CN109804212A - 用于产生高压氧的低温空气分离方法 - Google Patents

用于产生高压氧的低温空气分离方法 Download PDF

Info

Publication number
CN109804212A
CN109804212A CN201780062124.4A CN201780062124A CN109804212A CN 109804212 A CN109804212 A CN 109804212A CN 201780062124 A CN201780062124 A CN 201780062124A CN 109804212 A CN109804212 A CN 109804212A
Authority
CN
China
Prior art keywords
stream
pressure
bars
air stream
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780062124.4A
Other languages
English (en)
Other versions
CN109804212B (zh
Inventor
R·J·奥勒姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
8 Rivers Capital LLC
Original Assignee
8 Rivers Capital LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 8 Rivers Capital LLC filed Critical 8 Rivers Capital LLC
Publication of CN109804212A publication Critical patent/CN109804212A/zh
Application granted granted Critical
Publication of CN109804212B publication Critical patent/CN109804212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/12Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/61Removal of CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07006Control of the oxygen supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种低温空气分离方法,所述低温空气分离方法提供高压氧用于燃料(例如含碳燃料)的富氧燃烧。所述空气分离方法可以直接集成到利用诸如CO2的工作流体的闭式循环发电过程中。有利的是,所述空气分离方法可以消除对空气压缩级之间的中间冷却的需要,并且相反,使得绝热压缩热再循环到其中额外的热量供应有益的另外的方法中的工艺步骤中。

Description

用于产生高压氧的低温空气分离方法
技术领域
本发明涉及用于产生高压液氧流的方法和系统。具体来说,所述方法和系统可以用于提供用于不同或相关方法或系统,例如像发电系统中的高压气态氧气流。
背景技术
利用一种或多种化石燃料的燃烧以二氧化碳作为工作流体发电的系统和方法描述于美国专利号8,596,075中,该美国专利以引用的方式整体并入本文。这样的系统和方法利用基本上纯的氧气使化石燃料在高压(例如约200巴至500巴)和高温下燃烧。在一些实例中,所述化石燃料可以是天然气(即主要由甲烷组成的烃气体混合物)和/或源自于煤、生物质和/或残余石油精炼产品,例如像重质残油馏分或石油焦的部分氧化的化石燃料。无论化石燃料如何,都需要大量的高压气态氧。这样的系统和方法已经被证实经由向没有从燃烧产物流中回热式换热的发电机添加热量来提供提高的效率。在一个方面,所添加的热量可以源自于在低温氧气产生过程中增加入口空气流的压力的压缩机产生的绝热和/或源自于二氧化碳再循环压缩机。
大气空气包含许多不同的气体组分,主要是氮气和氧气,而且还包含少量的其他物质,如稀有气体(例如氩气)、甲烷、水蒸气以及二氧化碳。大气空气的一种或多种组分可以使用空气分离方法和系统(即“空气分离单元”、“空气分离设备”或“ASU”)分离并且以纯化形式提供。存在用于空气分离工艺的已知技术,如低温蒸馏(例如低温空气分离循环)、膜分离、变压吸附(PSA)和真空变压吸附(VPSA)以及在高温氧离子传输陶瓷混合氧化物膜系统中从空气中分离氧气。在可用的方法中,低温蒸馏对于将空气分离成它的高纯度和高压的组成部分是特别有利的。
泵送液氧循环是一种用于产生高压氧的示例性低温空气分离循环。举例来说,用于低温空气分离循环的泵送液氧循环可以包括液氧泵,所述液氧泵被配置成将高压液氧输送通过热交换器以通过冷却和/或冷凝高压空气或氮气的补充流将高压液氧加热到环境温度。
尽管用于工业过程的大规模氧气生产已经实施了超过100年,但是迄今为止使用的最高氧气压力仅接近约100巴。已经以超过300巴的压力为高压气瓶生产氧气,但是这种用于一般低流量的生产工艺利用泵送液氧的小型往复泵,然后使用间接加热的热交换器,例如使用从环境空气或热水外部供应的热量间接地将液氧加热到环境温度。因此,在本领域中仍然需要用于产生高压氧的另外的系统和方法,所述高压氧诸如适用作发电系统和方法中的氧化剂。
发明内容
在各个方面,本发明涉及一种低温空气分离方法,所述低温空气分离方法可用于产生高压氧气流以用于一个或多个另外的过程,例如像包括燃料的富氧燃烧的发电系统中。所产生的氧优选地处于气态或超临界状态。具体来说,这样的燃烧可以在使用例如CO2工作流体的工作流体的闭式循环发电过程中进行。根据本公开的各个方面的空气分离方法可以许多特定的优势为特征。举例来说,所述空气分离方法可以有利地提供一种低成本方法以在低温空气分离方法中利用高效泵送液氧循环产生处于约200巴至约500巴的压力的环境温度氧气。在一些方面,所述低温空气分离方法可以与绝热空气压缩机结合以将空气分离单元与发电系统集成。根据本公开的另一个方面,所述方法可以包括利用与高压紧凑型热交换器集成的高压空气进料流的膨胀涡轮机的膨胀部分的布置以提供最佳的热交换面积和基于总氧气成本的总体最佳循环效率。
根据一个方面,所述系统和方法可以提供以两个不同的压力从低温空气分离循环中产生两个单独的氧气流。第一氧气流可以用于产生处于约200巴至约500巴范围的压力的氧气以用于发电系统的燃烧室中。根据一些方面,第二氧气流可以用于产生处于约30巴至约150巴范围的压力的氧气以用于重质燃料部分氧化反应器中,所述重质燃料部分氧化反应器被配置成产生待用于发电系统的燃烧室中的燃料气流。
在一些方面,所述系统和方法可以提供来自发电系统中的二氧化碳再循环压缩过程的废热的利用以提供低温空气分离单元中所包括的前端吸附器空气纯化单元中利用的再活化氮气流的所期望的加热。
在一些方面,本公开可以涉及一种适用于产生纯化的高压氧的空气分离方法。举例来说,这样的方法可以包括以下步骤的任何组合:在Linde双塔蒸馏系统中将部分液化的空气流分离成至少产物液氧流和低压氮气流;在液氧泵中将所述液氧的压力增加到约200巴至500巴;在第一空气压缩机中将入口空气流压缩到至少5巴的压力;使所述加压的入口空气流通过第一热交换器以传递通过压缩所述入口空气流所产生的绝热的至少一部分以加热发电循环的工作流体流;在直接水冷式填料塔中冷却所述加压空气流;使所述冷却的加压空气流通过吸附系统以产生纯化的冷却的加压空气流;将所述纯化的冷却的加压空气流分成第一纯化的加压空气流和第二纯化的加压空气流;在低压热交换器中将所述第二纯化的加压空气流冷却到接近它的液化温度的温度,所述低压热交换器将来自所述低压蒸馏塔的低压氮气流的一部分加热到接近环境温度;将所述冷却的第二纯化的加压空气流供给到高压蒸馏塔的塔底区段中;将所述第一纯化的加压空气流分成两个部分;将所述第一纯化的加压空气流的第一部分压缩以产生处于约80巴至125巴的压力的第一高压纯化空气流;将所述第一纯化的加压空气流的第二部分压缩以产生处于约50巴至80巴的压力的第二高压纯化空气流;在高压热交换器中冷却所述第一高压纯化空气流和所述第二高压纯化空气流,所述高压热交换器将所述高压液氧流和所述低压氮气流的剩余部分加热到接近环境温度;在所述高压热交换器中将所述第二高压纯化空气流进一步冷却到约-80℃至-120℃的温度;从所述高压热交换器中取出所述整个第二高压纯化空气流并且使它在第一发电涡轮机中膨胀到高压蒸馏塔的压力并且将总排放流供给到高压塔的下段中;将所述第一高压纯化空气流的第一部分的一部分以约-20℃至-40℃的温度从高压热交换器中抽出并且使它在第二发电涡轮机中膨胀到低压蒸馏塔的压力并且将总排放流在接近粗氧进料点的点处供给到低压塔中;将所述第一高压纯化空气流的第一部分的剩余部分以-160℃至-170℃的温度从高压热交换器的出口取出;在高压过冷器中将所述第一高压纯化空气流的第一部分的剩余部分相对于整个废氮流进一步冷却5℃和10℃;以及使从高压过冷器中输出的冷却的第一高压纯化空气流的第一部分的剩余部分在第三发电涡轮机中膨胀到高压蒸馏塔的压力并且将总排放流供给到高压塔的下段中。
在一个或多个实施方案中,根据本公开的用于产生氧气的方法可以包括以下步骤:在第一压缩机中压缩入口空气流以形成具有至少3.5巴的压力和高于150℃的温度的压缩入口空气流;将所述压缩入口空气流冷却到低于25℃的温度;通过去除所述压缩入口空气流中存在的任何二氧化碳和水的至少90摩尔%来纯化所述压缩入口空气流并且从而形成纯化的入口空气流;将所述纯化的入口空气流分成第一部分和第二部分;进一步压缩所述纯化的入口空气流的第一部分以形成具有约20巴至约90巴的压力的中压纯化空气流和具有约70巴至约150巴的压力的高压纯化空气流,所述高压纯化空气流具有比所述中压纯化空气流的压力大的压力;在热交换器中冷却所述中压纯化空气流和所述高压纯化空气流;使所述高压纯化空气流的第一馏分在第一发电涡轮机中膨胀以形成第一膨胀的纯化空气流;使所述高压纯化空气流的第二馏分在第二发电涡轮机中膨胀以形成第二膨胀的纯化空气流;使所述中压纯化空气流在第三发电涡轮机中膨胀以形成第三膨胀的纯化空气流;使所述第一膨胀的纯化空气流、所述第二膨胀的纯化空气流、所述第三膨胀的纯化空气流以及所述纯化的入口空气流的第二部分通过蒸馏塔并且形成基本上纯的液氧的出口流和包含氮的废物流;将基本上纯的液氧的出口流压缩到高于150巴的压力;以及在热交换器中将基本上纯的液氧的出口流加热到相对于所述中压纯化空气流和所述高压纯化空气流高于-10℃的温度以形成基本上纯的高压氧气的出口流。
在另外的实施方案中,所述方法可以关于以下语句中的任何一个或多个来限定,所述语句可以任何数量和顺序组合。
冷却压缩的入口空气流可以包括将热量从压缩的入口空气流传递到来自发电循环的工作流体流。
可以通过将热量从压缩的入口空气流传递到来自发电循环的工作流体流将压缩的入口空气流冷却到第一降低的温度,并且可以将压缩的入口空气流相对于冷却水流冷却到第二进一步降低的温度。
所述纯化可以包括使压缩的入口空气流通过双床吸附系统。
纯化的入口空气流的第一部分可以占纯化的入口空气流的约25摩尔%至约75摩尔%。
中压纯化空气流可以占纯化入口空气流的第一部分的约30摩尔%至约50摩尔%,并且高压纯化空气流占纯化入口空气流的第一部分的约70摩尔%至约50摩尔%。
所述方法可以包括在使纯化入口空气流的第二部分通过蒸馏塔之前,将纯化入口空气流的第二部分相对于包含氮气的废物流的一部分冷却。
可以将待在第一发电涡轮机中膨胀的高压纯化空气流的第一馏分以约-20℃至约-40℃的温度范围从热交换器中抽出。
可以将待在第二发电涡轮机中膨胀的高压纯化空气流的第二馏分以约-160℃至约-170℃的温度范围从热交换器中抽出。
可以将待在第三发电涡轮机中膨胀的中压纯化空气流以约-80℃至约-120℃的温度范围从热交换器中抽出。
蒸馏塔可以包括双塔蒸馏系统。
可以将基本上纯的液氧的出口流压缩到约200巴至约500巴的压力。
在另一个方面,发电系统可以包括提供被配置用于发电的高压气态氧气流的集成空气分离方法。更确切地说,发电方法可以包括以下步骤:将燃料、O2以及循环CO2工作流体引入到燃烧室中;使所述燃料燃烧以提供包含所述工作流体的燃烧产物流;使所述燃烧产物流在涡轮机中膨胀以发电;通过使涡轮机排放流通过初级热交换单元将热量从涡轮机排放流中抽出以提供冷却的涡轮机排放流;还从冷却的涡轮机排放流中去除除了工作流体之外,也存在于冷却的涡轮机排放流中的一种或多种次要组分以提供纯化的冷却的涡轮机排放流,其中至少大部分是工作流体;将工作流体在压缩机系统中压缩;将含有燃料中存在的碳的压缩的CO2流抽出;使工作流体通过相同的初级热交换单元以使得使用抽出的热量升高工作流体的温度;向工作流体供应额外量的外部产生的热量(优选地在中等温度水平,如约400℃);以及使工作流体再循环到燃烧室中。
具体来说,所述集成的空气分离方法可以包括以下步骤:将空气在使用具有2.5至12的压力比的非冷却区段操作的第一空气压缩机和第二空气压缩机中加压;将加压空气的绝热压缩热的至少一部分从非冷却区段传递到循环CO2工作流体流,所述传递的热量包含在发电过程中向工作流体供应的额外热量的至少一部分;将纯化的加压空气相对于产物O2和N2流进行低温冷却;在一个或多个蒸馏塔中分离空气以形成液态O2流和氮气流;泵送液态O2流以提供引入燃烧室中的O2的至少一部分。
在另外的实施方案中,一种用于发电的方法可以包括以下步骤:在燃烧室中在再循环CO2工作流体流存在下用基本上纯的高压氧气流使燃料燃烧以形成处于大于150巴的压力的包括CO2的燃烧产物流;使包括CO2的燃烧产物流在涡轮机中膨胀以形成涡轮机排出流并且发电;在回热式热交换器中从涡轮机排出流中去除热量;从涡轮机排出流中分离CO2以形成再循环CO2工作流体流;压缩再循环CO2工作流体流;使用在回热式热交换器中从涡轮机排出流中去除的热量加热再循环CO2工作流体流的至少一部分并且还使用额外的加热对再循环CO2工作流体流的至少一部分进行加热;将再循环CO2工作流体流从回热式热交换器通到燃烧室中;以及通过以下方法形成基本上纯的高压氧气流,其中:将入口空气流在第一压缩机中压缩以形成具有至少3.5巴的压力和高于150℃的温度的压缩入口空气流;使用来自压缩入口空气流的热量作为额外的加热以用于加热再循环CO2工作流体流的至少一部分以冷却压缩入口空气流;将压缩入口空气流纯化以形成纯化的入口空气流;将纯化的入口空气流分成第一部分和第二部分;将纯化的入口空气流的第一部分压缩以形成具有约20巴至约90巴的压力的中压纯化空气流和具有约70巴至约150巴的压力的高压纯化空气流,所述高压纯化空气流具有比所述中压纯化空气流的压力大的压力;将所述中压纯化空气流和所述高压纯化空气流在热交换器中冷却;使所述高压纯化空气流的第一馏分在第一发电涡轮机中膨胀以形成第一膨胀的纯化空气流;使所述高压纯化空气流的第二馏分在第二发电涡轮机中膨胀以形成第二膨胀的纯化空气流;使所述中压纯化空气流在第三发电涡轮机中膨胀以形成第三膨胀的纯化空气流;使所述第一膨胀的纯化空气流、所述第二膨胀的纯化空气流、所述第三膨胀的纯化空气流以及所述纯化的入口空气流的第二部分通过蒸馏塔并且形成基本上纯的液氧的出口流和包含氮气的废物流;将所述基本上纯的液氧的出口流压缩到大于150巴的压力;并且在所述热交换器中将所述基本上纯的液氧的出口流相对于所述中压纯化空气流和所述高压纯化空气流加热到高于-10℃的温度以形成基本上纯的高压氧气。
附图说明
图1图示了根据本公开的实施方案,被配置成产生高压氧的低温空气分离单元的示意性流程图,所述低温空气分离单元可以与发电系统集成;并且
图2图示了被配置用于在根据本公开的实施方案产生的氧气中使燃料燃烧的发电循环的示意性流程图。
具体实施方式
现在将在下文中参考附图更充分地描述本公开的一些方面,在所述附图中,示出了本公开的一些而非所有实现方式。实际上,本公开的各种实现方式可以许多不同的形式表示并且不应当被视为限于本文所述的实现方式;相反,提供这些示例性实现方式以使本公开将是全面和完整的,并且将向本领域技术人员充分传达本公开的范围。举例来说,除非另外指明,否则被描述为第一、第二等的事物不应当被解释为表示特定顺序。此外,可以被描述为在其他事物上方的事物(除非另外指明)可以改为在下方,反之亦然;并且类似地,被描述为在其他事物左侧的事物可以改为在右侧,反之亦然。除非上下文另外明确规定,否则如本说明书和所附权利要求中所用的单数形式“a/an(一)”、“所述”包括复数指代对象。相同的附图标记在全文中指的是相同的元件。
本公开的方面涉及一种用于产生高压氧的空气分离方法。根据另一个方面,一种系统和方法可以提供用于发电过程的高压气态氧气流。在一些方面,发电系统通常可能需要每兆瓦(MW)装机净电输出约11至12公吨/天(MT/D)的氧气流量。举例来说,预期使用CO2作为工作流体的300MW天然气发电系统在典型操作条件下将需要约3500MT/D的氧气流量。在一些方面,与CO2发电涡轮机集成的燃烧室利用25摩尔%的纯O2和75%的CO2的混合物作为氧化剂介质。这种对纯O2的稀释确保了获得相当适中的燃烧温度,并且所述稀释与燃烧后的低一氧化碳水平和低过量氧要求一致。必要的混合气体(即CO2和O2的气体混合物)必须以约200巴至约500巴范围的涡轮机入口压力产生。此外,根据一些方面,可以将混合气体在CO2再循环节能器热交换器中在高压下预热到约600℃至800℃范围的温度。如果以最多100巴的常规压力水平产生O2,则必须将低压O2与处于相同低压的CO2混合,然后在单独的CO2压缩机组中压缩到所需的燃烧压力,所述CO2压缩机组通常可能包括CO2+O2气体压缩机和产生单相致密CO2+O2混合物的水冷式热交换器,之后是高压泵。此外,CO2+O2气体压缩机需要超过约150巴的排放压力。确切的排放压力将取决于用于将混合流冷却到CO2+O2气体混合物高于它的临界压力时的温度的冷却水的温度。与纯CO2气体相比,CO2+O2气体混合物的临界压力升高。
如先前所提及,本公开的方面可以通过以大到足以使用发电过程进行发电的所需流量产生具有约200巴至500巴范围的压力的高压O2来提供显著的优势。本发明公开的系统和方法被特别配置用于以用于发电系统和方法中的所需流量并且以至少150巴、至少180巴或至少200巴(例如,在一些实施方案中,最大值是约600巴)的压力提供氧气。更具体来说,可以约150巴至约600巴、约180巴至约550巴或约200巴至约500巴的压力产生氧气。
根据利用如本文所述的氧气制备系统和方法的发电循环的一个方面,可以消除CO2+O2压缩机组加上泵。在另一个示例性方面,空气分离单元可以被安装在涡轮机和节能器热交换器附近以便于集成来自空气压缩机的所期望的热量。此外,将空气分离单元设置在涡轮机和节能器热交换器附近可以有利地提供具有更短长度和/或更小直径的高压氧输送管线。
为了产生处于如本文所述的压力的O2,根据一个方面,所述系统利用常规的低温空气蒸馏系统,其包括双塔系统,例如像双塔系统。所述双塔系统可以包括在约5.4巴的压力下操作的塔底部分(即高压塔)以将部分液态的空气进料分离成气态氮气流和富氧液体流。所述高压底塔可以在至少2.5巴、至少3巴或至少5巴的压力下操作,如约3巴至约50巴、约3.5巴至约10巴或约4巴至约8巴。在一些方面,氮气流可以离开高压塔的塔顶并且可以在被放置在双塔系统的塔顶部分(即低压塔)的贮槽中的液位上方的热交换器中冷凝,在一些方面,所述塔顶部分可以约在1.3巴的压力操作。所述低压顶塔可以在小于2.5巴或小于2巴的压力下操作,如1巴至约2.4巴、约1巴至约2.2巴或约1巴至约2巴。
离开低压塔的塔底蒸馏区段的总液态O2流向下移动并且通过再沸器冷凝器,其中液态O2流的一部分蒸发并且液态O2流的剩余部分收集在低压塔的贮槽中。在再沸器冷凝器中通过冷凝离开高压塔的塔顶蒸馏区段的氮气而形成的液态N2在双塔系统的低压塔和高压塔这两者中用作回流。离开高压塔的基部的富氧液体流在低压塔的中点附近提供。回流氮流和富集液氧流都通过利用离开低压塔的塔顶的废氮的过冷器以在阀门中的压力降低之前过冷到低于它们对应的饱和温度以将蒸气产生减到最低限度。根据一个方面,低压塔的下段将氧气富集到所期望的纯度以在用于发电过程中时获得最佳效率。举例来说,根据本公开制备的氧气流的纯度可以大于98%O2、大于99%O2或大于99.5%O2(摩尔%)以降低循环再循环CO2流和净CO2产物流中惰性氩气的浓度,这是通过进入发电系统的总燃料进料中的氧与碳的比率来固定的。98%(摩尔)的最低氧气纯度的限制特别针对制氧设备与发电系统的集成,所述发电系统的特征在于需要限制使用CO2作为工作流体的闭式循环中惰性氩气或氮气的量。其他氧-燃料循环可能没有这种限制,因此可以使用低于本文考虑的最低98摩尔%的氧气纯度。应当认识到的是,在这种情况下,在更低的氧气纯度的情况下,主空气压缩机的最低排放压力可以低到3.5巴。根据一个方面,泵送液氧系统的所期望特征是能够使用多级离心式或往复式氧泵将总产物氧流作为液氧从低压塔的贮槽中抽出并且输送处于所需压力的液氧流。更复杂的蒸馏布置是可能的,其可以包括提供单独的氩气和/或纯气体提取、多个再沸器和/或多个连接的塔布置。
由本公开的方面解决的一些复杂情况可以包括将可以具有如本文另外描述的基本上高压的液氧流有效地加热到接近环境温度以及提供在设备周围实现总热平衡所需的大量极低温制冷。因此,本公开的一个方面有利地包括利用第一空气压缩机,所述第一空气压缩机将产生氧气流所需的总空气流压缩到约2巴或更大、约3.5巴或更大或约5巴或更大的压力(例如在一些实施方案中,高达约50巴的最大值)。在某些实施方案中,压缩机可以将总空气流压缩到约2巴至约20巴、约3.5巴至约15巴、约4巴至约10巴或约5巴至约6巴的初始压力。被压缩到这样的压力范围的入口空气流在本文可以被定义为低压流(即表示所述流被加压,但是相对于如本文所述的其他流处于低压)。该空气压缩机有利地被配置为绝热空气压缩机而在各级之间没有中间冷却。它的出口温度优选地将高于150℃并且更优选地将高于200℃(例如,在一些实施方案中,最大值是约600℃)。举例来说,出口温度可以是约160℃至约500℃、约190℃至约400℃或约210℃至约350℃。
直接或间接冷却热排放空气流,并且可以将压缩热传递到闭式循环CO2发电系统,从而提供外部产生的热量的至少一部分,这提高了发电系统的效率。压缩入口空气的低压流可以将足够的热量传递到发电循环以将压缩入口空气的低压流降低到低于100℃、低于80℃或低于70℃的温度,如约30℃至约100℃、约35℃至约90℃或约40℃至约80℃。然后将压缩的冷却空气流相对于环境冷却装置,例如像冷却水和/或相对于温度已经通过与从空气分离设备排放的优选无水的废氮流直接接触而降低的冷水流冷却到低于环境温度。由此产生的低压入口空气流可以处于低于25℃、低于20℃、低于15℃或低于10℃的温度,如约-10℃至约20℃、约-5℃至约15℃或约0℃至约10℃。
然后使冷却的压缩的总空气流通过空气纯化系统。在一些实施方案中,合适的纯化系统包括填充有固体粒状吸附剂的切换容器,在空气流在空气分离设备中冷却到它的液化温度之前,所述吸附剂从其中去除水、CO2以及痕量烃。同样包括其他纯化系统以根据本公开使用。所述纯化系统优选地被适配成去除入口空气流中存在的任何CO2和/或任何水和/或任何烃的至少一部分。举例来说,相对于初始入口空气流中存在的量,CO2、水或烃中的任何一种或多种可以减少至少75摩尔%、至少90摩尔%、至少95摩尔%或至少99摩尔%。纯化的空气流因此可以基本上不含CO2、水或烃中的任何一种或多种(或可以期望地去除的任何另外的杂质,如可以合理预期存在于环境空气中的NOx、CO等)。基本上不含可以意指有少于1摩尔%、少于0.5摩尔%或少于0.1摩尔%的所述物质存在于纯化空气流中。
可以将纯化空气流分成两个或更多个部分。可以将纯化空气流的分开部分进一步压缩或保持在与入口空气流最初被压缩的压力基本上相同的压力。纯化空气流可以基本上均等地划分或一个部分可以含有更大比率的纯化空气流。
将纯化空气流的至少一部分在至少空气压缩机中压缩。举例来说,一个或多个压缩机可以被配置成压缩纯化空气流的第一部分,所述第一部分占离开纯化系统的总空气流的约10摩尔%至约90摩尔%、约25摩尔%至约75摩尔%或约35摩尔%至约50摩尔%。在一个示例性实施方案中,第一空气压缩机可以将纯化空气流的第一部分压缩到约20巴至约90巴、约35巴至约85巴或约50巴至约80巴的压力。处于这样的压力范围的空气流可以被定义为中压空气流。可以将占纯化空气的第一部分的约30摩尔%至约50摩尔%的量的中压压缩空气通到如所论述的热交换器中。可以将占纯化空气的第一部分的约70摩尔%至约50摩尔%的量的中压压缩空气通到第二空气压缩机中以压缩到约70巴至约150巴、约75巴至约140巴或约80巴至约125巴的压力。纯化空气的第一部分的该进一步压缩量可以被定义为高压空气流。
虽然在本文使用相对术语“低压空气流”、“中压空气流”以及“高压空气流”,但是应当了解的是,所述相对术语是由本文所述的压力范围界定的。
使由纯化的加压冷却空气流的第一部分形成的中压纯化空气流和高压纯化空气流(已经在通过高压空气压缩机期间被加热)通过高压热交换器,其中中压纯化空气流和高压纯化空气流将热量传递到离开多级离心式或往复式氧泵的高压液氧流以通过有效的方式将加压氧气流加热到接近环境温度而使加热流与冷却流之间的温差最小。
在一些实施方案中,可以将所有的纯化空气流加压以形成中压纯化空气流和高压纯化空气流。根据另一个方面,可以将纯化的加压冷却空气流的第二部分在低压热交换器中冷却。纯化的加压冷却空气流的第二部分可以仍然是低压空气流(即仍然处于入口空气流最初被压缩的压力范围),并且第二部分可以占离开纯化系统的总空气流的约10摩尔%至约90摩尔%、约25摩尔%至约75摩尔%或约50摩尔%至约65摩尔%。可以将第二部分在低压热交换器中冷却到纯化空气流的大约液化温度,同时将来自低压蒸馏塔的塔顶的废氮的一部分加热到接近环境温度。冷却的空气流然后作为空气进料的一部分进入高压蒸馏塔的基部。可以将废氮流的剩余部分在高压空气/氧气热交换器中加热。废氮流在这两个热交换器之间的分数份额是根据在低压热交换器和高压热交换器中实现最低出口空气温度的需要以及冷却流与加热流之间的最低经济温差来固定的。
在一些方面,膨胀涡轮机可以提供所期望的大量极低温水平制冷以产生高度纯化的高压气态氧产物流。第一膨胀涡轮机可以被配置成使来自一个或多个高压空气压缩机的第一纯化的冷却加压空气流的一部分膨胀。更具体来说,高压纯化空气流的第一馏分可以形成第一涡轮机入口流并且可以作为来自高压热交换器的侧馏分,例如以约-20℃至约-40℃的温度从高压纯化空气流中获取。在一个方面,第一涡轮机可以是单级或多级离心式膨胀涡轮机,具有与双塔蒸馏系统的低压塔的压力基本上相似的出口压力。此外,可以将来自高压纯化空气流的第一馏分的膨胀部分在粗液氧进料点附近引入到双塔蒸馏系统的低压塔中。根据一些方面,第一涡轮机流量可以是高压纯化空气流的约10%至约50%、约15%至约40%或约20%至约35%。因而,高压纯化空气流的剩余部分(即第二馏分)可以占总高压纯化空气流的约50%至约90%、约60%至约85%或约65%至约80%。可以在高压热交换器中将高压纯化空气流的剩余部分(或第二馏分)相对于加温高度纯化的高压氧气流和废氮流的至少一部分冷却。在一些方面,高压纯化空气流的第二馏分可以约-160℃至约-170℃的温度离开高压热交换器。在一个方面,可以通过使第二馏分通过总废氮流穿过的热交换器来将第二馏分进一步过冷约5℃至约10℃的量。额外的冷却有助于使在高压加压空气流的第二馏分在第二涡轮机中膨胀期间形成的液态空气的比例达到最大,所述第二涡轮机被专门设计成使高密度超临界低温空气流膨胀。第二涡轮机通过从高压纯化空气流的第二馏分中去除内部能量作为轴功率来使膨胀时形成的液态空气的比例达到最大。涡轮机排放流进入高压蒸馏塔的基部,其中它成为进入高压塔的总空气进料的一部分。将在高压纯化空气流的第二馏分膨胀时形成的液态空气的比例达到最大使高压纯化空气流的总流量减到最低限度并且使一个或多个高压空气压缩机消耗的功率量减到最低限度。在高压纯化空气流的第二馏分在涡轮机中膨胀之后形成的闪蒸蒸气馏分可以少于涡轮机出口流量的2%。
在高压热交换器中将来自一个或多个空气压缩机的约50巴至约80巴的压力的中压纯化空气流相对于加温高度纯化的高压氧气流和废氮流的至少一部分冷却到约-80℃至约-120℃的温度。它然后进入第三膨胀涡轮机中,其中它被冷却,从而产生功,并且出口流作为总进料空气流的一部分进入高压塔的基部。中压纯化空气流的涡轮机排放流可以具有最多15%的液态空气,这取决于它的入口压力和温度。
当使用仅需要氧气进行燃烧的天然气燃料时,上述型式的制氧设备适用于与包括闭式循环CO2工作流体的发电系统集成。如果要使用诸如煤或重油精炼残余物或生物质的重质燃料作为燃料,则进行另外的工艺步骤,如使用各种气化器形式进行部分氧化以将它们有效地转化成气体燃料,所述各种气化器形式在比可能另外需要的压力显著更低的压力下操作。为了从低温空气分离设备以两个不同的压力产生两个单独的氧气流,需要提供两个单独的液氧泵。第一主要部分是用于产生用于发电系统的燃烧室中的处于200巴至500巴的压力范围的氧气。第二次要部分是用于产生用于重质燃料部分氧化反应器中的处于30巴至150巴的压力范围的氧气,所述重质燃料部分氧化反应器被设计成产生最终用于发电系统的燃烧室中的燃料气流。在这种情况下,在高压热交换器中将两个单独的高压氧气流加热到接近环境温度,并且所述系统的其余特征是如前所述具有修改的优化的工艺条件,所述工艺条件一般在上文对于单一氧气压力系统所限定的参数的范围内。
两个平行热交换器(一个是高压并且一个是低压)与两个高压空气流、两个气态空气膨胀涡轮机、高压液态空气膨胀涡轮机以及在两个热交换器之间分配的废氮加热流的布置给出了最佳热交换系统,其将压缩机功率减到最低限度。
根据一个方面,被配置成加热高压氧并且冷却空气的所期望的高压热交换器可以进一步被配置成承受至少500巴的压力。在一些方面,所述高压热交换器可以被配置成具有足够大的比质量以使得它能够承受氧气通过时外来污染物的可能点燃而不会发生灾难性故障,这可以包括构成高压热交换器的材料的氧化。举例来说,高压热交换器可以由金属构成,所述金属能够抵抗当存在点火源时在纯氧中的燃烧。在一些方面,合适的金属可以包括不锈钢和/或高镍合金。根据另一个方面,所述高压热交换器可以具有足够大的表面积与体积比,这是紧凑型板翅式热交换器的典型特征。一种示例性高压热交换器可以如美国专利号6,360,561中所述由有限公司供应,该美国专利以引用的方式整体并入本文,特别是关于以安全和有效的方式将高压氧气流从低温加热到环境温度的建议功能。此外,一种示例性高压热交换器可以是不锈钢扩散粘结紧凑型热交换器,其包括美国专利号6,360,561中所述的安全特征。尽管本文所述的一些示例性高压热交换器由HEATRIC有限公司供应,但是本领域的普通技术人员可以了解的是,在本文所述的各个方面可以利用由不同供应商供应的其他紧凑型热交换器。
根据本公开的系统和方法的一个示例性实施方案图示于图1中。尽管图1是关于特定操作参数描述的,但是应当了解的是,所述操作参数是示例性的,并且可以如本文另外所述,包括另外的操作参数。如图1中所示,可以将入口空气流24在绝热轴流压缩机30中压缩到至少5.7巴的压力。然而,入口空气流24的压力相对于本文所述的其他流可以是足够低的,被认为是低压空气流。加压的入口空气作为流25以大约和/或至少224℃的温度离开绝热轴流压缩机30并且通过高压热交换器29。高压热交换器29可以用于加热多个流。在该所示的实施方案中,高压热交换器29加热入口二氧化碳(CO2)流27,其具有约320巴的压力并且从CO2发电循环中的CO2高压泵排放物中以约50℃的温度获取,如本文另外所述。更具体来说,高压热交换器29将入口CO2流27加热到约221℃,其作为出口CO2流28离开高压热交换器。这将主空气压缩机30中空气的绝热压缩热的约80%传递到CO2发电循环以提高发电循环的效率。此外,热量回收在燃烧循环中以超过90%的效率转换成净发电量,与常规的中间冷却空气压缩相比,这也补偿了绝热压缩的15%功率增加。与常规的中间冷却轴流空气压缩机加上离心式空气压缩机的安装成本相比,轴流空气压缩机30可以在安装压缩机和/或管道输送期间提供显著的成本节约。这样的成本节约在大型(即大于1000MT/天)制氧设备的情况下确实如此。
加压空气流26以约55℃的温度离开高压热交换器29并且进入直接水冷式填料塔74。将来自管线26的空气流在直接水冷式填料塔74中冷却到约8℃并且作为冷却的加压空气流在管线36中离开。具体来说,直接水冷式填料塔74具有两个填料区段。直接水冷式填料塔74的塔顶区段74a由处于约7℃的冷水流31进料。在该举例说明的实施方案中,冷水流31是通过使入口冷却水流41与废氮(N2)流43在填料塔72中直接接触而产生的。废氮流43(其优选地几乎没有或没有水含量)是从低温空气分离设备提供的,并且当在填料塔72中废氮流接触入口冷却水流41时,所述氮气流被加湿并且作为废物流42喷射到大气中。
直接水冷式填料塔74的塔底区段74b进一步接收第二冷却水入口流73。塔底区段进一步被配置成将空气流26预冷却以接近第二冷却水入口流73的温度。这种布置在高环境温度下是特别有用的,这是因为出口空气流36一般可以保持在低于15℃,即使是在35℃的环境温度下也是这样。冷却水在流37中离开直接水冷式填料塔74并且可以如所期望进行再循环。
出口空气流36经由有效的除水雾器区段离开直接水冷式填料塔74并且进入具有双重吸附床50a和50b的吸附系统50中,其中去除二氧化碳、水以及痕量烃。出口空气流36通过一组阀门36a、36b、36c、36d进入吸附系统50中。双重吸附床50a和50b依次操作并且由流44中的氮气再生,所述流44通过鼓风机75以使得流44中氮气的压力增加到约1.3巴。通过加热器76将氮气流44加热到约75℃以使双床吸附系统50中的吸附剂再生。根据一个方面,加热器76使用来自CO2再循环压缩机排放流的至少一些废热。通过利用绕过加热器76的旁路管线48冷却双床吸附系统50。
再生氮气流49通过一组阀门49a、49b、49c、49d进入双床吸附系统50中,与出口空气流36逆流。另外地或可选地,经由废物管线51将废氮排放到大气中。离开双床吸附系统50的空气流52分成两个流。根据一个方面,第一空气流部分54(占空气流52的约47摩尔%)以约5.5巴的压力进入第一空气增压器中间冷却多级离心式空气压缩机32中并且被压缩到约68.9巴的压力。如上文所述,第一空气流部分54可以占离开纯化系统(例如双床吸附系统50)的总空气流的约10摩尔%至约90摩尔%、约25摩尔%至约75摩尔%或约35摩尔%至约50摩尔%。
在通过第一空气增压器中间冷却多级离心式空气压缩机32之后,将第一空气流部分54在水冷却器32a中冷却并且分开。出口空气流60占总空气流52的约15.8摩尔%。出口空气流60可以占来自第一空气流部分54的空气的约30摩尔%至约50摩尔%并且可以处于约20巴至约90巴、约35巴至约85巴或约50巴至约80巴的压力。因而,出口空气流60可以被认为是如本文另外所定义的中压空气流。将第一空气流部分54中存在的总空气流52的剩余约31.2摩尔%在第二空气增压器离心式空气压缩机33(例如单个离心式压缩机叶轮)中压缩到约103.4巴的压力并且作为冷却的空气流59离开第二空气增压器中间冷却离心式空气压缩机33。冷却的空气流59可以占来自第一空气流部分54的空气的约50摩尔%至约70摩尔%并且可以处于约70巴至约150巴、约75巴至约140巴或约80巴至约125巴的压力。因而,冷却的空气流59可以被认为是如本文另外所定义的高压空气流。根据一个方面,第一空气增压器离心式空气压缩机32和第二空气增压器离心式空气压缩机33以及主空气压缩机30可以由单个电动机31驱动。
分别离开第一和第二空气增压器中间冷却离心式空气压缩机33、32并且占总空气流52的约47%的加压空气流59、60进入高压热交换器16。包括总空气流52的剩余53%并且具有约5.5巴的压力的第二空气流部分53进入低压热交换器17。第二空气流部分53可以占总空气流52的例如约10摩尔%至约90摩尔%、约25摩尔%至约75摩尔%或约40摩尔%至约60摩尔%。根据一个方面,高压热交换器16可以是不锈钢或镍合金扩散粘结紧凑型热交换器等,其被设计有美国专利号6,360,561中所述的安全特征,而低压热交换器17可以是铝板翅式单元热交换器。
如上文部分所述,将总空气流52分开,冷却并且部分液化以形成流68、69,其最终进入高压塔2的基部,所述高压塔2在一些方面可以是传统用于产生高纯度99.5%氧的常规双蒸馏塔。高压塔2的塔顶经由再沸器冷凝器3与低压塔1连接。高压塔2因此可以是下塔,并且低压塔1可以是上塔。上低压塔1在1.25巴的平均压力下操作并且将粗氧进料流10和回流氮流6(这两者都是从下高压塔2中接收)分离成纯氧液体产物流11和废氮流5,所述废氮流5从低压塔1的塔顶离开。
高压塔2提供产物气态纯氮气流77,其离开高压塔2的塔顶并且在再沸器冷凝器3中冷凝。出口液氮流8分成两个部分。流7为高压塔2提供回流,而流70在通过阀门70a之后最终变成流6以为低压塔1提供回流。来自高压塔2的塔底产物流9是含有经由流68和流69提供给高压塔2的空气进料中基本上所有氧气的液体流。根据一些方面,过冷器4将离开低压塔1的废氮流5在它的饱和温度下加热到约-174℃,同时使粗氧出口流9和低压塔回流液氮流70过冷。在一些方面,在通到低压塔1中之前,使粗氧出口流9和低压塔回流流70分别在减压阀9a和70a中膨胀。
在一些方面,再沸器冷凝器3进一步被配置成使用从冷凝氮气释放的热量来使向下流动的液氧流71沸腾。离开再沸器冷凝器3的开口基部的出口氧流包含在贮槽中的液位控制下离开低压塔1的基部的液氧产物和沿塔与向下流动的液体流逆流向上流动的蒸气流的混合物。根据一个方面,可以在多级离心泵12中将液氧产物流11压缩到约325巴,所述多级离心泵12可以由电动机13驱动。在一些方面,经由新液氧产物流11从低压塔1中去除液氧需要在双塔系统(即低压塔1和高压塔2)周围维持热平衡。当在约-173℃的饱和温度下在约5.38巴的压力下,进入高压塔2中的总空气进料(即空气流68和空气流69)的约23%是液态空气,而总空气进料的77%是空气时,维持热平衡。
将以约-167.7℃的温度和约320巴的压力离开多级离心泵12的高压液氧产物流14在高压热交换器16中加热。加热的高压氧产物流15可以约18.3℃的温度离开高压热交换器16。举例来说,氧气产物流15可以处于高于-10℃、高于0℃或高于5℃的温度(例如,最大值是50℃)。更具体来说,所述温度可以是约-5℃至约50℃、约0℃至约40℃或约5℃至约30℃。
在一些方面,用于空气分离过程的制冷可以基本上由膨胀涡轮机中加压空气流中的内部能量的排出加上在将加压空气流的压力降低到蒸馏系统的压力时产生的制冷来提供。将具有约103.4巴的压力的高压空气流59在高压热交换器16中冷却到约-29℃。使空气流59的第一馏分63(其例如占总空气流52的约8%)通过第一膨胀涡轮机18,所述第一膨胀涡轮机18可以包括被串联布置并且驱动发电机19的两个离心膨胀级。具有约-189℃的温度和约1.25巴的压力的涡轮机排放流64在大致接近粗氧进料流10进入低压塔的位置处进入低压塔1。如上文所述,通过形成第一膨胀涡轮机18的两个离心膨胀级的流量可以是空气流59的约10%至约50%、约15%至约40%或约20%至约35%。
将空气流59的第二馏分65(其例如占总空气流52的约23.2%)在高压热交换器16中冷却到约-165℃。在一些方面,随后将第二馏分流65在热交换器66中冷却到约-173℃。随后冷却的部分67离开热交换器66,所述热交换器66将废氮流5加热到约-169℃。根据一些方面,加热的废氮流56离开热交换器66并且被分成第一废氮流57和第二废氮流58。第一废氮流57占空气进料的约57.8%并且在低压热交换器17中加热,而第二废氮流58占空气进料的约21.6%并且在高压热交换器16中加热。第一废氮流57作为第一加热的废氮流45以约8.8℃的温度离开低压热交换器17,而第二废氮流58作为第二加热的废氮流46以约18.3℃的温度离开高压热交换器16。在一个方面,第一加热的废氮流45和第二加热的废氮流46可以组合以形成组合的加热的废氮流47,从其中抽取废氮流43用于通到填料塔72中并且从其中抽取氮气流44用于通过鼓风机75。
离开热交换器66的冷却的空气流67进入第二膨胀涡轮机20中,所述第二膨胀涡轮机20可以被配置成驱动发电机22。第二膨胀涡轮机20可以被设计成以约5.4巴的压力排放入口空气流68。根据一些方面,第二膨胀涡轮机20可以包括离心膨胀轮,该离心膨胀轮被配置成在入口处利用高密度超临界加压空气操作并且排放由约1%蒸气和99%液体组成的入口空气流68。
在一个方面可以具有约68.9巴的压力的中压空气流60进入高压热交换器16并且冷却到约-101℃的温度。出口高压空气流61离开高压热交换器16并且进入第三膨胀涡轮机21,所述第三膨胀涡轮机21驱动发电机23。在第三膨胀涡轮机21中,出口高压空气流61的压力可以降低到约5.4巴。在一个方面,第三膨胀涡轮机排放流62与来自低压热交换器17的出口空气流55结合并且组合的空气流69进入高压塔2的基部。
所举例说明的用于形成高压氧的系统和方法特别适于与需要连续输入高压氧用于燃料燃烧的发电系统和方法一起使用。更具体来说,利用CO2工作流体流的发电系统和方法可以与如本文所述的氧气生产系统和方法组合。因而,本公开还涉及发电循环,所述发电循环可以包括对于使用CO2工作流体来说重要的多种元件和工艺步骤。可以被包括在根据本公开的发电循环中的元件和工艺步骤的非限制性实例描述于美国专利号8,596,075、美国专利号8,776,532、美国专利号8,959,887、美国专利号8,986,002、美国专利号9,068,743、美国专利号9,416,728、美国专利号9,546,814、美国专利公开号2012/0067054以及美国专利公开号2013/0213049中,这些文献的公开内容以引用的方式并入本文。
根据本公开有用的发电循环可以包括其中在工作流中使用CO2(特别是超临界CO2或sCO2)的任何系统和方法。作为非限制性实例,发电系统和方法可以被配置成使得以高温和高压提供再循环CO2流,将其提供到其中含碳燃料在氧气中燃烧的燃烧室中,在涡轮机中膨胀以发电,在热交换器中冷却,纯化以去除水和任何其他杂质,加压,使用从涡轮机排放物中获取的热量再加热,并且再次通到燃烧室中以重复所述循环。这样的系统和方法是有益的,这是因为所有燃料和燃烧衍生的杂质、过量的CO2以及水都作为液体或固体(例如灰分)被去除,并且任何流几乎没有大气排放。所述系统和方法经由例如在再循环CO2流已经被再加压之后并且在燃烧之前使用低温水平(即低于500℃)热输入来实现高效率。
根据本公开有用的发电循环可以包括比上述更多的步骤或更少的步骤并且一般可以包括其中使高压再循环CO2流膨胀用于发电并且再次再循环用于进一步发电的任何循环。如本文所用,高压再循环CO2流可以具有至少100巴、至少150巴、至少200巴或至少300巴的压力。在一些实施方案中,高压再循环CO2流可以具有约100巴至约500巴、约150巴至约450巴或约200巴至约400巴的压力。在本文中提到高压再循环CO2流时,因此可以是处于上述范围内的压力的CO2流。这样的压力也适用于提到本文所述的其他高压流,如包含CO2的高压工作流或包含CO2的燃烧室排出流。
作为非限制性实例,发电系统100和其使用方法图示于图2中。系统100包括燃烧室115,在燃烧室115中在再循环CO2流143存在下用高压氧流15(如本文所述而产生)使含碳燃料进料112燃烧以形成高压高温燃烧产物流117,使所述高压高温燃烧产物流117在涡轮机120中膨胀以用发电机145发电。将来自涡轮机120的处于高温的排出流122在回热式热交换器125中冷却以产生低压低温涡轮机排出流127,使其通过分离器130,其中冷凝产物132(例如水)和基本上纯的再循环CO2流133从所述分离器130中离开。将基本上纯的再循环CO2流133在压缩机135中压缩以形成高压再循环CO2流137,将其分成第一部分再循环CO2流138和第二部分再循环CO2流27。将第一部分再循环CO2流138通到回热式热交换器125中,在其中将它相对于冷却涡轮机排出流122加热。第二部分再循环CO2流27通过热交换器29,在其中将它相对于如上文所述的加压空气入口流25加热。以这种方式,由通过热交换器29的逆流将空气入口流25的压缩热添加到再循环CO2流27中。使再循环CO2流28的加热部分通过回热式热交换器125以进一步加热第一部分再循环CO2流138。尽管加热的再循环CO2流28被示为进入回热式热交换器的热端,但是应当了解的是,加热的再循环CO2流28可以基于加热的再循环CO2流28的实际温度以适当的加热水平输入到回热式热交换器125中。此外,在一些实施方案中,加热的再循环CO2流28可以不返回到回热式热交换器125中。相反,加热的再循环CO2流28可以输入到再循环CO2流133和低温CO2流127中的一个或这两者中。尽管图示了单个回热式热交换器125,但是可以使用多个回热式热交换器以不同的温度范围操作,并且加热的再循环CO2流28可以输入到所述多个回热式热交换器中的任何一个或多个中。
在其他实施方案中,在进入回热式热交换器142中之前加热的再循环CO2流28可以与第一部分再循环CO2流138组合。在这些实施方案中,例如,可以向第二部分再循环CO2流27和/或加热的再循环CO2流28提供进一步压缩。
在再另外的实施方案中,涡轮机排出流142可以通过单独的热交换器(图1中未示)。可以使第一部分再循环CO2流138在进入回热式热交换器中之前通过单独的热交换器。可以抽出在通过回热式热交换器期间在适当的加热范围从第一部分再循环CO2流138获取的侧流并且使其通过单独的热交换器,然后可以将加热的侧流与第一部分再循环CO2流138以适当的加热范围重组。可以使离开回热式热交换器125的加热的再循环CO2流143的全部或一部分通过单独的热交换器以进行进一步加热。在这些示例性实施方案中,由流25中的压缩入口空气提供的热量向第一部分再循环CO2流138增添进一步的加热而超过可从单独的涡轮机排出流122获得的加热水平。之后将加热的再循环CO2流143输入到燃烧室115中。
将来自热交换器29的加热的再循环CO2流28经由通过回热式热交换器125而冷却并且作为再循环CO2流144离开其冷端,如所示,将再循环CO2流144与离开压缩机135的基本上纯的再循环CO2流137重组。
由如上文举例说明的氧气生产系统中入口空气流的压缩热提供的额外的加热可以特别可用于减少或消除否则存在于回热式热交换器的热端处的温差,输送温差是由于进入回热式热交换器中的涡轮机排出物和离开回热式热交换器的再循环CO2流的比热容不同导致。如本文所述的系统和方法被适配成通过提供必要量和质量的热量作为进一步加热来实现这样的益处。具体来说,氧气生产系统中的压缩机30可以约2.5至12或约2.5至10的一个或多个压缩比绝热(没有中间冷却)操作。
本发明的许多修改方案和其他实施方案将由已经获益于上述说明和相关附图中所呈现的教导的本发明所属领域的技术人员所想到。因此,应当了解的是,本发明不限于所公开的具体实施方案并且修改方案和其他实施方案意图被包括在所附权利要求的范围内。尽管在本文使用了特定的术语,但它们仅在一般的和描述性的意义上而不是为了限制的目的被使用。

Claims (13)

1.一种用于产生氧气的方法,所述方法包括:
在第一压缩机中压缩入口空气流以形成具有至少3.5巴的压力和高于150℃的温度的压缩入口空气流;
将所述压缩入口空气流冷却到低于25℃的温度;
通过去除所述压缩入口空气流中存在的任何二氧化碳和水的至少90摩尔%来纯化所述压缩入口空气流并且从而形成纯化的入口空气流;
将所述纯化的入口空气流分成第一部分和第二部分;
进一步压缩所述纯化的入口空气流的第一部分以形成具有约20巴至约90巴的压力的中压纯化空气流和具有约70巴至约150巴的压力的高压纯化空气流,所述高压纯化空气流具有比所述中压纯化空气流的压力大的压力;
将所述中压纯化空气流和所述高压纯化空气流在热交换器中冷却;
使所述高压纯化空气流的第一馏分在第一发电涡轮机中膨胀以形成第一膨胀的纯化空气流;
使所述高压纯化空气流的第二馏分在第二发电涡轮机中膨胀以形成第二膨胀的纯化空气流;
使所述中压纯化空气流在第三发电涡轮机中膨胀以形成第三膨胀的纯化空气流;
使所述第一膨胀的纯化空气流、所述第二膨胀的纯化空气流、所述第三膨胀的纯化空气流以及所述纯化的入口空气流的第二部分通过蒸馏塔并且形成基本上纯的液氧的出口流和包含氮气的废物流;
将所述基本上纯的液氧的出口流压缩到大于150巴的压力;以及
在所述热交换器中将所述基本上纯的液氧的出口流相对于所述中压纯化空气流和所述高压纯化空气流加热到高于-10℃的温度以形成基本上纯的高压氧气的出口流。
2.根据权利要求1所述的方法,其中冷却所述压缩入口空气流包括将热量从所述压缩入口空气流传递到来自发电循环的工作流体流。
3.根据权利要求2所述的方法,所述方法包括通过将热量从所述压缩入口空气流传递到所述来自所述发电循环的工作流体流来将所述压缩入口空气流冷却到第一降低的温度,并且包括将所述压缩入口空气流相对于冷却水流冷却到第二进一步降低的温度。
4.根据权利要求1所述的方法,其中所述纯化包括使所述压缩入口空气流通过双床吸附系统。
5.根据权利要求1所述的方法,其中所述纯化的入口空气流的第一部分占所述纯化的入口空气流的约25摩尔%至约75摩尔%。
6.根据权利要求1所述的方法,其中所述中压纯化空气流占所述纯化的入口空气流的第一部分的约30摩尔%至约50摩尔%,并且所述高压纯化空气流占所述纯化的入口空气流的第一部分的约70摩尔%至约50摩尔%。
7.根据权利要求1所述的方法,所述方法包括在使所述纯化的入口空气流的第二部分通过所述蒸馏塔之前将所述纯化的入口空气流的第二部分相对于所述包含氮气的废物流的一部分冷却。
8.根据权利要求1所述的方法,其中将待在所述第一发电涡轮机中膨胀的所述高压纯化空气流的第一馏分以约-20℃至约-40℃的温度范围从所述热交换器中抽出。
9.根据权利要求1所述的方法,其中将待在所述第二发电涡轮机中膨胀的所述高压纯化空气流的第二馏分以约-160℃至约-170℃的温度范围从所述热交换器中抽出。
10.根据权利要求1所述的方法,其中将待在所述第三发电涡轮机中膨胀的所述中压纯化空气流以约-80℃至约-120℃的温度范围从所述热交换器中抽出。
11.根据权利要求1所述的方法,其中所述蒸馏塔包括双塔蒸馏系统。
12.根据权利要求1所述的方法,其中将所述基本上纯的液氧的出口流压缩到约200巴至约500巴的压力。
13.一种发电的方法,所述方法包括:
在燃烧室中在再循环CO2工作流体流存在下用基本上纯的高压氧气流使燃料燃烧以形成处于大于150巴的压力的包括CO2的燃烧产物流;
使所述包括CO2的燃烧产物流在涡轮机中膨胀以形成涡轮机排出流并且发电;
在回热式热交换器中从所述涡轮机排出流中去除热量;
从所述涡轮机排出流中分离CO2以形成所述再循环CO2工作流体流;
压缩所述再循环CO2工作流体流;
使用在所述回热式热交换器中从所述涡轮机排出流中去除的所述热量加热所述再循环CO2工作流体流的至少一部分并且还使用额外的加热对所述再循环CO2工作流体流的至少一部分进行加热;
将所述再循环CO2工作流体流从所述回热式热交换器通到所述燃烧室中;以及
通过以下方法形成所述基本上纯的高压氧气流,在所述方法中:
将入口空气流在第一压缩机中压缩以形成具有至少3.5巴的压力和高于150℃的温度的压缩入口空气流;
使用来自所述压缩入口空气流的热量作为所述额外的加热用于加热所述再循环CO2工作流体流的至少一部分,以冷却所述压缩入口空气流;
将所述压缩入口空气流纯化以形成纯化的入口空气流;
将所述纯化的入口空气流分成第一部分和第二部分;
将所述纯化的入口空气流的第一部分压缩以形成具有约20巴至约90巴的压力的中压纯化空气流和具有约70巴至约150巴的压力的高压纯化空气流,所述高压纯化空气流具有比所述中压纯化空气流的压力大的压力;
将所述中压纯化空气流和所述高压纯化空气流在热交换器中冷却;
使所述高压纯化空气流的第一馏分在第一发电涡轮机中膨胀以形成第一膨胀的纯化空气流;
使所述高压纯化空气流的第二馏分在第二发电涡轮机中膨胀以形成第二膨胀的纯化空气流;
使所述中压纯化空气流在第三发电涡轮机中膨胀以形成第三膨胀的纯化空气流;
使所述第一膨胀的纯化空气流、所述第二膨胀的纯化空气流、所述第三膨胀的纯化空气流以及所述纯化的入口空气流的第二部分通过蒸馏塔并且形成基本上纯的液氧的出口流和包含氮气的废物流;
将所述基本上纯的液氧的出口流压缩到大于150巴的压力;并且
在所述热交换器中将所述基本上纯的液氧的出口流相对于所述中压纯化空气流和所述高压纯化空气流加热到高于-10℃的温度以形成所述基本上纯的高压氧气。
CN201780062124.4A 2016-08-30 2017-08-29 用于产生高压氧的低温空气分离方法 Active CN109804212B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662381325P 2016-08-30 2016-08-30
US62/381,325 2016-08-30
PCT/IB2017/055193 WO2018042336A2 (en) 2016-08-30 2017-08-29 Cryogenic air separation method for producing oxygen at high pressures

Publications (2)

Publication Number Publication Date
CN109804212A true CN109804212A (zh) 2019-05-24
CN109804212B CN109804212B (zh) 2021-06-29

Family

ID=59955590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780062124.4A Active CN109804212B (zh) 2016-08-30 2017-08-29 用于产生高压氧的低温空气分离方法

Country Status (11)

Country Link
US (1) US10746461B2 (zh)
EP (1) EP3507556A2 (zh)
JP (1) JP6750120B2 (zh)
KR (1) KR102446458B1 (zh)
CN (1) CN109804212B (zh)
AU (1) AU2017318652A1 (zh)
BR (1) BR112019003828A2 (zh)
CA (1) CA3034454A1 (zh)
EA (1) EA201990580A1 (zh)
MX (1) MX2019002409A (zh)
WO (1) WO2018042336A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092891A (zh) * 2022-05-16 2022-09-23 西安交通大学 一种适用于高原环境制氧机及方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368750B (zh) * 2015-09-01 2020-08-18 八河流资产有限责任公司 使用嵌入式co2循环发电的系统和方法
EP3538746A1 (en) 2016-11-09 2019-09-18 8 Rivers Capital, LLC Systems and methods for power production with integrated production of hydrogen
AU2018364702B2 (en) 2017-11-09 2024-01-11 8 Rivers Capital, Llc Systems and methods for production and separation of hydrogen and carbon dioxide
US11635254B2 (en) 2017-12-28 2023-04-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Utilization of nitrogen-enriched streams produced in air separation units comprising split-core main heat exchangers
US10663224B2 (en) 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US10663223B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US10816263B2 (en) * 2018-04-25 2020-10-27 Praxair Technology, Inc. System and method for high recovery of nitrogen and argon from a moderate pressure cryogenic air separation unit
US10981103B2 (en) 2018-04-25 2021-04-20 Praxair Technology, Inc. System and method for enhanced recovery of liquid oxygen from a nitrogen and argon producing cryogenic air separation unit
US10663222B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US20200140271A1 (en) * 2018-11-07 2020-05-07 L'air Liquide, Societé Anonyme Pour L'etude Et L'exploitation Des Procédés Georges Claude Novel process for integrating a partial oxidation syngas production plant with an oxygen combustion process
AU2020255799A1 (en) * 2019-04-05 2021-10-28 Linde Gmbh Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement
KR20220020842A (ko) 2019-06-13 2022-02-21 8 리버스 캐피탈, 엘엘씨 추가 생성물들의 공동 발생을 구비하는 동력 생산
US20210199378A1 (en) * 2019-12-30 2021-07-01 L'air Liquide, Societe Anonyme Pour L'etude Et L?Exploitation Des Procedes Georges Claude Method and apparatus for improving efficiency of a front-end purification unit of an air separation plant
US11035260B1 (en) 2020-03-31 2021-06-15 Veritask Energy Systems, Inc. System, apparatus, and method for energy conversion
CN115461584B (zh) * 2020-05-11 2024-08-02 普莱克斯技术有限公司 用于从中压低温空气分离单元回收氮、氩和氧的系统和方法
KR20230008859A (ko) 2020-05-15 2023-01-16 프랙스에어 테크놀로지, 인코포레이티드 질소 및 아르곤 생성 극저온 공기 분리 유닛용 통합형 질소 액화기
US11691874B2 (en) 2021-11-18 2023-07-04 8 Rivers Capital, Llc Apparatuses and methods for hydrogen production
US12055345B2 (en) * 2022-07-28 2024-08-06 Praxair Technology, Inc. Air separation unit and method for production of nitrogen and argon using a distillation column system with an intermediate pressure kettle column

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930268A2 (en) * 1998-01-20 1999-07-21 Air Products And Chemicals, Inc. Integration of a cryogenic air separator with synthesis gas production and conversion
US20060137393A1 (en) * 2004-12-27 2006-06-29 Bot Patrick L Integrated air compression, cooling, and purification unit and process
US20070209389A1 (en) * 2006-03-10 2007-09-13 Prosser Neil M Cryogenic air separation system for enhanced liquid production
CN102834670A (zh) * 2010-01-28 2012-12-19 帕尔默实验室有限责任公司 利用二氧化碳循环工作流体高效发电的系统和方法
US20130213049A1 (en) * 2009-02-26 2013-08-22 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
CN103534544A (zh) * 2011-03-16 2014-01-22 八河流资产有限责任公司 低温空气分离方法与系统
US20140360201A1 (en) * 2011-11-25 2014-12-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for supplying a combustion chamber with nitrogen
WO2016005030A1 (de) * 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
WO2016015850A1 (de) * 2014-07-31 2016-02-04 Linde Aktiengesellschaft Gewinnung eines luftprodukts in einer luftzerlegungsanlage mit kältespeichereinheit

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1006499A (en) * 1963-10-29 1965-10-06 Roman Stoklosinski Improvements in or relating to gas separation with particular reference to air separation
US3731495A (en) * 1970-12-28 1973-05-08 Union Carbide Corp Process of and apparatus for air separation with nitrogen quenched power turbine
JPS54162678A (en) 1978-06-14 1979-12-24 Hitachi Ltd Air separating apparatus taking out liquid product utilizing coldness of lng
JPS56115896A (en) 1980-02-19 1981-09-11 Kawasaki Heavy Ind Ltd Gas compressor plant equipped with power recovering means
GB2079428A (en) * 1980-06-17 1982-01-20 Air Prod & Chem A method for producing gaseous oxygen
GB2100801B (en) 1981-06-18 1984-10-10 Air Prod & Chem Method and apparatus for compressing gas
US4829763A (en) 1984-02-01 1989-05-16 Fluor Corporation Process for producing power
US4806136A (en) 1987-12-15 1989-02-21 Union Carbide Corporation Air separation method with integrated gas turbine
US5081845A (en) 1990-07-02 1992-01-21 Air Products And Chemicals, Inc. Integrated air separation plant - integrated gasification combined cycle power generator
US5406786A (en) 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
US5355681A (en) * 1993-09-23 1994-10-18 Air Products And Chemicals, Inc. Air separation schemes for oxygen and nitrogen coproduction as gas and/or liquid products
US6082136A (en) * 1993-11-12 2000-07-04 Daido Hoxan Inc. Oxygen gas manufacturing equipment
GB9405072D0 (en) * 1994-03-16 1994-04-27 Boc Group Plc Air separation
FR2728663B1 (fr) 1994-12-23 1997-01-24 Air Liquide Procede de separation d'un melange gazeux par distillation cryogenique
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
FR2744795B1 (fr) * 1996-02-12 1998-06-05 Grenier Maurice Procede et installation de production d'oxygene gazeux sous haute pression
US5762817A (en) * 1996-04-12 1998-06-09 E. I. Du Pont De Nemours And Company Decafluoropentane compositions
JP3304810B2 (ja) 1997-03-25 2002-07-22 日本鋼管株式会社 原料空気多段圧縮機における原料空気の除湿・冷却システム
US6141950A (en) 1997-12-23 2000-11-07 Air Products And Chemicals, Inc. Integrated air separation and combustion turbine process with steam generation by indirect heat exchange with nitrogen
JP3457949B2 (ja) 1998-02-04 2003-10-20 テキサコ デベロプメント コーポレーション 集中ガス化器と結合させた極低温空気分離ユニットの酸素発生方法及び装置
US6134916A (en) 1999-02-02 2000-10-24 Texaco Inc. Combined operation of a cryogenic air separation unit and an integrated gasifier combined cycle power generating system
JPH11315727A (ja) * 1998-05-01 1999-11-16 Ishikawajima Harima Heavy Ind Co Ltd 炭酸ガス除去用のガス化複合発電設備
US6178775B1 (en) 1998-10-30 2001-01-30 The Boc Group, Inc. Method and apparatus for separating air to produce an oxygen product
US6256994B1 (en) 1999-06-04 2001-07-10 Air Products And Chemicals, Inc. Operation of an air separation process with a combustion engine for the production of atmospheric gas products and electric power
US6263659B1 (en) 1999-06-04 2001-07-24 Air Products And Chemicals, Inc. Air separation process integrated with gas turbine combustion engine driver
FR2803221B1 (fr) 1999-12-30 2002-03-29 Air Liquide Procede et installation de separation d'air
GB0005374D0 (en) 2000-03-06 2000-04-26 Air Prod & Chem Apparatus and method of heating pumped liquid oxygen
US6282901B1 (en) 2000-07-19 2001-09-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation process
DE10045121A1 (de) * 2000-09-13 2002-03-21 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft
EP1207362A1 (en) 2000-10-23 2002-05-22 Air Products And Chemicals, Inc. Process and apparatus for the production of low pressure gaseous oxygen
US6484533B1 (en) 2000-11-02 2002-11-26 Air Products And Chemicals, Inc. Method and apparatus for the production of a liquid cryogen
DE10111428A1 (de) * 2001-03-09 2002-09-12 Linde Ag Verfahren und Vorrichtung zur Zerlegung eines Gasgemischs mit Notbetrieb
US6745573B2 (en) 2001-03-23 2004-06-08 American Air Liquide, Inc. Integrated air separation and power generation process
WO2003029618A1 (de) 2001-10-01 2003-04-10 Alstom Technology Ltd. Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
FR2830463B1 (fr) * 2001-10-09 2004-08-06 Air Liquide Procede et appareil de traitement d'un gaz par adsorption, notamment d'epuration d'air atmospherique avant separation par distillation
US6568185B1 (en) 2001-12-03 2003-05-27 L'air Liquide Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Combination air separation and steam-generation processes and plants therefore
US6718795B2 (en) 2001-12-20 2004-04-13 Air Liquide Process And Construction, Inc. Systems and methods for production of high pressure oxygen
US7284362B2 (en) 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US6702570B2 (en) 2002-06-28 2004-03-09 Praxair Technology Inc. Firing method for a heat consuming device utilizing oxy-fuel combustion
US7191736B2 (en) 2003-01-21 2007-03-20 Los Angeles Advisory Services, Inc. Low emission energy source
US20050241311A1 (en) 2004-04-16 2005-11-03 Pronske Keith L Zero emissions closed rankine cycle power system
US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
US7827794B1 (en) 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
US7966829B2 (en) 2006-12-11 2011-06-28 General Electric Company Method and system for reducing CO2 emissions in a combustion stream
US8065879B2 (en) 2007-07-19 2011-11-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal integration of oxygen plants
FR2919717A1 (fr) 2007-11-06 2009-02-06 Air Liquide Procede et appareil de separation d'air avec compression de produit
US20100024478A1 (en) * 2008-07-29 2010-02-04 Horst Corduan Process and device for recovering argon by low-temperature separation of air
KR101648054B1 (ko) 2009-02-26 2016-08-12 팔머 랩스, 엘엘씨 고온 및 고압에서 연료를 연소하는 장치 및 방법, 이에 관련된 시스템 및 장비
US9068743B2 (en) 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
PL2473706T3 (pl) 2009-09-01 2019-12-31 Exxonmobil Upstream Research Company Wytwarzanie energii o niskiej emisji i układy i sposoby wydobycia węglowodorów
FR2956478A1 (fr) 2010-02-18 2011-08-19 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
EP2551619A1 (de) * 2011-07-26 2013-01-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP2776692B1 (en) * 2011-11-02 2016-05-04 8 Rivers Capital, LLC Power generating system and corresponding method
FR2983287B1 (fr) * 2011-11-25 2018-03-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation de separation d'air par distillation cryogenique
BR112014019522B1 (pt) 2012-02-11 2020-04-07 8 Rivers Capital Llc processo para produção de energia, e sistema para oxidação parcial (pox) e sistema para produção de energia (pps) combinados
US9175691B2 (en) * 2012-10-03 2015-11-03 Praxair Technology, Inc. Gas compressor control system preventing vibration damage
US9518778B2 (en) * 2012-12-26 2016-12-13 Praxair Technology, Inc. Air separation method and apparatus
EP3101374A3 (de) * 2015-06-03 2017-01-18 Linde Aktiengesellschaft Verfahren und anlage zur tieftemperaturzerlegung von luft
US10260802B2 (en) * 2016-06-30 2019-04-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for operating an air separation plant
EP3343158A1 (de) * 2016-12-28 2018-07-04 Linde Aktiengesellschaft Verfahren zur herstellung eines oder mehrerer luftprodukte und luftzerlegungsanlage
US10359231B2 (en) * 2017-04-12 2019-07-23 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
EP3410050B1 (de) * 2017-06-02 2019-05-01 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
US10408536B2 (en) * 2017-09-05 2019-09-10 Praxair Technology, Inc. System and method for recovery of neon and helium from an air separation unit
US10295254B2 (en) * 2017-09-05 2019-05-21 Praxair Technology, Inc. System and method for recovery of non-condensable gases such as neon, helium, xenon, and krypton from an air separation unit
US11054182B2 (en) * 2018-05-31 2021-07-06 Air Products And Chemicals, Inc. Process and apparatus for separating air using a split heat exchanger
US20200080773A1 (en) * 2018-09-07 2020-03-12 Zhengrong Xu Cryogenic air separation unit with flexible liquid product make

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930268A2 (en) * 1998-01-20 1999-07-21 Air Products And Chemicals, Inc. Integration of a cryogenic air separator with synthesis gas production and conversion
US20060137393A1 (en) * 2004-12-27 2006-06-29 Bot Patrick L Integrated air compression, cooling, and purification unit and process
US20070209389A1 (en) * 2006-03-10 2007-09-13 Prosser Neil M Cryogenic air separation system for enhanced liquid production
US20130213049A1 (en) * 2009-02-26 2013-08-22 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
CN102834670A (zh) * 2010-01-28 2012-12-19 帕尔默实验室有限责任公司 利用二氧化碳循环工作流体高效发电的系统和方法
CN103534544A (zh) * 2011-03-16 2014-01-22 八河流资产有限责任公司 低温空气分离方法与系统
US20140360201A1 (en) * 2011-11-25 2014-12-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for supplying a combustion chamber with nitrogen
WO2016005030A1 (de) * 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
WO2016015850A1 (de) * 2014-07-31 2016-02-04 Linde Aktiengesellschaft Gewinnung eines luftprodukts in einer luftzerlegungsanlage mit kältespeichereinheit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092891A (zh) * 2022-05-16 2022-09-23 西安交通大学 一种适用于高原环境制氧机及方法
CN115092891B (zh) * 2022-05-16 2023-08-15 西安交通大学 一种适用于高原环境制氧机及方法

Also Published As

Publication number Publication date
US20180073804A1 (en) 2018-03-15
WO2018042336A3 (en) 2018-04-12
US10746461B2 (en) 2020-08-18
BR112019003828A2 (pt) 2019-06-18
KR20190041511A (ko) 2019-04-22
JP2019533130A (ja) 2019-11-14
EA201990580A1 (ru) 2019-09-30
MX2019002409A (es) 2019-07-04
WO2018042336A2 (en) 2018-03-08
KR102446458B1 (ko) 2022-09-23
CA3034454A1 (en) 2018-03-08
JP6750120B2 (ja) 2020-09-02
CN109804212B (zh) 2021-06-29
EP3507556A2 (en) 2019-07-10
AU2017318652A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
CN109804212A (zh) 用于产生高压氧的低温空气分离方法
JP3161696B2 (ja) 燃焼タービンを統合した空気分離方法
US6256994B1 (en) Operation of an air separation process with a combustion engine for the production of atmospheric gas products and electric power
CN101460801B (zh) 二氧化碳纯化方法
RU2362954C2 (ru) Очистка сжиженного природного газа
US5268019A (en) Air separation method and apparatus combined with a blast furnace
AU649362B2 (en) Multiple reboiler, double column, air boosted, elevated pressure air separation cycle and its integration with gas turbines
US8065879B2 (en) Thermal integration of oxygen plants
JPH087019B2 (ja) 空気の高圧低温蒸留方法
US4962646A (en) Air separation
CN110678710B (zh) 用于通过低温蒸馏分离空气的方法和设备
AU650178B2 (en) Efficient single column air separation cycle and its integration with gas turbines
CN102047057A (zh) 分离空气的方法和设备
US20150192330A1 (en) Method and device for generating electrical energy
CN101509722A (zh) 蒸馏方法和设备
CN101535755B (zh) 低温空气分离系统
JPH0682157A (ja) 空気の分離
Smith et al. Air separation unit integration for alternative fuel projects
JP2008122035A (ja) 酸素製造方法及び酸素製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant