CN109811087B - Sorghum InDel molecular marker and application thereof - Google Patents

Sorghum InDel molecular marker and application thereof Download PDF

Info

Publication number
CN109811087B
CN109811087B CN201910282381.XA CN201910282381A CN109811087B CN 109811087 B CN109811087 B CN 109811087B CN 201910282381 A CN201910282381 A CN 201910282381A CN 109811087 B CN109811087 B CN 109811087B
Authority
CN
China
Prior art keywords
seq
sequence table
indel
reverse primer
forward primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910282381.XA
Other languages
Chinese (zh)
Other versions
CN109811087A (en
Inventor
朱莉
李玉斌
蒲伟军
李桂英
张治国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Research Institute of CAAS
Original Assignee
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Research Institute of CAAS filed Critical Biotechnology Research Institute of CAAS
Priority to CN201910282381.XA priority Critical patent/CN109811087B/en
Publication of CN109811087A publication Critical patent/CN109811087A/en
Application granted granted Critical
Publication of CN109811087B publication Critical patent/CN109811087B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a sorghum InDel molecular marker. Comprises 87 sites, and corresponding forward and reverse primers are shown as a sequence table SEQ ID NO: 1-SEQ ID NO: 174, respectively. The method takes sorghum genome DNA as a research object, utilizes an Illumina platform to perform re-sequencing, utilizes Trimmomatic software to perform quality control on sequencing original data raw data, eliminates low-quality data, utilizes BWA software to perform sequence comparison on obtained high-quality clean data and a sequencing variety BTx623 reference genome, and detects an InDel locus. The InDel marker disclosed by the invention can lay a foundation for construction of a sorghum genetic linkage map, genetic diversity analysis, hybrid/purity identification, positioning of important sorghum agronomic trait related genes, molecular marker-assisted selective breeding and the like.

Description

Sorghum InDel molecular marker and application thereof
Technical Field
The invention belongs to the technical field of molecular markers, and particularly relates to a sorghum InDel molecular marker and application thereof.
Background
Sorghum (Sorghum bicolor (L.) Moench) is the fifth major gramineous crop in the world, has the yield second to corn, wheat, rice and barley, is a C4 plant which integrates multiple purposes of grain, feed, wine brewing, sugar, biomass energy and the like, has high photosynthetic efficiency and large biomass, has multiple stress resistances of drought resistance, waterlogging resistance, saline-alkali resistance, barren resistance and the like, and is widely planted in arid and semi-arid regions. Because of the rich genetic diversity, the gramineous crop related to corn and sugarcane is relatively close, and the genome is small (about 750M), the gramineous crop related gene is considered as another important model plant for gramineous crop genome research, and has important theoretical significance and application value for deeply developing genetic research.
The molecular marker is a genetic marker form developed after morphological marker, cell marker and biochemical marker, and it is based on the mutation of protein and nucleic acid molecule, and can detect biological genetic structure and its variation, and can make up and overcome many defects and difficulties in morphological identification, isozyme and protein electrophoresis identification, so that it can be extensively used in the researches of crop hybrid identification, linkage map construction, genetic diversity analysis, comparative genomics, functional gene/QTL location, plant origin, classification and evolution research and molecular auxiliary breeding selection. Molecular markers commonly used in plant genetic research, such as Restriction Fragment Length Polymorphism (RFLP), Amplified Fragment Length Polymorphism (AFLP), Random Amplified Polymorphism (RAPD), simple repeat sequence (SSR) markers, and the like. RFLP requires the participation of radioactive isotopes, and the technology is complex; the RAPD experiment has poor repeatability and result reliability, and the defects limit the application of the marker in plant genetic research. Compared with these early molecular markers, the PCR-based simple repeat sequence (SSR) marker is relatively simple, cheap and has better repeatability, but some amplification bands are unclear and technical defects, such as false alleles and invalid alleles, cause the SSR marker to be prone to errors in genotyping and data analysis. In recent years, rapid development of genome sequencing technology has made high-throughput sequencing technology possible for the development of SNP and InDel markers. The InDel and SNP markers serving as novel molecular marker types with high flux and low cost in the third generation can be obtained by a bioinformatics method, have the characteristics of economy, practicality, high specificity, good stability and the like, and provide a selectable method for molecular marker-assisted breeding. However, SNPs are limited to genotyping techniques, require special equipment in small and medium size assays, are costly, and are complex to operate. The InDel molecular marker is a molecular marker which designs specific primers based on sequences on both sides of an insertion/deletion site and embodies sequence length polymorphism through PCR amplification. Compared with SSR markers, InDel distribution density is much higher than SSRs. Compared with SNP markers, the InDel marker shows codominance, can be quickly and economically typed by using an electrophoresis platform, does not need complex experimental instruments and has strong operability. The traditional molecular marker development is generally based on a single sequence, while the InDel marker development is based on sequence difference, so that the variation is stable and the accuracy is high in the development process, and the problems of fuzzy subsequent analysis and the like caused by specificity and complexity are avoided. The InDel marker is used as a high-flux molecular marker, has higher distribution frequency in plant genomes, has the advantages of high genetic stability, wide distribution, strong polymorphism, strong universality and the like, and is widely applied to main crops such as rice, corn, cotton, cucumber, Chinese cabbage and the like at present.
With the increasing maturity and perfection of molecular marker technology, the theoretical research and practical application of molecular markers on sorghum have been greatly developed. Among them, sorghum molecular markers have attracted considerable attention due to their numerous advantages, and there have been reports on the development and application of sorghum markers in the last decade. However, the application of molecular marker technology in Chinese sorghum research is far behind that of rice, corn and other crops. The research of China on the development and utilization of sorghum molecular markers is relatively weak, and no relevant report on the development and application of sorghum InDel markers exists at present.
Disclosure of Invention
The invention aims to provide a sorghum InDel molecular marker and application thereof.
A sorghum InDel molecular marker comprises the following forward primers and reverse primers corresponding to 87 sites:
position InDel 01: the forward primer Chr01-NP2-F and the reverse primer Chr01-NP2-R are respectively shown as the sequence table SEQ ID NO: 1 and SEQ ID NO: 2 is shown in the specification;
position InDel 02: the forward primer Chr01-NP3-F and the reverse primer Chr01-NP3-R are respectively shown as the sequence table SEQ ID NO: 3 and SEQ ID NO: 4 is shown in the specification;
position InDel 03: the forward primer Chr01-NP4-F and the reverse primer Chr01-NP4-R are respectively shown as the sequence table SEQ ID NO: 5 and SEQ ID NO: 6 is shown in the specification;
position InDel 04: the forward primer Chr01-NP6-F and the reverse primer Chr01-NP6-R are respectively shown as the sequence table SEQ ID NO: 7 and SEQ ID NO: 8 is shown in the specification;
position InDel 05: the forward primer Chr02-NP2-F and the reverse primer Chr02-NP2-R are respectively shown as the sequence table SEQ ID NO: 9 and SEQ ID NO: 10 is shown in the figure;
position InDel 06: the forward primer Chr02-NP4-F and the reverse primer Chr02-NP4-R are respectively shown as the sequence table SEQ ID NO: 11 and SEQ ID NO: 12 is shown in the specification;
position InDel 07: the forward primer Chr02-NP7-F and the reverse primer Chr02-NP7-R are respectively shown as the sequence table SEQ ID NO: 13 and SEQ ID NO: 14 is shown in the figure;
position InDel 08: the forward primer Chr02-NP10-F and the reverse primer Chr02-NP10-R are respectively shown as the sequence table SEQ ID NO: 15 and SEQ ID NO: 16 is shown in the figure;
position InDel 09: the forward primer Chr02-NP11-F and the reverse primer Chr02-NP11-R are respectively shown as the sequence table SEQ ID NO: 17 and SEQ ID NO: 18 is shown in the figure;
position InDel 10: the forward primer Chr02-NP12-F and the reverse primer Chr02-NP12-R are respectively shown as the sequence table SEQ ID NO: 19 and SEQ ID NO: 20 is shown in the figure;
position InDel 11: the forward primer Chr02-NP14-F and the reverse primer Chr02-NP14-R are respectively shown as the sequence table SEQ ID NO: 21 and SEQ ID NO: 22;
position InDel 12: the forward primer Chr02-MP1-F and the reverse primer Chr02-MP1-R are respectively shown in a sequence table SEQ ID NO: 23 and SEQ ID NO: shown at 24;
position InDel 13: the forward primer Chr02-MP2-F and the reverse primer Chr02-MP2-R are respectively shown in a sequence table SEQ ID NO: 25 and SEQ ID NO: 26 is shown;
position InDel 14: the forward primer Chr02-MP4-F and the reverse primer Chr02-MP4-R are respectively shown in a sequence table SEQ ID NO: 27 and SEQ ID NO: 28 is shown;
position InDel 15: the forward primer Chr02-MP12-F and the reverse primer Chr02-MP12-R are respectively shown in a sequence table SEQ ID NO: 29 and SEQ ID NO: 30 is shown in the figure;
position InDel 16: the forward primer Chr02-MP13-F and the reverse primer Chr02-MP13-R are respectively shown in a sequence table SEQ ID NO: 31 and SEQ ID NO: 32 is shown;
position InDel 17: the forward primer Chr02-MP14-F and the reverse primer Chr02-MP14-R are respectively shown in a sequence table SEQ ID NO: 33 and SEQ ID NO: 34;
position InDel 18: the forward primer Chr02-MP16-F and the reverse primer Chr02-MP16-R are respectively shown in a sequence table SEQ ID NO: 35 and SEQ ID NO: 36 is shown;
position InDel 19: the forward primer Chr03-MP3-F and the reverse primer Chr03-MP3-R are respectively shown in a sequence table SEQ ID NO: 37 and SEQ ID NO: 38;
position InDel 20: the forward primer Chr03-MP5-F and the reverse primer Chr03-MP5-R are respectively shown in a sequence table SEQ ID NO: 39 and SEQ ID NO: 40 is shown in the figure;
position InDel 21: the forward primer Chr03-MP10-F and the reverse primer Chr03-MP10-R are respectively shown in a sequence table SEQ ID NO: 41 and SEQ ID NO: 42 is shown;
position InDel 22: the forward primer Chr03-MP12-F and the reverse primer Chr03-MP12-R are respectively shown in a sequence table SEQ ID NO: 43 and SEQ ID NO: 44 is shown;
position InDel 23: the forward primer Chr03-MP14-F and the reverse primer Chr03-MP14-R are respectively shown in a sequence table SEQ ID NO: 45 and SEQ ID NO: 46;
position InDel 24: the forward primer Chr03-NP3-F and the reverse primer Chr03-NP3-R are respectively shown as the sequence table SEQ ID NO: 47 and SEQ ID NO: 48 is shown;
position InDel 25: the forward primer Chr03-NP4-F and the reverse primer Chr03-NP4-R are respectively shown as the sequence table SEQ ID NO: 49 and SEQ ID NO: 50 is shown;
position InDel 26: the forward primer Chr03-NP7-F and the reverse primer Chr03-NP7-R are respectively shown as the sequence table SEQ ID NO: 51 and SEQ ID NO: shown at 52;
position InDel 27: the forward primer Chr03-NP9-F and the reverse primer Chr03-NP9-R are respectively shown as the sequence table SEQ ID NO: 53 and SEQ ID NO: 54 is shown;
position InDel 28: the forward primer Chr04-MP1-F and the reverse primer Chr04-MP1-R are respectively shown in a sequence table SEQ ID NO: 55 and SEQ ID NO: 56 is shown;
position InDel 29: the forward primer Chr04-MP2-F and the reverse primer Chr04-MP2-R are respectively shown in a sequence table SEQ ID NO: 57 and SEQ ID NO: shown at 58;
position InDel 30: the forward primer Chr04-MP3-F and the reverse primer Chr04-MP3-R are respectively shown in a sequence table SEQ ID NO: 59 and SEQ ID NO: 60 is shown;
position InDel 31: the forward primer Chr04-MP13-F and the reverse primer Chr04-MP13-R are respectively shown in a sequence table SEQ ID NO: 61 and SEQ ID NO: shown at 62;
position InDel 32: the forward primer Chr04-NP1-F and the reverse primer Chr04-NP1-R are respectively shown as the sequence table SEQ ID NO: 63 and SEQ ID NO: 64 is shown;
position InDel 33: the forward primer Chr04-NP2-F and the reverse primer Chr04-NP2-R are respectively shown as the sequence table SEQ ID NO: 65 and SEQ ID NO: 66 is shown;
position InDel 34: the forward primer Chr04-NP6-F and the reverse primer Chr04-NP6-R are respectively shown as the sequence table SEQ ID NO: 67 and SEQ ID NO: 68;
position InDel 35: the forward primer Chr04-NP7-F and the reverse primer Chr04-NP7-R are respectively shown as the sequence table SEQ ID NO: 69 and SEQ ID NO: 70 is shown;
position InDel 36: the forward primer Chr04-NP8-F and the reverse primer Chr04-NP8-R are respectively shown as the sequence table SEQ ID NO: 71 and SEQ ID NO: 72 is shown;
position InDel 37: the forward primer Chr04-NP11-F and the reverse primer Chr04-NP11-R are respectively shown as the sequence table SEQ ID NO: 73 and SEQ ID NO: 74 is shown;
position InDel 38: the forward primer Chr05-MP9-F and the reverse primer Chr05-MP9-R are respectively shown in a sequence table SEQ ID NO: 75 and SEQ ID NO: shown at 76;
position InDel 39: the forward primer Chr05-MP13-F and the reverse primer Chr05-MP13-R are respectively shown in a sequence table SEQ ID NO: 77 and SEQ ID NO: 78, respectively;
position InDel 40: the forward primer Chr05-MP14-F and the reverse primer Chr05-MP14-R are respectively shown in a sequence table SEQ ID NO: 79 and SEQ ID NO: 80 is shown in the figure;
position InDel 41: the forward primer Chr05-NP1-F and the reverse primer Chr05-NP1-R are respectively shown as the sequence table SEQ ID NO: 81 and SEQ ID NO: 82;
position InDel 42: the forward primer Chr05-NP2-F and the reverse primer Chr05-NP2-R are respectively shown as the sequence table SEQ ID NO: 83 and SEQ ID NO: 84 is shown;
position InDel 43: the forward primer Chr05-NP5-F and the reverse primer Chr05-NP5-R are respectively shown as the sequence table SEQ ID NO: 85 and SEQ ID NO: 86, respectively;
position InDel 44: the forward primer Chr05-NP6-F and the reverse primer Chr05-NP6-R are respectively shown as the sequence table SEQ ID NO: 87 and SEQ ID NO: 88;
position InDel 45: the forward primer Chr05-NP8-F and the reverse primer Chr05-NP8-R are respectively shown as the sequence table SEQ ID NO: 89 and SEQ ID NO: 90 is shown;
position InDel 46: the forward primer Chr05-NP9-F and the reverse primer Chr05-NP9-R are respectively shown as the sequence table SEQ ID NO: 91 and SEQ ID NO: 92, respectively;
position InDel 47: the forward primer Chr05-NP10-F and the reverse primer Chr05-NP10-R are respectively shown as the sequence table SEQ ID NO: 93 and SEQ ID NO: 94;
position InDel 48: the forward primer Chr06-MP1-F and the reverse primer Chr06-MP1-R are respectively shown in a sequence table SEQ ID NO: 95 and SEQ ID NO: 96;
position InDel 49: the forward primer Chr06-MP8-F and the reverse primer Chr06-MP8-R are respectively shown in a sequence table SEQ ID NO: 97 and SEQ ID NO: 98 is shown;
position InDel 50: the forward primer Chr06-MP12-F and the reverse primer Chr06-MP12-R are respectively shown in a sequence table SEQ ID NO: 99 and SEQ ID NO: 100 is shown in the figure;
position InDel 51: the forward primer Chr06-NP2-F and the reverse primer Chr06-NP2-R are respectively shown as the sequence table SEQ ID NO: 101 and SEQ ID NO: 102 is shown in the figure;
position InDel 52: the forward primer Chr06-NP7-F and the reverse primer Chr06-NP7-R are respectively shown as the sequence table SEQ ID NO: 103 and SEQ ID NO: 104 is shown;
position InDel 53: the forward primer Chr07-NP1-F and the reverse primer Chr07-NP1-R are respectively shown as the sequence table SEQ ID NO: 105 and SEQ ID NO: 106;
position InDel 54: the forward primer Chr07-NP3-F and the reverse primer Chr07-NP3-R are respectively shown as the sequence table SEQ ID NO: 107 and SEQ ID NO: 108 is shown;
position InDel 55: the forward primer Chr07-NP6-F and the reverse primer Chr07-NP6-R are respectively shown as the sequence table SEQ ID NO: 109 and SEQ ID NO: 110 is shown;
position InDel 56: the forward primer Chr07-MP8-F and the reverse primer Chr07-MP8-R are respectively shown in a sequence table SEQ ID NO: 111 and SEQ ID NO: 112;
position InDel 57: the forward primer Chr08-MP1-F and the reverse primer Chr08-MP1-R are respectively shown in a sequence table SEQ ID NO: 113 and SEQ ID NO: 114 is shown;
position InDel 58: the forward primer Chr08-MP12-F and the reverse primer Chr08-MP12-R are respectively shown in a sequence table SEQ ID NO: 115 and SEQ ID NO: 116;
position InDel 59: the forward primer Chr08-AP2-F and the reverse primer Chr08-AP2-R are respectively shown as the sequence table SEQ ID NO: 117 and SEQ ID NO: 118 is shown;
position InDel 60: the forward primer Chr08-AP4-F and the reverse primer Chr08-AP4-R are respectively shown as the sequence table SEQ ID NO: 119 and SEQ ID NO: 120 is shown;
position InDel 61: the forward primer Chr08-AP5-F and the reverse primer Chr08-AP5-R are respectively shown as the sequence table SEQ ID NO: 121 and SEQ ID NO: 122 is shown;
position InDel 62: the forward primer Chr08-NP3-F and the reverse primer Chr08-NP3-R are respectively shown as the sequence table SEQ ID NO: 123 and SEQ ID NO: 124;
position InDel 63: the forward primer Chr09-MP1-F and the reverse primer Chr09-MP1-R are respectively shown in a sequence table SEQ ID NO: 125 and SEQ ID NO: 126;
position InDel 64: the forward primer Chr09-YM1-F and the reverse primer Chr09-YM1-R are respectively shown in a sequence table SEQ ID NO: 127 and SEQ ID NO: shown at 128;
position InDel 65: the forward primer Chr09-YM2-F and the reverse primer Chr09-YM2-R are respectively shown in a sequence table SEQ ID NO: 129 and SEQ ID NO: 130 is shown;
position nDel 66: the forward primer Chr09-YM5-F and the reverse primer Chr09-YM5-R are respectively shown in a sequence table SEQ ID NO: 131 and SEQ ID NO: 132;
position nDel 67: the forward primer Chr09-YM10-F and the reverse primer Chr09-YM10-R are respectively shown in a sequence table SEQ ID NO: 133 and SEQ ID NO: 134 are shown;
position nDel 68: the forward primer Chr09-YM11-F and the reverse primer Chr09-YM11-R are respectively shown in a sequence table SEQ ID NO: 135 and SEQ ID NO: 136;
position InDel 69: the forward primer Chr09-MP4-F and the reverse primer Chr09-MP4-R are respectively shown in a sequence table SEQ ID NO: 137 and SEQ ID NO: 138, and 138;
position InDel 70: the forward primer Chr09-MP5-F and the reverse primer Chr09-MP5-R are respectively shown in a sequence table SEQ ID NO: 139 and SEQ ID NO: 140 is shown;
position InDel 71: the forward primer Chr09-MP9-F and the reverse primer Chr09-MP9-R are respectively shown in a sequence table SEQ ID NO: 141 and SEQ ID NO: 142 is shown;
position InDel 72: the forward primer Chr09-MP11-F and the reverse primer Chr09-MP11-R are respectively shown in a sequence table SEQ ID NO: 143 and SEQ ID NO: 144, respectively;
position InDel 73: the forward primer Chr09-NP1-F and the reverse primer Chr09-NP1-R are respectively shown as the sequence table SEQ ID NO: 145 and SEQ ID NO: 146;
position InDel 74: the forward primer Chr09-NP2-F and the reverse primer Chr09-NP2-R are respectively shown as the sequence table SEQ ID NO: 147 and SEQ ID NO: 148;
position InDel 75: the forward primer Chr09-NP4-F and the reverse primer Chr09-NP4-R are respectively shown as the sequence table SEQ ID NO: 149 and SEQ ID NO: 150 is shown;
position InDel 76: the forward primer Chr09-NP5-F and the reverse primer Chr09-NP5-R are respectively shown as the sequence table SEQ ID NO: 151 and SEQ ID NO: 152;
position InDel 77: the forward primer Chr09-NP9-F and the reverse primer Chr09-NP9-R are respectively shown as the sequence table SEQ ID NO: 153 and SEQ ID NO: 154;
position InDel 78: the forward primer Chr10-MP2-F and the reverse primer Chr10-MP2-R are respectively shown in a sequence table SEQ ID NO: 155 and SEQ ID NO: 156;
position InDel 79: the forward primer Chr10-MP5-F and the reverse primer Chr10-MP5-R are respectively shown in a sequence table SEQ ID NO: 157 and SEQ ID NO: 158;
position InDel 80: the forward primer Chr10-MP7-F and the reverse primer Chr10-MP7-R are respectively shown in a sequence table SEQ ID NO: 159 and SEQ ID NO: 160 is shown;
position InDel 81: the forward primer Chr10-MP8-F and the reverse primer Chr10-MP8-R are respectively shown in a sequence table SEQ ID NO: 161 and SEQ ID NO: 162;
position InDel 82: the forward primer Chr10-MP11-F and the reverse primer Chr10-MP11-R are respectively shown in a sequence table SEQ ID NO: 163 and SEQ ID NO: 164;
position InDel 83: the forward primer Chr10-NP4-F and the reverse primer Chr10-NP4-R are respectively shown as the sequence table SEQ ID NO: 165 and SEQ ID NO: 166 is shown;
position InDel 84: the forward primer Chr10-NP6-F and the reverse primer Chr10-NP6-R are respectively shown as the sequence table SEQ ID NO: 167 and SEQ ID NO: 168;
position InDel 85: the forward primer Chr10-NP7-F and the reverse primer Chr10-NP7-R are respectively shown as the sequence table SEQ ID NO: 169 and SEQ ID NO: 170 is shown;
position InDel 86: the forward primer Chr10-NP9-F and the reverse primer Chr10-NP9-R are respectively shown as the sequence table SEQ ID NO: 171 and SEQ ID NO: 172;
position InDel 87: the forward primer Chr10-NP11-F and the reverse primer Chr10-NP11-R are respectively shown as the sequence table SEQ ID NO: 173 and SEQ ID NO: 174, respectively.
The sorghum InDel molecular marker is applied to construction of a sorghum genetic linkage map.
The InDel marker is an important genetic marker and is widely used for constructing a linkage map of crops. The 87 InDel molecular markers are drawn on a physical map of a sorghum chromosome by using Mapchat software (figure 2), and a foundation is laid for construction of a genetic linkage map of sorghum.
The sorghum InDel molecular marker is applied to research on genetic diversity of sorghum germplasm resources.
The InDel molecular marker technology is used as a high-flux DNA fingerprint marker, and can better reveal polymorphism in a genome, so that the InDel molecular marker has outstanding superiority in germplasm resource identification and is widely applied to crops such as corn, rice, Chinese cabbage and the like. The invention utilizes the developed polymorphic InDel primers, randomly selects two pairs of polymorphic primers (InDel20 and InDel38) from the polymorphic InDel primers, combines a rapid extraction method of sorghum seedling genome DNA, identifies 11 sorghum varieties, and shows that different varieties show variety specificity under the detection of different primers by PCR amplification results (figure 3). The result shows that the InDel technology can be used for large-scale DNA fingerprint analysis as a quick, accurate and efficient method. The InDel marker developed by the invention can play an important role in identifying sorghum germplasm resources.
The sorghum InDel molecular marker is applied to sorghum hybrid/purity identification.
Randomly selecting 3 InDel marks with polymorphism verified by PCR, combining a sorghum leaf genome DNA rapid extraction method, carrying out hybrid truth and purity evaluation on 17 filial generations for preparing 2 sorghum hybrid groups, carrying out comparative analysis on a father, a mother and filial generations according to an electrophoresis result of a PCR amplification product, and obtaining a true hybrid if the filial generations are amplified to have the strip size completely consistent with that of the father and the mother or show the complete complementary type (double strips) of the bands of the father and the mother, and the amplification only presents a single band similar to that of the father or the mother or the descendants with other segment sizes which are false hybrids (figure 4). Indicating that Indel markers can be used to quickly, accurately and economically identify the authenticity and purity of sorghum hybrids.
The sorghum InDel molecular marker is applied to the positioning of important agronomic trait related genes of sorghum.
The invention has the beneficial effects that:
the invention develops the InDel marker which is based on PCR, simple and convenient to operate and high in application value based on a high-throughput genome sequencing data technology, and can lay a foundation for construction of a sorghum genetic linkage map, genetic diversity analysis, sorghum hybrid/purity identification, positioning of genes related to important agronomic characters of sorghum, molecular marker-assisted selective breeding and the like.
The InDel marker developed by the invention is used for re-sequencing the genome of a sorghum conventional variety Jiutian1 by utilizing a high-throughput Illumina sequencing technology, and obtaining rich insertion/deletion sites by carrying out homologous comparison with a reference genome sequence of a sequencing variety BTx 623. According to the sequence difference (>10bp) of the InDel loci between two gene pools and the distribution situation of the InDel loci on 10 sorghum chromosomes, the InDel loci with stable variation and high accuracy are selected for primer design in the development process, so that the problem of fuzzy subsequent analysis caused by specificity and complexity is avoided. The invention designs about 100 pairs of primers, and 87 pairs of InDel primers obtained by PCR verification have the characteristics of high polymorphism, wide distribution and high stability.
The InDel primer development of the invention is based on PCR amplification, a 4% agarose gel electrophoresis platform is adopted for detection, and the invention has the advantages of clear amplification band, high polymorphism, high resolution, simplicity, convenience, practicability, strong operability, economy and practicability.
Drawings
FIG. 1 shows agarose gel electrophoresis detection results of 87 InDel-labeled PCR products of sorghum;
in the figure, M- -DNA Marker is Genstar Direct-Load produced by Kangrun Biotech Co., LtdTMStar Marker (D5000) consisting of 5000bp, 3000bp, 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp, 100bp bands; sorghum BTx 623; ② jowar Jiutian 1.
Figure 2 sorghum physical map constructed based on the 87 InDel molecular markers developed.
FIG. 3 is an electropherogram of genetic diversity analysis of sorghum varieties using sorghum InDel molecular markers;
in the figure: M-DNA Marker (D2000); 1-11 are different sorghum varieties: 1-white snake eye, 2-Wheatland, 3-Hebei glutinous rice, 4-Liou, 5-T32, 6-SEM-E32, 7-SEM-42, 8-ZIH08894, 9-E-Tian, 10-Jiutian1 and 11-BTx 623.
FIG. 4 is an electropherogram of sorghum hybrid identification using InDel labeling;
in the figure: M-DNA Marker (D2000) II; 1: JiutianYM 1; 2: BTx 623; 3-7: JiutianYM1 progeny from cross BTx 623; 8: JiutianYM 2; 9: BTx 623; 10-13: JiutianYM2 progeny from cross BTx 623; 14: JiutianYM 1; 15: BTx 623; 16-19: JiutianYM1 progeny from cross BTx 623; JiutianYM 2; 21: BTx 623; 22-25: JuutianYM 2 was crossed with BTx623 for progeny.
Detailed Description
The present invention is further illustrated by the following specific examples.
Example 1 sorghum genomic DNA extraction
Taking 1g of young leaves in the trefoil stage of the sorghum variety Jiutian1, grinding and crushing the young leaves by liquid nitrogen, transferring the young leaves into a 2.0mL Eppendorf centrifuge tube, adding 700 mu L of CTAB lysate [ 2% CTAB, 2M NaCl, 20mM EDTA, sodium chloride,100mM Tris-HCl (pH 8.0), 0.2% beta-mercaptoethanol (with follow-up)]And after fully and uniformly mixing, placing in 65 ℃ water bath for 0.5-1 h, then taking out and cooling to room temperature, and adding phenol with the same volume: chloroform: after the isoamyl alcohol (24: 23: 1) mixture is gently shaken for 5min to 10min, the emulsion is centrifuged for 8min to 10min at the room temperature at the rotating speed of 12000r/min, the supernatant is taken and transferred to a new 1.5ml centrifuge tube, and chloroform with the same volume is added: extracting isoamyl alcohol (24:1) for 1 to 2 times, extracting supernatant, adding 2 times volume of precooled isopropanol, standing for more than 3 hours at 4 ℃, centrifuging the mixture after standing for 10 minutes at the rotating speed of 12000r/min, discarding supernatant, washing DNA sediment for 2 to 3 times by 70 percent ethanol, and centrifuging for 3 minutes at the rotating speed of 12000r/min after each time of washing. The supernatant was discarded, the DNA was dried at room temperature, and an appropriate amount of 1XTE solution or ddH was added2And O, fully dissolving, and storing at 4 ℃ for later use. DNA purity analysis and quantitative detection are carried out by using an ultraviolet/visible light photometer.
Example 2 design of sorghum InDel-labeled primers
Construction of DNA Library Using TruSeq DNA PCR-Free LT Library Preparation Kit and Illumina HiSeq XTMThe Ten sequencing platform performs resequencing on the sorghum variety Jiutian 1; sequence control is carried out by using Trimmomatic software, Clean data is compared with a reference genome sequence of a sorghum sequencing variety BTx623 by using BWA software (https:// genome. jgi.doe. gov/portal/pages/dynamic organic genome download. jsf. InDel sites with sequence difference more than or equal to 10bp in a target region are screened through large-scale homologous sequence comparison, and InDel labeled primers are designed by utilizing Primer Premier 5.0 software. Conditions for primer design: the length of the PCR amplification product is 170-300 bp; the denaturation temperature (Tm) is 50-62 deg.C, preferably 56 deg.C; the GC content is 40-60%, preferably 50%; the length of the primer is 18-25bp, and 20bp is the best. From these, 100 markers covering 10 sorghum chromosomes were selected for polymorphism analysis. The method is characterized in that a total of 100 pairs of primers are designed and synthesized by the company Limited in the biological engineering (Shanghai), 87 pairs of InDel primers with polymorphism are verified by PCR, and the sequences of the primers are shown in a sequence table SEQ ID NO: 1-SEQ ID NO: 158.
Example 3 PCR amplification of InDel primers
The synthesized InDel primers were first screened for polymorphisms by PCR amplification between 2 pools (sorghum Jiutian1 and BTx 623). The PCR amplification reaction system was 20. mu.L containing 1.0. mu.L of genomic DNA (200 ng/. mu.l), 17. mu.L of 1 × Golden Star T6 Super PCR Mix (Biotech, Inc., Beijing Optimalaceae), 1.0. mu.L of forward primer (10. mu.M), and 1.0. mu.L of reverse primer (10. mu.M). The PCR amplification procedure was: pre-denaturation at 98 ℃ for 2 min; denaturation at 98 ℃ for 10sec, Tm annealing (50-62 ℃) for 10sec, extension at 72 ℃ for 10sec, and 35 cycles; extension at 72 deg.C for 5min, and storage at 4 deg.C. PCR amplification was performed on a BioeR LifeECO Gene Amplifier (TC-96/G/H (b) C).
Example 4 agarose gel electrophoresis detection
Agarose gel preparation: 4g of Agarose (Agarose, Invitrogen) was weighed, 2mL of 50 XTAE electrophoresis buffer (12.2g Tris, 2.85mL glacial acetic acid, 10mL of 0.25mol/L EDTA (pH 8.0), 50mL water) and 98mL distilled water were added, and the mixture was heated and dissolved to prepare 100mL of 4.0% Agarose gel. After slightly cooling, adding EB solution of 0.5 mu g/mL and mixing evenly; and (3) installing an electrophoresis tank and a sample comb, pouring glue, and pouring 1 XTAE electrophoresis buffer solution into the electrophoresis tank after the glue is cooled and condensed. mu.L of the PCR amplification product was added to 1. mu.L of 6 XDNA Loading Buffer, mixed well and applied to the sample using a pipette. Electrophoresis was performed at a constant voltage of 60V using an electrophoresis apparatus (model DYY-6C, six Biotech Co., Ltd., Beijing) with the electrodes connected for 1.0 to 1.5 hours until the amplified DNA band was sufficiently spread.
Through agarose gel electrophoresis detection of 100 pairs of InDel primer PCR amplification products, polymorphism of the InDel primer in a sorghum variety Jiutian1 and a sequencing variety BTx623 gene pool is screened, and finally, an InDel marker which has good amplification effect on 87 pairs of primers and shows polymorphism is screened (figure 1). The InDel markers can be applied to researches such as sorghum variety identification, genetic map construction, functional gene/QTL positioning, molecular assisted breeding, genetic diversity analysis and the like.
Sequence listing
<110> institute of biotechnology of Chinese academy of agricultural sciences
<120> sorghum InDel molecular marker and application thereof
<160> 174
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
tggtcgaaca agactgcaac 20
<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
cactacggcg aaattggaag 20
<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
atcggcatcc atcagatttt 20
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
cctgccaact cagcaatttt 20
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
tctttcccag tggaacaacc 20
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
caggggactc ttcaaactgc 20
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
agatccgagc atttctgctg 20
<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
agttcgccca ggtaaggtct 20
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
tttcatggct ttgagtgtca 20
<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
acgctaacag agggcagtgt 20
<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
tggtcaagtt ttggcatgaa 20
<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
gtcatgttct ttctgattcc ctct 24
<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
tgcctctatt tttcccatgc 20
<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
aatgccaagt ttggtccatc 20
<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
tacacacagt acgcccatgc 20
<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
ggtttggtgt ctggcaactt 20
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
atatctggtt cccccagctt 20
<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
gctcagctcg tctcgtctct 20
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
ttttgcgaca cctactgctg 20
<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
ggttttctgg ggtgcataga 20
<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
tgcaatacct gttccccact 20
<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
caacaatggc tacagcaacg 20
<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
cctgacccag acacacacac 20
<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
agcaatcttg tcaggggatg 20
<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
gctgatggct ctccaaactc 20
<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
gttggtccct gaatgcttgt 20
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
tgacctaagg ggttgtttgg 20
<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
gcacctgcca catcctattt 20
<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
caaaggccga tgtatttgct 20
<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
tgtgccaacc ctgtatgtgt 20
<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
gaaggcgctc gtgaatttta 20
<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
cagacacaaa ggctgtctcg 20
<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
ccgcacaaag tagagcatca 20
<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
ccgtaagaga agcgagccta 20
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 35
ttttcagtct ggtcgcttga 20
<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 36
cacacctcac tcgcttctca 20
<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 37
ggcacatgca tgaagcacta 20
<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 38
tgattcgaca gcttccagag 20
<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 39
cgagaagaca tgacaaaacg ag 22
<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 40
ctttggtcgc atgtatggaa 20
<210> 41
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 41
ccatctggat atacacgggt tag 23
<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 42
tgcaaaccgg ttctcaaagt 20
<210> 43
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 43
tgcatgcacg tagtagacac a 21
<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 44
caccacgata gcaaatcacc 20
<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 45
ggtgcagtgg tgtcttcctt 20
<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 46
atttacagcg cgtggctatc 20
<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 47
ttaaggtctc gtttagttca gg 22
<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 48
gccttgttca gttggcaaaa 20
<210> 49
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 49
tcagatgagc aggctctaca gt 22
<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 50
gagcattttc ggcatgtgta 20
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 51
acgaaagaaa tgcaccgaac 20
<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 52
cccagcctag gaaacatcaa 20
<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 53
gcgtgactat tgcagctgtt 20
<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 54
catgccatcc acttccacta 20
<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 55
gcggtcatag gcgttactgt 20
<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 56
cgctgtcaca tcgsstcttt 20
<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 57
tggataggtt catgctgctg 20
<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 58
tttttgccac cttccaattc 20
<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 59
ctgccctatg catctgttca 20
<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 60
ccaactagtt cagggcagga 20
<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 61
tccgtccaac tggaattgat 20
<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 62
aatccttcgt ggaaagctga 20
<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 63
atcttgcggc acatacatga 20
<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 64
cttcaacact cagcccacct 20
<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 65
tataaagcac cggtggaggt 20
<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 66
acaaatcgtt tcaccgcttc 20
<210> 67
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 67
ggctgttgga ggaattttga 20
<210> 68
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 68
ccttgtactc ttctgagttt tgga 24
<210> 69
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 69
gaccgagaaa gaaaatcata cactc 25
<210> 70
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 70
aggcaaaaag cccaactctt 20
<210> 71
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 71
atgccgtaga tcgtcctcct 20
<210> 72
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 72
caaccggagc tggaaatg 18
<210> 73
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 73
agctcatcaa agcgaaagga 20
<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 74
agtctagacg cctcgacgtt 20
<210> 75
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 75
atgggaaggc ctacgatttt 20
<210> 76
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 76
tgggtgatgg taggagaata ga 22
<210> 77
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 77
atttaacctg gctgcctgtc 20
<210> 78
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 78
gaccgcgaca ctaacaaatg 20
<210> 79
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 79
tttgcctagc catttcaggt 20
<210> 80
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 80
cacggtcaac aatcagctct 20
<210> 81
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 81
agcattggct gctaagcatt 20
<210> 82
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 82
tagcagcaac agcaaacagg 20
<210> 83
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 83
agagagaatc ctcggcaaga 20
<210> 84
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 84
tttgtgaggg gttcttgagc 20
<210> 85
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 85
cttcgtggac cacatgacac 20
<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 86
gtaccctcgc cagtcaactc 20
<210> 87
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 87
tctcacgggt cgaaagtacc 20
<210> 88
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 88
caatctcgat tgcctcaaca 20
<210> 89
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 89
ttgtgggatg aaaggagcat 20
<210> 90
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 90
gcctgtacca gaaaccgaac 20
<210> 91
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 91
agaatgttgc acgcattgac 20
<210> 92
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 92
gccgaccatt atttgtgacc 20
<210> 93
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 93
gcaattgcaa catcgaacac 20
<210> 94
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 94
tccacatcca tcctcatcaa 20
<210> 95
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 95
cataggattt tgccacgaca 20
<210> 96
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 96
cgtcacagag tccatgcaga 20
<210> 97
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 97
tgcgaaaaga aaaaggatgg 20
<210> 98
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 98
cccaaaatcc actttcctga 20
<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 99
tacgctggtg cttacgaaaa 20
<210> 100
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 100
gggagaggaa aggtgaaacc 20
<210> 101
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 101
attgatttgg ggtcgggta 19
<210> 102
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 102
caccgcaagc caaaatagag 20
<210> 103
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 103
agtggctgta cgggtttgac 20
<210> 104
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 104
ttgtgcagca tcaacgtgta 20
<210> 105
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 105
tggatccaag taaacccgat a 21
<210> 106
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 106
acttaaaggc cccactgaaa 20
<210> 107
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 107
taacggtttg ggtcttcgag 20
<210> 108
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 108
gcgatgaaaa acacagcaaa 20
<210> 109
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 109
ttctggtctg gtgaatgcaa 20
<210> 110
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 110
tccatgacga acgagaaatc 20
<210> 111
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 111
gccaagtttg ccaaaatgc 19
<210> 112
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 112
gttaacgcaa cccagcaga 19
<210> 113
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 113
gccgagtgtc tcgttagacc 20
<210> 114
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 114
cacgacggca ccctactaat 20
<210> 115
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 115
gaaccaaaca gcgtcagacc 20
<210> 116
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 116
agcaccaccc ataacgtgtc 20
<210> 117
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 117
tgactgtgtc gctaccttgc 20
<210> 118
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 118
gatggcaaga gtgggatttg 20
<210> 119
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 119
tccaaaccgg tggataattg 20
<210> 120
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 120
aagccttgtt tggatgctgt 20
<210> 121
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 121
caaaggacga gataagca 18
<210> 122
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 122
ttccctgtca catcaaat 18
<210> 123
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 123
tccatgcata tgcctcaaaa 20
<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 124
caagttgtgc agttgctggt 20
<210> 125
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 125
gacggagata cttagggcag aa 22
<210> 126
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 126
tctctctcct ccctttccaa 20
<210> 127
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 127
gtcggcgtag ctcatctt 18
<210> 128
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 128
gtagcacttt cgtttgtatt tg 22
<210> 129
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 129
gtcaaggagg aaccaaag 18
<210> 130
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 130
atgcctaagc ctaagtaa 18
<210> 131
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 131
gtcaaggagg aaccaaag 18
<210> 132
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 132
atgcctaagc ctaagtaa 18
<210> 133
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 133
tcggcttgat ttgttctt 18
<210> 134
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 134
ctggctgctg agtaagtg 18
<210> 135
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 135
cgaaatgctt cacgctgt 18
<210> 136
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 136
gaaacctacc caatgtccg 19
<210> 137
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 137
ttccaataaa gctgccgttc 20
<210> 138
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 138
atactagcgg tgcgggttac 20
<210> 139
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 139
ctgaacaagg cctaggtgga 20
<210> 140
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 140
gctcaccact gcaactgcta 20
<210> 141
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 141
atgtcagcga aatggtttcc 20
<210> 142
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 142
caccaagtcc ttgctcatca 20
<210> 143
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 143
atggaatatg agccccaaca 20
<210> 144
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 144
atcaggtcgt ccaccagttc 20
<210> 145
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 145
acgaggatgg caagaggata 20
<210> 146
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 146
gacggtgcat gtgcttttt 19
<210> 147
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 147
gcggatgagg aggaatctct 20
<210> 148
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 148
tttactgcgc ctcgtctctt 20
<210> 149
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 149
agcactagca aatgccacaa 20
<210> 150
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 150
atgacgtttt tcggcttgtc 20
<210> 151
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 151
gctgagcact tgagggttgt 20
<210> 152
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 152
ctggtcatcg gcttagcaat 20
<210> 153
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 153
gcggcttatc acagctccta 20
<210> 154
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 154
tcaccatgca aaacgtccta 20
<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 155
agagatcgag aggacggaca 20
<210> 156
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 156
ggaattccat gcccaaatc 19
<210> 157
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 157
gcatttgcat ctgaaagctc 20
<210> 158
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 158
accaaactct gcaggaatgc 20
<210> 159
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 159
aggcgttgcc tctaacactg 20
<210> 160
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 160
gtccggtgag ttcgtttctc 20
<210> 161
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 161
cacatggttc ttttccacga 20
<210> 162
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 162
ggagttggat gaaagccttg 20
<210> 163
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 163
tggtagacgg gtcctagtgc 20
<210> 164
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 164
tacatcgctg ctggagtgtc 20
<210> 165
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 165
acacgggtcg aagatcaaag 20
<210> 166
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 166
ggtgccaact tccttcatca 20
<210> 167
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 167
tttgcaagct gttttggttc 20
<210> 168
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 168
gggtgaaggc tacatcggta 20
<210> 169
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 169
taccgttgtc cgacgctaat 20
<210> 170
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 170
ttgtgtaggc gtcgtgctta 20
<210> 171
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 171
cgaccctgtc gtatgtatgc 20
<210> 172
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 172
ttgtccttct gtggctgttg 20
<210> 173
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 173
acggaatgca aaaagcaaag 20
<210> 174
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 174
ggtgacttca accgggatta 20

Claims (4)

1. A sorghum InDel molecular marker is characterized by comprising the following forward primers and reverse primers corresponding to 87 sites:
position InDel 01: the forward primer Chr01-NP2-F and the reverse primer Chr01-NP2-R are respectively shown as the sequence table SEQ ID NO: 1 and SEQ ID NO: 2 is shown in the specification;
position InDel 02: the forward primer Chr01-NP3-F and the reverse primer Chr01-NP3-R are respectively shown as the sequence table SEQ ID NO: 3 and SEQ ID NO: 4 is shown in the specification;
position InDel 03: the forward primer Chr01-NP4-F and the reverse primer Chr01-NP4-R are respectively shown as the sequence table SEQ ID NO: 5 and SEQ ID NO: 6 is shown in the specification;
position InDel 04: the forward primer Chr01-NP6-F and the reverse primer Chr01-NP6-R are respectively shown as the sequence table SEQ ID NO: 7 and SEQ ID NO: 8 is shown in the specification;
position InDel 05: the forward primer Chr02-NP2-F and the reverse primer Chr02-NP2-R are respectively shown as the sequence table SEQ ID NO: 9 and SEQ ID NO: 10 is shown in the figure;
position InDel 06: the forward primer Chr02-NP4-F and the reverse primer Chr02-NP4-R are respectively shown as the sequence table SEQ ID NO: 11 and SEQ ID NO: 12 is shown in the specification;
position InDel 07: the forward primer Chr02-NP7-F and the reverse primer Chr02-NP7-R are respectively shown as the sequence table SEQ ID NO: 13 and SEQ ID NO: 14 is shown in the figure;
position InDel 08: the forward primer Chr02-NP10-F and the reverse primer Chr02-NP10-R are respectively shown as the sequence table SEQ ID NO: 15 and SEQ ID NO: 16 is shown in the figure;
position InDel 09: the forward primer Chr02-NP11-F and the reverse primer Chr02-NP11-R are respectively shown as the sequence table SEQ ID NO: 17 and SEQ ID NO: 18 is shown in the figure;
position InDel 10: the forward primer Chr02-NP12-F and the reverse primer Chr02-NP12-R are respectively shown as the sequence table SEQ ID NO: 19 and SEQ ID NO: 20 is shown in the figure;
position InDel 11: the forward primer Chr02-NP14-F and the reverse primer Chr02-NP14-R are respectively shown as the sequence table SEQ ID NO: 21 and SEQ ID NO: 22;
position InDel 12: the forward primer Chr02-MP1-F and the reverse primer Chr02-MP1-R are respectively shown in a sequence table SEQ ID NO: 23 and SEQ ID NO: shown at 24;
position InDel 13: the forward primer Chr02-MP2-F and the reverse primer Chr02-MP2-R are respectively shown in a sequence table SEQ ID NO: 25 and SEQ ID NO: 26 is shown;
position InDel 14: the forward primer Chr02-MP4-F and the reverse primer Chr02-MP4-R are respectively shown in a sequence table SEQ ID NO: 27 and SEQ ID NO: 28 is shown;
position InDel 15: the forward primer Chr02-MP12-F and the reverse primer Chr02-MP12-R are respectively shown in a sequence table SEQ ID NO: 29 and SEQ ID NO: 30 is shown in the figure;
position InDel 16: the forward primer Chr02-MP13-F and the reverse primer Chr02-MP13-R are respectively shown in a sequence table SEQ ID NO: 31 and SEQ ID NO: 32 is shown;
position InDel 17: the forward primer Chr02-MP14-F and the reverse primer Chr02-MP14-R are respectively shown in a sequence table SEQ ID NO: 33 and SEQ ID NO: 34;
position InDel 18: the forward primer Chr02-MP16-F and the reverse primer Chr02-MP16-R are respectively shown in a sequence table SEQ ID NO: 35 and SEQ ID NO: 36 is shown;
position InDel 19: the forward primer Chr03-MP3-F and the reverse primer Chr03-MP3-R are respectively shown in a sequence table SEQ ID NO: 37 and SEQ ID NO: 38;
position InDel 20: the forward primer Chr03-MP5-F and the reverse primer Chr03-MP5-R are respectively shown in a sequence table SEQ ID NO: 39 and SEQ ID NO: 40 is shown in the figure;
position InDel 21: the forward primer Chr03-MP10-F and the reverse primer Chr03-MP10-R are respectively shown in a sequence table SEQ ID NO: 41 and SEQ ID NO: 42 is shown;
position InDel 22: the forward primer Chr03-MP12-F and the reverse primer Chr03-MP12-R are respectively shown in a sequence table SEQ ID NO: 43 and SEQ ID NO: 44 is shown;
position InDel 23: the forward primer Chr03-MP14-F and the reverse primer Chr03-MP14-R are respectively shown in a sequence table SEQ ID NO: 45 and SEQ ID NO: 46;
position InDel 24: the forward primer Chr03-NP3-F and the reverse primer Chr03-NP3-R are respectively shown as the sequence table SEQ ID NO: 47 and SEQ ID NO: 48 is shown;
position InDel 25: the forward primer Chr03-NP4-F and the reverse primer Chr03-NP4-R are respectively shown as the sequence table SEQ ID NO: 49 and SEQ ID NO: 50 is shown;
position InDel 26: the forward primer Chr03-NP7-F and the reverse primer Chr03-NP7-R are respectively shown as the sequence table SEQ ID NO: 51 and SEQ ID NO: shown at 52;
position InDel 27: the forward primer Chr03-NP9-F and the reverse primer Chr03-NP9-R are respectively shown as the sequence table SEQ ID NO: 53 and SEQ ID NO: 54 is shown;
position InDel 28: the forward primer Chr04-MP1-F and the reverse primer Chr04-MP1-R are respectively shown in a sequence table SEQ ID NO: 55 and SEQ ID NO: 56 is shown;
position InDel 29: the forward primer Chr04-MP2-F and the reverse primer Chr04-MP2-R are respectively shown in a sequence table SEQ ID NO: 57 and SEQ ID NO: shown at 58;
position InDel 30: the forward primer Chr04-MP3-F and the reverse primer Chr04-MP3-R are respectively shown in a sequence table SEQ ID NO: 59 and SEQ ID NO: 60 is shown;
position InDel 31: the forward primer Chr04-MP13-F and the reverse primer Chr04-MP13-R are respectively shown in a sequence table SEQ ID NO: 61 and SEQ ID NO: shown at 62;
position InDel 32: the forward primer Chr04-NP1-F and the reverse primer Chr04-NP1-R are respectively shown as the sequence table SEQ ID NO: 63 and SEQ ID NO: 64 is shown;
position InDel 33: the forward primer Chr04-NP2-F and the reverse primer Chr04-NP2-R are respectively shown as the sequence table SEQ ID NO: 65 and SEQ ID NO: 66 is shown;
position InDel 34: the forward primer Chr04-NP6-F and the reverse primer Chr04-NP6-R are respectively shown as the sequence table SEQ ID NO: 67 and SEQ ID NO: 68;
position InDel 35: the forward primer Chr04-NP7-F and the reverse primer Chr04-NP7-R are respectively shown as the sequence table SEQ ID NO: 69 and SEQ ID NO: 70 is shown;
position InDel 36: the forward primer Chr04-NP8-F and the reverse primer Chr04-NP8-R are respectively shown as the sequence table SEQ ID NO: 71 and SEQ ID NO: 72 is shown;
position InDel 37: the forward primer Chr04-NP11-F and the reverse primer Chr04-NP11-R are respectively shown as the sequence table SEQ ID NO: 73 and SEQ ID NO: 74 is shown;
position InDel 38: the forward primer Chr05-MP9-F and the reverse primer Chr05-MP9-R are respectively shown in a sequence table SEQ ID NO: 75 and SEQ ID NO: shown at 76;
position InDel 39: the forward primer Chr05-MP13-F and the reverse primer Chr05-MP13-R are respectively shown in a sequence table SEQ ID NO: 77 and SEQ ID NO: 78, respectively;
position InDel 40: the forward primer Chr05-MP14-F and the reverse primer Chr05-MP14-R are respectively shown in a sequence table SEQ ID NO: 79 and SEQ ID NO: 80 is shown in the figure;
position InDel 41: the forward primer Chr05-NP1-F and the reverse primer Chr05-NP1-R are respectively shown as the sequence table SEQ ID NO: 81 and SEQ ID NO: 82;
position InDel 42: the forward primer Chr05-NP2-F and the reverse primer Chr05-NP2-R are respectively shown as the sequence table SEQ ID NO: 83 and SEQ ID NO: 84 is shown;
position InDel 43: the forward primer Chr05-NP5-F and the reverse primer Chr05-NP5-R are respectively shown as the sequence table SEQ ID NO: 85 and SEQ ID NO: 86, respectively;
position InDel 44: the forward primer Chr05-NP6-F and the reverse primer Chr05-NP6-R are respectively shown as the sequence table SEQ ID NO: 87 and SEQ ID NO: 88;
position InDel 45: the forward primer Chr05-NP8-F and the reverse primer Chr05-NP8-R are respectively shown as the sequence table SEQ ID NO: 89 and SEQ ID NO: 90 is shown;
position InDel 46: the forward primer Chr05-NP9-F and the reverse primer Chr05-NP9-R are respectively shown as the sequence table SEQ ID NO: 91 and SEQ ID NO: 92, respectively;
position InDel 47: the forward primer Chr05-NP10-F and the reverse primer Chr05-NP10-R are respectively shown as the sequence table SEQ ID NO: 93 and SEQ ID NO: 94;
position InDel 48: the forward primer Chr06-MP1-F and the reverse primer Chr06-MP1-R are respectively shown in a sequence table SEQ ID NO: 95 and SEQ ID NO: 96;
position InDel 49: the forward primer Chr06-MP8-F and the reverse primer Chr06-MP8-R are respectively shown in a sequence table SEQ ID NO: 97 and SEQ ID NO: 98 is shown;
position InDel 50: the forward primer Chr06-MP12-F and the reverse primer Chr06-MP12-R are respectively shown in a sequence table SEQ ID NO: 99 and SEQ ID NO: 100 is shown in the figure;
position InDel 51: the forward primer Chr06-NP2-F and the reverse primer Chr06-NP2-R are respectively shown as the sequence table SEQ ID NO: 101 and SEQ ID NO: 102 is shown in the figure;
position InDel 52: the forward primer Chr06-NP7-F and the reverse primer Chr06-NP7-R are respectively shown as the sequence table SEQ ID NO: 103 and SEQ ID NO: 104 is shown;
position InDel 53: the forward primer Chr07-NP1-F and the reverse primer Chr07-NP1-R are respectively shown as the sequence table SEQ ID NO: 105 and SEQ ID NO: 106;
position InDel 54: the forward primer Chr07-NP3-F and the reverse primer Chr07-NP3-R are respectively shown as the sequence table SEQ ID NO: 107 and SEQ ID NO: 108 is shown;
position InDel 55: the forward primer Chr07-NP6-F and the reverse primer Chr07-NP6-R are respectively shown as the sequence table SEQ ID NO: 109 and SEQ ID NO: 110 is shown;
position InDel 56: the forward primer Chr07-MP8-F and the reverse primer Chr07-MP8-R are respectively shown in a sequence table SEQ ID NO: 111 and SEQ ID NO: 112;
position InDel 57: the forward primer Chr08-MP1-F and the reverse primer Chr08-MP1-R are respectively shown in a sequence table SEQ ID NO: 113 and SEQ ID NO: 114 is shown;
position InDel 58: the forward primer Chr08-MP12-F and the reverse primer Chr08-MP12-R are respectively shown in a sequence table SEQ ID NO: 115 and SEQ ID NO: 116;
position InDel 59: the forward primer Chr08-AP2-F and the reverse primer Chr08-AP2-R are respectively shown as the sequence table SEQ ID NO: 117 and SEQ ID NO: 118 is shown;
position InDel 60: the forward primer Chr08-AP4-F and the reverse primer Chr08-AP4-R are respectively shown as the sequence table SEQ ID NO: 119 and SEQ ID NO: 120 is shown;
position InDel 61: the forward primer Chr08-AP5-F and the reverse primer Chr08-AP5-R are respectively shown as the sequence table SEQ ID NO: 121 and SEQ ID NO: 122 is shown;
position InDel 62: the forward primer Chr08-NP3-F and the reverse primer Chr08-NP3-R are respectively shown as the sequence table SEQ ID NO: 123 and SEQ ID NO: 124;
position InDel 63: the forward primer Chr09-MP1-F and the reverse primer Chr09-MP1-R are respectively shown in a sequence table SEQ ID NO: 125 and SEQ ID NO: 126;
position InDel 64: the forward primer Chr09-YM1-F and the reverse primer Chr09-YM1-R are respectively shown in a sequence table SEQ ID NO: 127 and SEQ ID NO: shown at 128;
position InDel 65: the forward primer Chr09-YM2-F and the reverse primer Chr09-YM2-R are respectively shown in a sequence table SEQ ID NO: 129 and SEQ ID NO: 130 is shown;
position nDel 66: the forward primer Chr09-YM5-F and the reverse primer Chr09-YM5-R are respectively shown in a sequence table SEQ ID NO: 131 and SEQ ID NO: 132;
position nDel 67: the forward primer Chr09-YM10-F and the reverse primer Chr09-YM10-R are respectively shown in a sequence table SEQ ID NO: 133 and SEQ ID NO: 134 are shown;
position nDel 68: the forward primer Chr09-YM11-F and the reverse primer Chr09-YM11-R are respectively shown in a sequence table SEQ ID NO: 135 and SEQ ID NO: 136;
position InDel 69: the forward primer Chr09-MP4-F and the reverse primer Chr09-MP4-R are respectively shown in a sequence table SEQ ID NO: 137 and SEQ ID NO: 138, and 138;
position InDel 70: the forward primer Chr09-MP5-F and the reverse primer Chr09-MP5-R are respectively shown in a sequence table SEQ ID NO: 139 and SEQ ID NO: 140 is shown;
position InDel 71: the forward primer Chr09-MP9-F and the reverse primer Chr09-MP9-R are respectively shown in a sequence table SEQ ID NO: 141 and SEQ ID NO: 142 is shown;
position InDel 72: the forward primer Chr09-MP11-F and the reverse primer Chr09-MP11-R are respectively shown in a sequence table SEQ ID NO: 143 and SEQ ID NO: 144, respectively;
position InDel 73: the forward primer Chr09-NP1-F and the reverse primer Chr09-NP1-R are respectively shown as the sequence table SEQ ID NO: 145 and SEQ ID NO: 146;
position InDel 74: the forward primer Chr09-NP2-F and the reverse primer Chr09-NP2-R are respectively shown as the sequence table SEQ ID NO: 147 and SEQ ID NO: 148;
position InDel 75: the forward primer Chr09-NP4-F and the reverse primer Chr09-NP4-R are respectively shown as the sequence table SEQ ID NO: 149 and SEQ ID NO: 150 is shown;
position InDel 76: the forward primer Chr09-NP5-F and the reverse primer Chr09-NP5-R are respectively shown as the sequence table SEQ ID NO: 151 and SEQ ID NO: 152;
position InDel 77: the forward primer Chr09-NP9-F and the reverse primer Chr09-NP9-R are respectively shown as the sequence table SEQ ID NO: 153 and SEQ ID NO: 154;
position InDel 78: the forward primer Chr10-MP2-F and the reverse primer Chr10-MP2-R are respectively shown in a sequence table SEQ ID NO: 155 and SEQ ID NO: 156;
position InDel 79: the forward primer Chr10-MP5-F and the reverse primer Chr10-MP5-R are respectively shown in a sequence table SEQ ID NO: 157 and SEQ ID NO: 158;
position InDel 80: the forward primer Chr10-MP7-F and the reverse primer Chr10-MP7-R are respectively shown in a sequence table SEQ ID NO: 159 and SEQ ID NO: 160 is shown;
position InDel 81: the forward primer Chr10-MP8-F and the reverse primer Chr10-MP8-R are respectively shown in a sequence table SEQ ID NO: 161 and SEQ ID NO: 162;
position InDel 82: the forward primer Chr10-MP11-F and the reverse primer Chr10-MP11-R are respectively shown in a sequence table SEQ ID NO: 163 and SEQ ID NO: 164;
position InDel 83: the forward primer Chr10-NP4-F and the reverse primer Chr10-NP4-R are respectively shown as the sequence table SEQ ID NO: 165 and SEQ ID NO: 166 is shown;
position InDel 84: the forward primer Chr10-NP6-F and the reverse primer Chr10-NP6-R are respectively shown as the sequence table SEQ ID NO: 167 and SEQ ID NO: 168;
position InDel 85: the forward primer Chr10-NP7-F and the reverse primer Chr10-NP7-R are respectively shown as the sequence table SEQ ID NO: 169 and SEQ ID NO: 170 is shown;
position InDel 86: the forward primer Chr10-NP9-F and the reverse primer Chr10-NP9-R are respectively shown as the sequence table SEQ ID NO: 171 and SEQ ID NO: 172;
position InDel 87: the forward primer Chr10-NP11-F and the reverse primer Chr10-NP11-R are respectively shown as the sequence table SEQ ID NO: 173 and SEQ ID NO: 174, respectively.
2. The use of the sorghum InDel molecular marker of claim 1 in the construction of genetic linkage maps of sorghum.
3. The use of the sorghum InDel molecular marker of claim 1 in genetic diversity analysis of sorghum germplasm resources.
4. The use of the sorghum InDel molecular marker of claim 1 for purity identification of sorghum hybrids.
CN201910282381.XA 2019-04-09 2019-04-09 Sorghum InDel molecular marker and application thereof Active CN109811087B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910282381.XA CN109811087B (en) 2019-04-09 2019-04-09 Sorghum InDel molecular marker and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910282381.XA CN109811087B (en) 2019-04-09 2019-04-09 Sorghum InDel molecular marker and application thereof

Publications (2)

Publication Number Publication Date
CN109811087A CN109811087A (en) 2019-05-28
CN109811087B true CN109811087B (en) 2021-12-14

Family

ID=66611590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910282381.XA Active CN109811087B (en) 2019-04-09 2019-04-09 Sorghum InDel molecular marker and application thereof

Country Status (1)

Country Link
CN (1) CN109811087B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821409A (en) * 2007-08-29 2010-09-01 孟山都技术公司 Methods and compositions for breeding for preferred traits
WO2016183005A1 (en) * 2015-05-12 2016-11-17 E I Du Pont De Nemours And Company Methods and compositions to alter flowering time in sorghum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821409A (en) * 2007-08-29 2010-09-01 孟山都技术公司 Methods and compositions for breeding for preferred traits
WO2016183005A1 (en) * 2015-05-12 2016-11-17 E I Du Pont De Nemours And Company Methods and compositions to alter flowering time in sorghum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Comparative Chloroplast Genomes of Sorghum Species: Sequence Divergence and Phylogenetic Relationships;Yun Song等;《BioMed Research International》;20190319;第2019卷;第1-11页 *
甜高粱茎秆含糖量性状的QTL定位;卢峰等;《分子植物育种》;20151231;第13卷(第5期);第1098-1104页 *

Also Published As

Publication number Publication date
CN109811087A (en) 2019-05-28

Similar Documents

Publication Publication Date Title
CN107090495B (en) Molecular marker related to long shape of neck of millet and detection primer and application thereof
CN113584216B (en) Development and application of KASP marker of wheat grain weight gene TaCYP78A16
CN112391488B (en) SNP marker for identifying broccoli variety Zhe Qing 80
WO2023208078A1 (en) Genome structure variation for regulating tomato fruit soluble solid content, related product, and application
CN107090450B (en) Molecular marker related to millet ear length character and detection primer and application thereof
CN112029898B (en) SNP marker for identifying broccoli variety Zhe Qing 100
CN107365873B (en) Molecular marker linked with foxtail sheath color characteristic of millet and application thereof
CN109811087B (en) Sorghum InDel molecular marker and application thereof
CN111118192B (en) KASP molecular marker of wheat ear base small ear fruition main effect QTL and application thereof
CN113755628A (en) Mixed sample detection method for detecting purity of white radish seeds based on mSNP technology
CN109666757B (en) Kit for identifying wheat vernalization gene VRN-D4 and special complete set of primer pair thereof
CN113046465A (en) SNP loci obviously associated with cold resistance of wheat and application of SNP loci in genetic breeding
CN112501342A (en) KASP functional molecular marker of barley dormancy gene MKK3 and application
CN112391487A (en) SNP marker for identifying broccoli variety Zhe Qing 75
CN108570517A (en) The relevant specific primer of low with the peaceful wheat of weak-gluten wheat No. 9 albumen and its application
CN111235292B (en) Rye 4RS chromosome arm specific KASP molecular marker and application thereof
CN112048569B (en) Molecular marker coseparated with wheat low polyphenol oxidase activity gene QPpo-5D
CN110699484A (en) SNP molecular marker for detecting rice stripe disease resistant STV11 gene and application
CN115896335A (en) SNP molecular marker of sorghum SbSOS1 gene and application
CN118256639A (en) SNP marker of rice bacterial leaf blight resistance gene Xa1
CN115992287A (en) Molecular marker of gene SbPH11 related to sorghum plant height and application thereof
CN115807116A (en) SNP molecular marker of gene SbDW1 related to overground part dry weight of sorghum and application
CN113736905A (en) Mixed sample detection method for detecting watermelon seed purity based on mSNP technology
CN118222742A (en) Molecular marker closely linked with rice hybrid debility gene Hwi2
CN113652502A (en) Mixed sample detection method for detecting pepper seed purity based on mSNP technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant