2020-01-31 | 北京猎户星空科技有限公司 | 零件异常检测方法、模型训练方法及装置 |
CN112288750A (zh) * | 2020-11-20 | 2021-01-29 | 青岛理工大学 | 一种基于深度学习网络的机械装配体图像分割方法和设备 |
CN112416368A (zh) * | 2020-11-25 | 2021-02-26 | 中国科学技术大学先进技术研究院 | 缓存部署与任务调度方法、终端和计算机可读存储介质 |
CN112965372A (zh) * | 2021-02-01 | 2021-06-15 | 中国科学院自动化研究所 | 基于强化学习的微零件精密装配方法、装置和系统 |
CN113269729A (zh) * | 2021-05-10 | 2021-08-17 | 青岛理工大学 | 一种基于深度图像对比的装配体多视角检测方法和系统 |
CN113269786A (zh) * | 2021-05-19 | 2021-08-17 | 青岛理工大学 | 基于深度学习和引导滤波的装配体图像分割方法及设备 |
CN113283478A (zh) * | 2021-05-10 | 2021-08-20 | 青岛理工大学 | 一种基于特征匹配的装配体多视角变化检测方法及设备 |
WO2021169036A1 (zh) * | 2020-02-25 | 2021-09-02 | 青岛理工大学 | 基于多粒度并联cnn模型的肌电信号-扭矩匹配方法 |
CN114116366A (zh) * | 2020-08-26 | 2022-03-01 | 宸展光电(厦门)股份有限公司 | 一种检测存储器安装状态的方法、装置及系统 |
CN114782778A (zh) * | 2022-04-25 | 2022-07-22 | 广东工业大学 | 一种基于机器视觉技术的装配状态监控方法及系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11107236B2 (en) * | 2019-04-22 | 2021-08-31 | Dag Michael Peter Hansson | Projected augmented reality interface with pose tracking for directing manual processes |
US20230171935A1 (en) * | 2021-11-29 | 2023-06-01 | Hewlett Packard Enterprise Development Lp | Identifications of deviations relating to assemblies of components |
US11715300B1 (en) * | 2022-01-28 | 2023-08-01 | Robert Bosch Gmbh | Systems and methods for providing product assembly step recognition using augmented reality |
CN118397435B (zh) * | 2024-06-26 | 2024-10-01 | 之江实验室 | 基于图像识别模型的任务执行方法、装置、介质及设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106897995A (zh) * | 2017-02-04 | 2017-06-27 | 同济大学 | 一种面向机械装配过程的零部件自动识别方法 |
CN108491776A (zh) * | 2018-03-12 | 2018-09-04 | 青岛理工大学 | 基于像素分类的装配体零件识别方法、装置及监测系统 |
CN108602191A (zh) * | 2016-03-14 | 2018-09-28 | 欧姆龙株式会社 | 动作信息生成装置 |
CN109117822A (zh) * | 2018-08-31 | 2019-01-01 | 贵州大学 | 一种基于深度学习的零件实例分割识别方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9483584B2 (en) * | 2012-01-19 | 2016-11-01 | Oracle International Corporation | Collaboration within a visualization application |
WO2014006832A1 (ja) * | 2012-07-02 | 2014-01-09 | パナソニック株式会社 | サイズ測定装置及びサイズ測定方法 |
US10824310B2 (en) * | 2012-12-20 | 2020-11-03 | Sri International | Augmented reality virtual personal assistant for external representation |
US9292180B2 (en) * | 2013-02-28 | 2016-03-22 | The Boeing Company | Locator system for three-dimensional visualization |
JP6344890B2 (ja) * | 2013-05-22 | 2018-06-20 | 川崎重工業株式会社 | 部品組立作業支援システムおよび部品組立方法 |
US9965897B2 (en) * | 2013-07-08 | 2018-05-08 | OPS Solutions, LLC | Eyewear operational guide system and method |
US9305216B1 (en) * | 2014-12-15 | 2016-04-05 | Amazon Technologies, Inc. | Context-based detection and classification of actions |
EP3414743B1 (en) * | 2016-03-14 | 2022-03-09 | Siemens Mobility GmbH | Method and system for efficiently mining dataset essentials with bootstrapping strategy in 6dof pose estimate of 3d objects |
-
2019
- 2019-02-22 CN CN201910131395.1A patent/CN109816049B/zh active Active
-
2020
- 2020-01-10 US US16/739,115 patent/US10964025B2/en active Active
- 2020-01-16 NL NL2024682A patent/NL2024682B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108602191A (zh) * | 2016-03-14 | 2018-09-28 | 欧姆龙株式会社 | 动作信息生成装置 |
CN106897995A (zh) * | 2017-02-04 | 2017-06-27 | 同济大学 | 一种面向机械装配过程的零部件自动识别方法 |
CN108491776A (zh) * | 2018-03-12 | 2018-09-04 | 青岛理工大学 | 基于像素分类的装配体零件识别方法、装置及监测系统 |
CN109117822A (zh) * | 2018-08-31 | 2019-01-01 | 贵州大学 | 一种基于深度学习的零件实例分割识别方法 |
Non-Patent Citations (5)
Title |
---|
DAVID FRANK ET AL.: "Fully Convolutional Neural Network for Body Part Segmentation", 《ICLR 2016》 * |
MINGYUAN JIU ET AL.: "Human body part estimation from depth images via spatially-constrained deep learning", 《PATTERN RECOGNITION LETTERS》 * |
刘建磊 等: "结合概率密度函数和主动轮廓模型的磁共振图像分割", 《光学精密工程》 * |
赵耀霞 等: "基于卷积神经网络的复杂构件内部零件装配正确性识别", 《电子学报》 * |
钟岳昕: "机械产品装配过程在制品跟踪及控制策略研究", 《中国学位论文全文数据库》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021022970A1 (zh) * | 2019-08-05 | 2021-02-11 | 青岛理工大学 | 一种基于多层随机森林的零部件识别方法及系统 |
CN110543892B (zh) * | 2019-08-05 | 2023-08-25 | 青岛理工大学 | 一种基于多层随机森林的零部件识别方法 |
CN110543892A (zh) * | 2019-08-05 | 2019-12-06 | 青岛理工大学 | 一种基于多层随机森林的零部件识别方法 |
CN110666793A (zh) * | 2019-09-11 | 2020-01-10 | 大连理工大学 | 基于深度强化学习实现机器人方形零件装配的方法 |
CN110738164A (zh) * | 2019-10-12 | 2020-01-31 | 北京猎户星空科技有限公司 | 零件异常检测方法、模型训练方法及装置 |
CN110738164B (zh) * | 2019-10-12 | 2022-08-12 | 北京猎户星空科技有限公司 | 零件异常检测方法、模型训练方法及装置 |
US11971319B2 (en) | 2020-02-25 | 2024-04-30 | Qingdao university of technology | Surface electromyography signal-torque matching method based on multi-segmentation parallel CNN model |
JP7261427B2 (ja) | 2020-02-25 | 2023-04-20 | 青▲島▼理工大学 | 複数粒度並列化されたcnnモデルに基づく筋電信号―トルクのマッチング方法 |
JP2022543935A (ja) * | 2020-02-25 | 2022-10-17 | 青▲島▼理工大学 | 複数粒度並列化されたcnnモデルに基づく筋電信号―トルクのマッチング方法 |
WO2021169036A1 (zh) * | 2020-02-25 | 2021-09-02 | 青岛理工大学 | 基于多粒度并联cnn模型的肌电信号-扭矩匹配方法 |
CN114116366A (zh) * | 2020-08-26 | 2022-03-01 | 宸展光电(厦门)股份有限公司 | 一种检测存储器安装状态的方法、装置及系统 |
CN112288750B (zh) * | 2020-11-20 | 2022-09-20 | 青岛理工大学 | 一种基于深度学习网络的机械装配体图像分割方法和设备 |
CN112288750A (zh) * | 2020-11-20 | 2021-01-29 | 青岛理工大学 | 一种基于深度学习网络的机械装配体图像分割方法和设备 |
CN112416368A (zh) * | 2020-11-25 | 2021-02-26 | 中国科学技术大学先进技术研究院 | 缓存部署与任务调度方法、终端和计算机可读存储介质 |
CN112416368B (zh) * | 2020-11-25 | 2024-01-16 | 中国科学技术大学先进技术研究院 | 缓存部署与任务调度方法、终端和计算机可读存储介质 |
CN112965372A (zh) * | 2021-02-01 | 2021-06-15 | 中国科学院自动化研究所 | 基于强化学习的微零件精密装配方法、装置和系统 |
CN113283478A (zh) * | 2021-05-10 | 2021-08-20 | 青岛理工大学 | 一种基于特征匹配的装配体多视角变化检测方法及设备 |
CN113283478B (zh) * | 2021-05-10 | 2022-09-09 | 青岛理工大学 | 一种基于特征匹配的装配体多视角变化检测方法及设备 |
CN113269729A (zh) * | 2021-05-10 | 2021-08-17 | 青岛理工大学 | 一种基于深度图像对比的装配体多视角检测方法和系统 |
CN113269786A (zh) * | 2021-05-19 | 2021-08-17 | 青岛理工大学 | 基于深度学习和引导滤波的装配体图像分割方法及设备 |
CN114782778A (zh) * | 2022-04-25 | 2022-07-22 | 广东工业大学 | 一种基于机器视觉技术的装配状态监控方法及系统 |
CN114782778B (zh) * | 2022-04-25 | 2023-01-06 | 广东工业大学 | 一种基于机器视觉技术的装配状态监控方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109816049B (zh) | 2020-09-18 |
US10964025B2 (en) | 2021-03-30 |
US20200273177A1 (en) | 2020-08-27 |
NL2024682A (en) | 2020-09-04 |
NL2024682B1 (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109816049A (zh) | 一种基于深度学习的装配监测方法、设备及可读存储介质 | |
Barron et al. | Mip-nerf 360: Unbounded anti-aliased neural radiance fields | |
US7889193B2 (en) | Method of and system for determining a data model designed for being superposed with an image of a real object in an object tracking process | |
CN108648269A (zh) | 三维建筑物模型的单体化方法和系统 | |
CN110349247A (zh) | 一种基于语义理解的室内场景cad三维重建方法 | |
WO2017029488A2 (en) | Methods of generating personalized 3d head models or 3d body models | |
CN114067231B (zh) | 一种基于机器视觉学习识别的零件加工特征识别方法 | |
US20230115887A1 (en) | Digital twin sub-millimeter alignment using multimodal 3d deep learning fusion system and method | |
CN107833503A (zh) | 配网核心作业增强现实仿真培训系统 | |
CN117611774A (zh) | 一种基于增强现实技术的多媒体展示系统及方法 | |
CN113144613B (zh) | 基于模型的体积云生成的方法 | |
CN118247429A (zh) | 一种空地协同快速三维建模方法及系统 | |
WO2022120996A1 (zh) | 视觉位置识别方法及装置、计算机设备及可读存储介质 | |
WO2024044078A1 (en) | Systems and methods for rigging a point cloud for animation | |
CN116612210A (zh) | 一种基于深度学习的电绣材质贴图生成方法、装置以及介质 | |
US10366470B2 (en) | Object separation for scanned assets | |
CN115841546A (zh) | 一种场景结构关联的地铁站多视矢量仿真渲染方法及系统 | |
CN108959707A (zh) | 一种基于Unity的BIM模型纹理材质可视化方法 | |
CN108765574A (zh) | 3d场景拟真方法及系统和计算机可读存储介质 | |
CN117115805B (zh) | 一种Unreal Engine平台下的任意不规则物体标识方法和标识装置 | |
CN116524077B (zh) | 虚拟对象的编辑方法及相关设备 | |
CN118070434B (zh) | 一种汽车零部件的工艺信息模型构建方法及系统 | |
Goldstein et al. | Virtual prototyping: from concept to 3D design and prototyping in hours | |
Peleka et al. | Generating 2.5 D photorealistic synthetic datasets for training machine vision algorithms | |
CN117635756B (zh) | 一种钣金模具二维图自动生成方法、系统、装置和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190528 Assignee: Yuyi (Shenyang) Digital Technology Development Co.,Ltd. Assignor: Qingdao University of Technology Contract record no.: X2023980045813 Denomination of invention: A deep learning based assembly monitoring method, device, and readable storage medium Granted publication date: 20200918 License type: Common License Record date: 20231103 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190528 Assignee: Hubei kunpengxin Technology Co.,Ltd. Assignor: Qingdao University of Technology Contract record no.: X2023420000308 Denomination of invention: A deep learning based assembly monitoring method, device, and readable storage medium Granted publication date: 20200918 License type: Common License Record date: 20231108 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190528 Assignee: Hefei Shupei Information Technology Co.,Ltd. Assignor: Qingdao University of Technology Contract record no.: X2023980052644 Denomination of invention: A deep learning based assembly monitoring method, equipment, and readable storage medium Granted publication date: 20200918 License type: Common License Record date: 20231215 Application publication date: 20190528 Assignee: Hefei Zhice Technology Co.,Ltd. Assignor: Qingdao University of Technology Contract record no.: X2023980052493 Denomination of invention: A deep learning based assembly monitoring method, equipment, and readable storage medium Granted publication date: 20200918 License type: Common License Record date: 20231215 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190528 Assignee: Hefei Hongduo Electronics Co.,Ltd. Assignor: Qingdao University of Technology Contract record no.: X2023980053512 Denomination of invention: A deep learning based assembly monitoring method, equipment, and readable storage medium Granted publication date: 20200918 License type: Common License Record date: 20231222 |